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1. Introduction 

 
In structural identification and damage detection, much 

research has been devoted to developing vibration-based 
techniques to either perform essentially an inverse 
procedure to identify structural parameters or construct 
statistical patterns. The most commonly used vibration data 
are the natural frequencies, mode shapes, and to a lesser 
extent damping parameters (Doebling et al. 1996, Sohn et 
al. 2004, Carden and Fanning 2004). In a physical 
measurement environment, however, measurement errors 
and environmental noises dictate that only a limited amount 
of such data may be obtained with sufficient accuracy.  

It is generally recognised that modal frequencies can be 
measured with higher accuracy than the mode shapes; the 
errors in the measured natural frequencies may be 
controlled within 1%, whereas the errors in the mode shape 
displacements are generally much larger (Mottershead and 
Friswell 1993, Jones and Turcotte 2002, Fan and Qiao 
2011). Moreover, in practice the mode shapes cannot be 
measured at all DOFs of a system, and this necessitates the 
mode shape expansion or FE model reduction and such 
process introduces additional errors. These issues have  
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greatly limited the application of mode shapes or mode 
shape derivatives in practice (Ratcliffe 1997, Shi and Law 
1998, Shi et al. 2000, Qiao et al. 2007). 

When it comes to using the natural frequency 
information for the damage detection, an obvious limitation 
is by the fact that each natural mode has only one 
frequency, so the total number of natural frequencies that 
may be measured from a structure is very limited. 
Therefore, an enhanced ability to acquire additional modal 
frequency data is highly desirable in the general damage 
detection and structural identification field.  

In the past, researchers have proposed the use of the 
zeros (antiresonances) in the frequency response function 
(FRF) curves as a new type of modal information for 
damage detection of structures (Lallement and Cogan 1992; 
Rade and Lallement 1998, Mottershead 1998). Unlike the 
resonances, zeros occur generally at different frequencies 
for different measurement points, thus the antiresonance 
frequencies provide a plentiful resource for the enlargement 
of the modal data space. 

Antiresonances have been employed in FE model 
updating and damage identification on various types of 
laboratory structures and proven to be effective. Some of 
the examples included a steel frame structure and a 
simplified aircraft beam-assembly called “GARTEUR SM-
AG19” benchmark structure (D'Ambrogio and Fregolent 
2000, 2003, 2004), a 6m flexible truss structure (Jones and 
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Turcotte 2002), a gas exhaust system and an 8-DOF mass-

spring system (Meruane and Heylen 2011, Meruane 2013, 

Meruane and Mahu 2014), and steel rods and bending 

vibration beams (Dilena and Morassi 2004, 2009, 2010). 

Comparisons of updating results with antiresonances and 

the results with mode shapes indicate that similar accuracy 

could be achieved. This suggests that antiresonances can 

serve as an alternative to mode shapes in the finite element 

model updating. 

Theoretically speaking, antiresonances in a particular 

FRF may be determined from the eigenmode analysis by 

eliminating a row and a column from both the stiffness and 

mass matrices of the original system, with the row and 

column corresponding to the force and response positions of 

the FRF, respectively (Mottershead 1998). When the row 

and the column being eliminated are of the same number, 

i.e., a driving-point FRF case, then the antiresonances are 

exactly the natural frequencies of the modified system by 

adding a pin (restraint) to the corresponding DOF.  

The above perspective of the driving-point 

antiresonances is in line with the more general concept of 

perturbed natural frequencies of a structure, in which case 

the boundary condition of the structure is to be physically 

altered (perturbed) so as to generate additional frequency 

information (Li et al. 1995). The idea of the perturbed 

boundary condition frequencies, albeit novel, has found 

little scope of application because of the obvious 

impracticality of physically changing the boundary 

condition of a real structure. The driving-point 

antiresonances can be seen as a special case of the perturbed 

natural frequencies in which one single pin support would 

be added; but by identifying the antiresonances from the 

driving point FRF, which is measured from the existing 

structure, the need of physically adding the pin support is 

avoided. 

The possibility of obtaining a diverse range of 

“perturbed” natural frequencies without the need of 

physically imposing additional supports has been 

theoretically established by Gordis (1996, 1999) through the 

introduction of the concept of artificial boundary condition 

(ABC) frequencies. Using this approach, the natural 

frequencies of a structure with “artificially” added (i.e., 

virtual) pin supports at certain locations may be derived 

from the incomplete frequency response function (FRF) 

matrix measured from the existing structure. In the case of 

one-pin ABC frequencies, the situation degenerates to the 

driving-point antiresonances (zeros) of the existing structure 

with a virtual pin added at the driving point. For this reason, 

and to be consistent with the general ABC frequencies 

discussed in this paper, hereinafter the driving-point 

antiresonances will be referred to as “one-pin ABC 

frequencies”. 

With the incorporation of the ABC frequencies, the 

modal frequency dataset can potentially be expanded 

drastically. A series of studies has been conducted in this 

research group to evaluate and enhance the effectiveness of 

incorporating ABC frequencies in a comprehensive 

structural identification process and look into the potential 

issues in extracting ABC frequencies from physical tests 

(Tu and Lu 2008, Lu and Tu 2008, Mao and Lu 2016). 

Continued effort is being made to evaluate different 

experimental aspects of extracting the ABC frequencies, 

specific measurement error sources, and improve the 

measurement accuracy, especially for ABC frequencies with 

more than one pin and in different structural and 

measurement configurations, as well as the use of such 

frequencies in structural damage identification.  

This paper presents a comprehensive experimental 

investigation into the extraction of the ABC frequencies in 

laboratory experiments. Specific error sources in the 

measured ABC frequencies are discussed and the accuracy 

of the obtained ABC frequencies is assessed. The extracted 

experimental ABC frequencies before and after damage are 

compared to demonstrate the sensitivity of the measured 

ABC frequencies to damage. FE model updating is then 

presented in which different sets of the measured modal 

data, including different combinations of natural modes 

and/or ABC frequencies, to illustrate the effectiveness of 

incorporating the ABC frequencies in a practical damage 

identification application. 

 

 

2. Overview of basic formulation  
 
As mentioned in the Introduction section, modal 

frequency data for a given structure with added (perturbed) 

supports provide extended response information which can 

be used in the structural parameter identification. However, 

the practicality of such a seemingly attractive idea has been 

hindered by the fact that imposing added support(s) on a 

real structure is not normally feasible.  

The theoretical work by Gordis (1996, 1999) paved a 

way for the potential application of the idea of the perturbed 

boundary frequencies in real structures. In the above 

publications, it was shown that the natural frequencies of a 

structure with additional pin supports may be determined by 

manipulating the frequency response functions measured on 

the existing structure, without the need to actually impose 

the additional supports. The perturbed natural frequencies 

obtained in this way are thus called “artificial boundary 

condition” frequencies, or in short ABC frequencies herein, 

to reflect the fact that the required additional supports are 

virtual. The theoretical basis of the method is outlined 

below.  

By partitioning between the measured and unmeasured 

coordinate sets (degrees of freedom, or DOFs), the steady 

state response of a linear system at a forcing frequency  

(rad/s) may be written as 
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where, k and m are stiffness and mass matrices, x and f are 

vectors of generalized response and excitation amplitudes, 

respectively. Subscript “m” represents measured DOFs and 

subscript “o” refers to the unmeasured DOFs (“omitted 

coordinate set” or OCS). The OCS is effectively a reduced 

system, in which all the measured DOFs are restrained or 

pinned to the ground.  

Introducing the impedance matrix, Z=k-2
m, Eq. (1) 
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can be re-written as 
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Assuming no excitations are imposed on the omitted 

DOFs, i.e., fo=0, from Eq. (2) we can get 
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where, Hmm = xm/fm is the measured frequency response 

function (FRF) matrix containing mm FRF entries (hence 

incomplete) from the existing structure. 

Eq. (4) establishes the inherent relationship between the 

inverse of Hmm and the dynamic characteristics of the OCS 

as represented by Zoo, such that at the natural frequencies of 

the OCS, Zoo
-1

 is singular, hence Hmm
-1

 is also singular, and 

vice versa. Therefore, by identifying the singularities from 

the elements of Hmm
-1

, one can determine the natural 

frequencies of the OCS, i.e., the frequencies of the structure 

as if it was physically pinned at the measured DOFs.  

The above statement can be more conveniently 

illustrated using an example shown in Fig. 1, where (a) 

shows a simply-supported with a presumed “perturbed” 

boundary condition with two additional pin supports at “i” 

and “j”, for which the modal frequencies are to be 

evaluated, and (b) shows the actual measurement settings. 

Instead of physically imposing the two additional pins as 

indicated in Fig. 1(a), the modal frequencies under such a 

boundary condition can be determined by measuring the 

(2×2) FRF matrix on the original beam at points “i” and “j” 

shown in Fig. 1(b) and subsequently identifying the 

singularities from the inverted FRF matrix. 

 

 

 
(a) Simply supported beam with an assumed  

“perturbed” boundary condition with added pins at 

“i” and “j”  

 

 
(b) Artificial boundary condition f requency  

measurements 

Fig. 1 Illustration of artificial boundary condition 

frequency measurement settings 

 

 

 

3. Experimental investigation of modal testing for 
ABC frequencies  

 

Previous studies using numerically simulated structures 

(Tu and Lu 2008) have demonstrated the effectiveness of 

incorporating ABC frequencies with one to two pins in the 

identification of structural parameters and detection of 

structural damage. The key to bringing the approach of 

involving ABC frequencies in practical applications rests 

upon the reliability and accuracy in the acquisition of the 

ABC frequencies from measured responses. In this section, 

an experimental exploration on extracting ABC frequencies 

from physical measurements is presented with a laboratory 

experiment. Issues and possible improvements with regard 

to the quality of FRF measurements from an experimental 

modal testing point of view are highlighted and discussed.  

The driving-point antiresonances, i.e., one-pin ABC 

frequencies as we shall call herein in the context of the 

present paper, have been actually obtained in modal testing 

and applied in model updating in the past, as reviewed in 

the Introduction section. But experimental information on 

obtaining two-pin ABC frequencies from physical 

experiments has been scarce. This section aims to discuss 

the extraction of both one-pin and two-pin ABC frequencies 

from the experiments. 

 

3.1 Test structure and modal testing program 
 
To avoid unnecessary complications from possible 

structural uncertainties in the experimental study concerned 

within this paper, the test setup has been kept as simple as 

possible. The test specimen included steel beams in intact 

and damaged states. The beams had an identical length of 

1020 mm, and a cross-section of width 50 mm and depth 6 

mm. The beams were tested under a fixed-end condition, 

with both ends clamped onto steel supports through bolts 

and clamping plates, as shown in Fig. 2. The steel supports 

were considerably stiffer than that of the beam to satisfy the 

requirement of a fixed support. 

 

 

 

 
(a) Test specimen set-up 

 
(b) Dimensions and test points (Unit: mm) 

Fig. 2 Test setup 
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In the experiment, an instrumented impact hammer 

(B&K type 8206-002) was used to excite the test beam. The 

impact pulse was controlled via using a hammer tip; in the 

present experiment a plastic tip was found to be suitable to 

excite the relatively flexible beam. Preliminary tests showed 

that the hammer was able to generate a flat force spectrum 

in the range of 0-1000 Hz, which covered comfortably the 

frequency range of interest for the test beam.   

Response of the beam was measured with modal testing 

accelerometers (B&K Delta Tron
®
 4508 B 003 type). The 

accelerometers are light-weight (4.9 g) as compared to the 

unit segment weight of the test steel beam; therefore the 

influence of transducer mass on modal testing results was 

negligible. Because the driving point FRF curves are 

required as part of the FRF matrix in order to determine the 

ABC frequencies, all accelerometers were attached to the 

bottom side of the steel beam (Fig. 2(a)). During the 

experiment, a measurement array was arranged by dividing 

the beam length along the centreline into a number of 

segments, herein 10 segments were considered, giving rise 

to 9 measurement points (excluding the two end supports), 

as shown in Fig. 2(b). 

For simplicity and without losing generality, the 

experimental study was focused on two-pin ABC 

frequencies, in addition to the simpler one-pin ABC 

frequencies. As a matter of fact, with just one and two-pin 

supports a large number of variations in the support 

locations can already be configured, providing a range of 

ABC frequency combinations. It is also worth noting that 

the extraction of ABC frequencies involves inversion of the 

incomplete FRF matrix whose dimension increases with the 

number of the artificial pins, therefore using more than 

2pins would introduce increased complexity in the 

influence of the measurement errors. To facilitate the 

measurements for all one- and two-pin configurations, two 

accelerometers are required and these were attached to two 

measurement points (i and j) at any one time, as illustrated 

earlier in Fig. 1. 

The impact force and acceleration response signals were 

acquired with a multi-channel data acquisition module. 

Because the detailed FRFs are needed to generate the ABC 

frequency function curves, it was essential that the impact 

force time history was captured with high accuracy;  

 

 

 

otherwise spurious peaks could occur on the FRFs. Since 

the impact force lasts for a very short duration, typically in 

a fraction of a millisecond (see Fig. 3(a)), a high sampling 

rate of above 10 kHz was required. After trial testing and 

data analysis with different sampling rates, it was found that 

sampling at 25.6 kHz was appropriate in that the resulting 

FRF curves were smooth enough and further increase of the 

sampling rate had no noticeable effect. This sampling rate 

was therefore employed for both input and output signals 

during the tests. One further requirement for transient 

modal testing is that the response signals of the structure 

should be fully recorded to avoid leakage in modal analysis 

(Ewins 1984). To this end, a record duration was set at 16 s, 

which proved to be adequate to both cover the useful signal 

and maintain a manageable data size. Representative input 

force and output acceleration signals obtained from the tests 

are shown in Fig. 3. 

Three different groups of tests were carried out to obtain 

the natural modes, one-pin ABC frequencies and two-pin 

ABC frequencies, respectively. More details follow. 

(1) The first test was to obtain natural frequencies as 

well as mode shapes of the beam. As mentioned earlier the 

beam was evenly divided into 10 segments, resulting in 9 

measurement points along the beam length. To obtain the 

mode shapes, a complete row or column of the FRF matrix 

needs to be measured. In the present test the response 

measurement location was fixed while the impact location 

moved from point to point. To avoid nodal point in any of 

the first few mode shapes an accelerometer was fixed at 

location P7 (Fig. 2), and 9 different measurements with 

excitation at each of the 9 measurement points, respectively, 

were carried out. 

(2) One-pin ABC frequencies can be obtained from the 

driving point FRF curves. As representation, three driving 

points (or ABC pin locations) at P4, P7 and P8, respectively, 

were tested.  

(3) Two-pin ABC frequencies involve two virtual pin 

locations. Again as representation, three two-pin 

configurations were chosen in the tests, with pins at (P2, 

P5), (P4, P7) and (P4, P8), respectively. For each 

configuration, two accelerometers were attached at the 

virtual pin locations and the excitation was imposed at each 

of the two locations in turn. Referring to Fig. 1 again, to  

 
(a) Impact force (Zoomed)                       (b) Acceleration 

Fig. 3 Representative recorded impact force and acceleration signals 

 

-30

0

30

60

90

120

150

0.977 0.978 0.979 0.98 0.981 0.982

F
o

rc
e/

N

t/s

-200

-100

0

100

200

0 4 8 12 16

A
cc

el
er

at
io

n
/m

/s
2

t/s

250



 

Experimental study of extracting artificial boundary condition frequencies for dynamic model updating 

 

 

 

measure the FRFs for the two-pin ABC frequencies with the 

two virtual pins at locations (i, j), the excitation (impact) is 

firstly applied at location i while the responses are 

measured at both i and j, yielding FRFii and FRFij. 

Subsequently the excitation is applied at j while the 

responses are measured again at i and j, yielding FRFji and 

FRFjj. Thus, four FRF curves are obtained, including two 

driving-point FRFs and two transfer FRFs. This completes 

the measurement for the two-pin ABC configuration of (i, j). 

The same procedure was repeated for all selected two-pin 

ABC configurations. Note that in the current tests both the 

one-pin and two-pin ABC configurations (locations of the 

pins) were randomly chosen. 

The FRF curves are calculated by the following 

equation 

)(

)(
)(






F

X
H   (5) 

where, X() is the Fourier transform of the output signal 

and F() is the Fourier transform of the input signal, H() 

is the measured FRF curve.  

From the definition explained in the Basic Formulation 

section, the two-pin ABC frequency function curves can be 

calculated as 
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where, Aij (i, j=1, 2) are the elements of the inverse of the 

incomplete FRF matrix, which effectively form the two-pin 

ABC frequency function curves with the resonance in each 

of these functions being the ABC frequencies. Hereinafter 

Aij will be referred to simply as ABC frequency function. 

In obtaining the measured FRF curves, standard force 

windowing is applied on the impact force curve and a 

rectangular window with the same duration as the impact 

force is used. 5 repetitive tests were performed to allow for 

an average on the resulting FRF curves.  

After the above process the FRF curves are generally of 

good quality in the resonance regions, where the peaks are 

clear and distinctive, and the curves around the peaks are 

smooth. It should be straightforward to identify natural  

 

 

 

mode parameters such as natural frequencies and mode 

shapes based on peak-picking methods. However, the FRF 

curves in some antiresonance regions are still “noisy” which 

makes it difficult to pick out the exact antiresonance (one-

pin ABC) frequencies. On such example is shown in Fig. 4 

(a). The same problem can also affect two-pin ABC 

frequency curves, as shown in Fig. 4(b). 

To tackle this problem, a multi-DOF modal analysis 

method, namely the Rational Fraction Polynomial (RFP) 

method, is employed in the process to extract the ABC 

frequencies. The basic idea of the RFP method is that 

theoretically an FRF can be expressed in terms of rational 

fraction polynomials. With numerical manipulations on a 

measured FRF curve, the coefficients of the polynomials 

can be obtained. The actual modal parameters can then be 

extracted from the polynomial form of the FRF curve. 

Richardson and Formenti (1982) employed orthogonal 

polynomials in the RFP method and made it suitable for 

computer-based calculation. The RFP method is employed 

here to obtain ABC frequencies which would otherwise be 

difficult to determine with the peak-picking method due to 

noise in the curves. To obtain one-pin ABC frequencies, 

RFP is applied on the FRF curves directly. But when 

obtaining the two-pin ABC frequencies, RFP is applied on 

the ABC frequency function curves instead of the original 

FRF curves.  

The effect of RFP on FRF curves and ABC frequency 

function curves is shown in Fig. 4 in which the original 

measured data are labelled as “Measured” and the RFP-

processed data are labelled as “RFP”. It can be seen that the 

processed FRF and ABC frequency function curves from 

using RFP match quite well the measured curves overall, 

and at the same time the valleys, as well as peaks, are 

cleared up, paving the way for the extraction of the ABC 

frequencies from the RFP curves.  
Fig. 5 presents representative driving FRF and ABC 

frequency function curves for a two-pin scenario in a 

combined plot. The natural (resonance) frequencies, one-pin 

ABC (antiresonance) frequencies, as well as two-pin ABC 

frequencies are marked respectively. While one-pin ABC 

frequencies are simply driving-point antiresoannce and 

hence are subject to the same measruement constraints as 

antiresoannces, it can be observed clearly that the two-pin 

ABC frequencies are generally not associated with the  

 
      (a) FRF curve (close-in)             (b) Two-pin ABC curve (close-in) 

Fig. 4 RFP technique for noisy antiresonances and two-pin ABC frequencies 
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antiresonances. Recall the theoretical background presented 

in Section 2; the multi-pin ABC frequency curves are 

constructed from inverting the measured FRF matrix (for 

two-pin ABC here this is 22 matrix), and as a result the  

 

 

 

 

 

 

 

peaks on the inverted matrix elements have no direct 

connection to either antiresonance frequencies or the 

resonances in an individual FRF. 

 

 
Fig. 5 Representative driving FRF and two-pin ABC frequency function curves 

Table 1 Measured and predicted natural and one-pin ABC frequencies (Unit: Hz) 

Mode 
Natural frequency One-pin at P4 One-pin at P7 One-pin at P8 

f0Nm f0Nc /% f0Am f0Ac /% f0Am f0Ac /% f0Am f0Ac /% 

1 28.9 29.0 0.1 66.8 66.2 0.8 52.6 51.4 2.2 41.4 41.2 0.5 

2 79.9 79.9 0.0 145.8 145.8 0.0 146.0 143.6 1.7 117.3 115.0 1.9 

3 157.0 156.6 0.2 211.9 210.1 0.8 247.3 251.8 1.8 231.0 227.1 1.7 

4 259.2 259.2 0.0 385.1 386.2 0.3 322.6 321.0 0.5 380.6 375.8 1.3 

5 387.3 388.3 0.3 - - - - - - - - - 

Mean   0.1   0.5   1.5   1.3 

Table 2 Measured and predicted two-pin ABC frequencies (Unit: Hz) 

Mode 
Pins at P2 and P5 Pins at P4 and P7 Pins at P4 and P8 

f0Am f0Ac /% f0Am f0Ac /% f0Am f0Ac /% 

1 95.6 95.4 0.2 139.8 138.6 0.9 116.5 113.5 2.6 

2 218.6 212.2 2.9 211.4 209.2 1.1 172.5 169.7 1.6 

3 305.9 303.9 0.7 298.2 299.5 0.5 376.1 369.1 1.8 

4 533.9 542.0 1.5 452.4 452.3 0.0 471.6 471.8 0.0 

Mean   1.3   0.6   1.5 

 
Fig. 6 Displacement-normalized mode shapes 
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3.2 Modal testing results 
 

The implementation of the above mentioned data 

processing procedure proved to work well in this 

experiment towards generating the ABC frequencies. From 

Fig. 5 it can be seen that both the FRF curve and ABC 

frequency function curve exhibit satisfactory quality; the 

noise level in the curves is relatively low, and resonances 

and antiresonances can be clearly identified from the FRF 

curve as well as the two-pin ABC frequency function curve. 

With the basic peak-picking, deep-picking methods and 

RFP technique, the natural frequencies, mode shapes and 

ABC frequencies can now be obtained conveniently. 

Tables 1 and 2 summarize the measured natural 

frequencies and one-pin and two-pin ABC frequencies of 

the intact steel beam. In the tables, “fN” represents natural 

frequencies and “fA” represents ABC frequencies. Subscript 

“0” indicates the beam is intact, subscript “m” denotes 

measured data while subscript “c” denotes predicted data. 

The predicted data are from calibrated finite element model 

of the beam, which will be discussed slightly later. 

Fig. 6 illustrates the first two displacement-normalized 

mode shapes. In all, the first 5 natural modes, including 

natural frequencies and mode shape displacements at the 

measured locations could be obtained from the tests. On the 

other hand, the first 4 ABC mode frequencies for each of 

the two-pin configuration can be determined from the tests 

without ambiguity. 

 

 

4. Discussion on the measurement accuracy of ABC 
frequencies 

 
The previous section has established that the first few (4 

herein) ABC mode frequencies are obtainable from a 

standard modal testing and data processing procedure. This 

section examines the accuracy in the measured ABC 

frequencies in terms of the susceptibility of these 

frequencies to some common variability in conducting the 

physical tests, such as the actual impact location. 

It is generally believed that antiresonances will have 

similar measurement accuracy as resonances (D'Ambrogio 

and Fregolent 2000, 2003), and as such when these data are 

employed in a parameter identification (model updating) 

process, uniform weighting is generally used regardless 

resonances or antiresonances (D'Ambrogio and Fregolent 

2000; Meruane and Heylen 2011). Non-uniform weighting 

for resonances and antiresonances has also been considered; 

for example Jones and Turcotte (2002) assigned different 

weighting factors for resonances and antiresonances based 

on the assumption that the coefficient of variance of 

antiresonances is 2 times of that of resonances. However, in 

the context of the general ABC frequencies with more than 

one pin, there is a lack of analysis on the accuracy of the 

measured ABC frequencies from a modal testing procedure. 

Natural frequencies and ABC frequencies share the 

same character in that they both are associated with the 

peaks on the FRF curve or ABC frequency function curve, 

respectively. However there exist fundamental differences 

between the two types of frequencies. While the natural 

frequencies are independent of the excitation and response 

measurement locations, the ABC frequencies depend 

closely upon the locations of excitation and response. This 

characteristic is similar to the well-known location-

dependent characteristic of the antiresonances, which in the 

driving-point case are simply a special case of the ABC. As 

a consequence, any imprecision in the excitation and 

measurement locations could bring errors into the ABC 

frequencies. 

The following error sources are examined here; (1) 

errors due to misalignment of the excitation location and the 

sensor location, (2) errors due to sensor mass, and (3) 

additive noise. 

 

4.1 Errors pertaining to imprecise excitation location  
 
Input location error could arise from the limitation of 

modal testing setup or manual operation. For example, one-

pin ABC frequencies are obtained from driving 

antiresonances. To get driving FRF curves, we need the 

input excitation and the output response measurement 

locations in the structure to be identical. However this is 

hard to achieve in practice. Usually there are three 

alternative options to deal with driving point measurements 

(Ewins 1984). The first one is to use an impedance head 

which can measure both the impact force and excitation 

response at a single point. The second one is to place the 

sensor alongside but as close as possible to the excitation 

point, as shown in Fig. 7. As the excitation location is 

actually shifted from the theoretical target point, the ABC 

frequencies will be affected. The third option may be 

suitable for thin structure such as the steel beam tested 

herein, and in this approach the impact and the output 

sensor are placed in line but on opposite sides of the 

structure. However there is still no 100% guarantee of 

achieving the exact alignment, especially when the 

excitation (e.g. an impact hammer) is handled manually. For 

these reasons, a detailed examination of the sensitivity of 

the one-pin and two-pin ABC frequencies to the 

misalignment of the impact and output response locations is 

deemed to be instructive.  

The scenario is illustrated in Fig. 7. The target driving 

FRF is at point i, Hii, and the sensor is placed at i. Assuming 

the impact point is offset by a distance of d, at point i′. We 

shall examine the sensitivity of ABC frequencies to d. 

The sensitivity of antiresonances from an FRF curve Hkj 

to parameter p has been given in Mottershead
 
(1998), which 

is a linear combination of sensitivities of eigenvalues and 

eigenvectors. It is convenient to get an explicit sensitivity 

relationship for driving function Hii, i.e., one-pin ABC 

frequencies fA. If we take d as a structural parameter, and 

consider that eigenvalues will not change with d because 

they are global parameters and do not depend on the 

excitation location, we can get the sensitivity of fA
2
 to d, as 
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Fig. 7 Modal testing operation when obtaining one-pin 

ABC frequencies 

 

 

where, = diag(n), n=1, 2, …, N, andk is the n
th
 

eigenvalue; the subscripts k, p on the matrix (-fA
2
I) mean 

that the k
th

 and p
th

 rows and columns have been deleted. ∂ik 

is the change of mode shape element ik due to the change 

of excitation location; in the example considered here 

ikkiik     (8) 

It is actually the difference of the mode shape elements 

at point i′ and i.  

It is clear from Eq. (7) that the sensitivity of fA
2
 is a 

linear combination of the sensitivities of the mode shape 

element at point i from different modes. In other words, the 

error brought by the location misalignment in the one-pin 

ABC frequency is a linear combination of shifts in the mode 

shape element at the driving point due to the misalignment.  

The same procedure can be applied on two-pin ABC 

frequencies. From Eq. (6), the two pin ABC frequencies are 

actually frequency points which satisfy 

        0  jiijjjii HHHH  (9) 

In the two-pin situation, the excitation location errors 

involve two contributions, one from the actual point i′, 

which is d1 away from point i, and one from the actual 

point j′, which is d2 away from point j. So the measured 

two-pin ABC frequencies manifest as satisfying 

        0   ijjijjii HHHH  (10) 

The FRF curves can be expressed in terms of the 

eigenmode data (Mottershead
 
1998), as 
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With Eqs. (10) and (11), the two-pin ABC frequencies fA 

can be determined from 
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The sensitivity of fA
2
 to d1 and d2 can be calculated 

following a similar approach as the ansiresonance 

sensitivity 
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Thus the shift of a two-pin ABC frequency fA due to the 

location errors can be calculated as 

2

2

2

A
1

1

2

A2

A dd
d

f
dd

d

f
df 









  (13c) 

Eq. (13) showed that, similar to one-pin ABC 

frequencies, the error brought by the location misalignment 

in two-pin ABC frequencies is also a linear combination of 

shifts of the mode shape displacements at the two virtual 

pin locations. 

Considering that the offset distance d can be controlled 

within a reasonably small range, with an upper limit of the 

order of the size of the sensor (when placed on the same 

side of the impact strike), it can be assumed that the mode 

shape variation within this range is linear. On this basis, and 

using the expressions in Eqs. (7) and (13), it can be 

demonstrated that the relationship between the error in ABC 

frequencies and d, d1 or d2 are approximately linear. 

Such relationship has also been confirmed with FEA 

analysis, which is not presented here for the sake of space.  

This property leads to a proposed testing operation for 

the measurement of ABC frequencies in terms of mitigating 

the location errors, which can be stated as follows. a) 

Generally speaking, a sufficient number of repeated tests 

should be performed with the impact being imposed around 

the target location in a random manner, and the obtained 

ABC frequencies (squared) should be averaged in order to 

cancel out the errors due to the location misalignment.  b) 

When the sensor and impact need to be applied on the same 

side of the structure (as would be the case for civil 

engineering structures), such that the precise location is 

occupied by the sensor, repetitive tests should be performed 

with the impact being applied on both sides of the sensor, 

and average of the resulting ABC frequencies (squared) 

should be taken. 

 
4.2 Errors pertaining to the sensor mass  
 

It is well known that the testing devices attached to the 

structure, such as a sensor or a shaker stinger, will alter the 

dynamic properties of the tested structure itself to a certain 

extent due to the presence of an additional mass. Several 

studies have been conducted to find ways to cancel out the 

mass effect of sensors (Ashory 2001). As far as 

antiresonances and ABC frequencies are concerned, 

however, these frequencies can be deemed as immune to the 

effect of a sensor mass so long as sensors are only attached 

at the “pin” positions. This is because ABC frequencies are 

by virtue the natural frequencies of the structure with the 

measured nodes being “pinned”. Consequently there should 

be no vibration in the ABC system at the locations of the 

sensors.  

 

d 
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4.3 Errors pertaining to additive noise 
 

It is generally known that the commonly used FRF 

curve estimators H1 and H2 are biased to the uncorrelated 

additive noise, as shown in Eq. (14) (He and Fu). 
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where, “F” stands for the excitation force; “M” stands for 

the additive noise in the excitation force;  “X” stands for 

the output response; “N” stands for the additive noise in the 

output response. S() is the auto- or cross- spectrum of the 

signals. H() is the real value of FRF curves. The symbol 

“^” indicates the term is an estimator. 

It is clear from Eq. (14) that the amplitude of the FRF 

curves will be biased when additive noise is present. For the 

extraction of one-pin ABC frequencies, as the quality of 

FRF curve around the antiresonant area is of main concern, 

H1 should be a better estimator over H2 due to the fact that 

the response of the structure is quite insignificant at 

antiresonances and 2 is relative large. If the spectrum of 

the force is generally smooth and 1 does not have a large 

variation around the antiresonances, the extracted one-pin 

ABC frequencies can be seen as unbiased. This is due to the 

fact that the antiresonances are obtained from the frequency 

axes of the FRF curves rather than the amplitude axes. So as 

long as 1 does not present a large variation, the location of 

the peak on the frequency axes would not change even 

though the amplitude might be biased. 

When H1 or H2 are used as the estimator of FRF, the 

two-pin ABC frequencies calculated with Eq. (9) can be 

written as 

        0ˆˆˆˆ  jiijjiijjjiijjiijiijjjii HHaaHHaaHHHH   (15) 

In modal testing, we use the same excitation force to 

obtain FRFii and FRFij (Excitation at point i), and the same 

excitation force to obtain FRFji and FRFjj (Excitation at 

point j). As a result, when H1 is used as the estimator, we 

will have ii=ij, ji=jj. We can see from Eq. (15) that the 

two-pin ABC frequencies from the FRF estimators will be 

unbiased to the values from real FRF curves. When H2 is 

used as the estimator, from Eq. (14(b)) we can see that the 

coefficient 2 will depend on the SNR (signal-to-noise ratio) 

of the response. As the SNR could be different for the four 

responses, the obtained two-pin ABC frequencies could be 

biased, especially when the driving and transfer FRF curves 

have distinctive SNRs. From this point of view, H1 should 

also be a better choice under such conditions. 

From the above analysis on the effects of a few common 

error sources, it can be argued that the measured ABC 

frequencies are generally unbiased to such errors, and 

through properly designed modal testing and signal 

processing strategies the influence of these errors can be 

minimised. We can therefore postulate that the 

measurement of ABC frequencies can achieve similar 

accuracy as that of the natural frequencies. In the next 

section, we shall examine the accuracy in the measured 

ABC frequencies from the experiment against the predicted 

results from a calibrated (updated) finite element model. 

 

4.4 Verification of accuracy of extracted ABC 
frequencies from test data 
 

The ABC frequencies generated from the experimental 

data are verified against numerically simulated ABC 

frequencies from a carefully calibrated FE model to 

evaluate their accuracy. Once a finite element model is 

calibrated to a satisfactory degree, the computation of the 

ABC frequencies is straightforward as these frequencies are 

simply the natural frequencies of the structure when the 

artificial pin constraints are physically imposed, and this 

can be done easily with the FE model. However, the FE 

model should be accurate enough to represent the test beam, 

and to this end a calibration updating of the basic properties 

of the FE model needs to be carried out beforehand.  

To be consistent with the measurement arrangement in 

the experiment, in the FE model the beam is discretised into 

10 elements, corresponding to the 10 segments in the test. 

To compensate the coarse discretisation and to take into 

account the shear deformation and rotational inertia, high 

order (cubic) Timoshenko beam elements are used to 

establish the FE model and this ensures a minimal 

modelling error. The boundary conditions of the beam 

model follow the experiment and are fixed. The density and 

Poisson”s ratio of the material are known constants for the 

steel material and are 7850 kg/m
3
 and 0.3, respectively. The 

bending stiffness as represented by the beam flexural 

rigidity EI is unknown and needs to be identified (updated). 

Since the intact beam is highly uniform, a single flexural 

rigidity value is updated from the FE model updating. 

For the updating of a single variable, we choose to 

employ only the natural frequencies as these data are 

deemed to have the highest measurement accuracy. The first 

five natural frequencies as available from the experiment 

are employed and accordingly the objective function, which 

is to be minimised in the updating process, is formed as 

follows 
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where, f0Nmi and f0Nci stand for the measured and calculated 

i
th

 natural frequencies of the intact beam. 

The parameter EI in the beam model is iteratively 

adjusted to achieve minimum of the objective function J. 

The result for EI is 168.9 N·m
2
. A comparison between the 

measured natural frequencies and the computed ones using 

the above property is given in Table 1. It can be seen that 

the results match very well.  

The updated FE model is then employed to compute the 

one-pin and two-pin ABC frequencies in a forward manner 

(adding actual pin(s)). The results are presented in Tables 1 

and 2, in which the relative differences between the 

measured and predicted frequencies are also included (the 

term  in percent).  
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It can be seen that the measured and predicted ABC 

frequencies match quite well with each other. The average 

error is less than 1.5%, which is about the order that is 

generally known to the measurement of the natural 

frequencies. It is worth noting that the error in the natural 

frequencies shown in Table 1 is considerably small (average 

about 0.1%) in the present case, and this is attributable to 

the fact that the FE model has been calibrated against these 

measured natural frequencies, therefore a near zero 

difference between the measured and predicted values is 

expected and this may not be directly comparable with the 

differences in the subsequently calculated ABC frequencies.  

From the above verification against the predicted 

results, it can be concluded that both one-pin and two-pin 

ABC frequencies can be measured with good accuracy from 

actual experiment. 

 

 

5. Extracting ABC frequencies from damaged beams 
and damage identification 
 

The last two sections have demonstrated that good 

quality one-pin and two-pin ABC frequencies can be 

obtained from modal testing in a physical measurement 

environment and the accuracy of the measured ABC 

frequencies is similar to the generally recognised 

measurement accuracy of the natural frequencies. In this 

section the effectiveness of employing ABC frequencies in 

the damage identification is evaluated with comparison to 

the use of conventional modal data. 

 

5.1 Test specimens and modal testing results 
 

Two steel beams with the same properties as the one 

reported in Fig. 2, but with the introduction of damages, 

were tested under the same procedure. The damages were  

 

 

 

 

intended to represent a realistic scenario where 

identification using a global method with modal data could 

be possible. To this end, the damages were created in the 

beam by making several cuts within a limited length to 

simulate a sensible reduction of the flexural rigidity over 

the area, as shown in Fig. 8. In the first beam, denoted as 

B1, the cuts were spread slightly less than a segment length, 

in the area between 300 mm to 400 mm from the left 

support. The saw cuts were made with a width of 1 mm and 

depth of 12.5 mm, and the interval between the cuts was 10 

mm. The damage area was located between the points P3 

and P4 shown in Fig. 2. The resulting stiffness reduction as 

equivalent over a whole segment was about 40%. The 

second beam, denoted as B2, had exactly the same pattern 

of cuts located between points P3 and P4, but it had a 

second damage area between points P7 and P8 with cuts 

spreading over half of the segment length. Therefore, the 

first beam effectively represented a scenario with a single 

damage zone, whereas the second beam represented a 

scenario with multiple damaged zones. 

The modal testing procedure was applied on the two 

damaged beams and the same types of modal data, 

including the first 5 modes of natural frequencies and mode 

shapes and the first 4 modes of one-pin and two-pin ABC 

frequencies from selected configurations, were obtained. 

The measured natural frequencies and selected ABC 

frequencies are listed in Table 3. In the table, the subscript 

“d” denotes damaged beams. Comparing with Table 1 and 2, 

it shows that the damages will bring a decrease of 0.3-5% to 

natural and ABC frequencies of beam B1 and a decrease of 

2-11% to those of beam B2. 

 

5.2 Damage identification through FE model 
updating 

 

The measured modal data are employed to do damage 

Table 3 Measured natural and ABC frequencies of damaged beams (Unit: Hz) 

Mode 

Natural frequency 

(fdNm) 

One-pin at P4 

(fdAm) 

One-pin at P7 

(fdAm) 

Two-pin at P4 and P7 

(fdAm) 

Beam B1 Beam B2 Beam B1 Beam B2 Beam B1 Beam B2 Beam B1 Beam B2 

1 28.4 28.3 65.2 62.6 49.7 46.5 137.8 137.1 

2 77.1 74.3 142.9 142.9 144.4 142.1 203.4 200.5 

3 156.6 153.3 205.3 201.3 243.3 242.3 295.9 286.4 

4 248.6 248.5 385.1 368.6 49.7 301.9 433.7 433.9 

5 377.9 370.0 - - - - - - 

 
Fig. 8 Damages in steel beams 

 

P3 P4 P7 P8 

P3 P4 B1 

B2 
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identification through FE model updating for the two 

damaged beams. To evaluate the effectiveness of different 

types of the modal data in the FE model updating, a 

comparative study is carried out with different 

combinations of the dataset to include natural frequencies, 

one-pin or two-pin ABC frequencies, and mode shapes, 

separately or in a mixed fashion. 

Different objective functions are formed in accordance 

with different types of modal data employed, and parallel 

updating procedures are performed with different objective 

functions to compare the outcome. The objective functions 

are established with the residuals of the modal data. In what 

follows, different types of residuals are described first, and 

the objective functions combining different residuals and 

hence different combinations of the modal data are 

presented next. 

(1) Residual from natural frequencies 

The residual from natural frequencies is defined as Rf in 

Eq. (17(a)). It gauges the difference between theoretical 

(from FE model) and measured frequencies for the damaged 

beam. To minimise the influence of the model error, the 

measured and theoretical natural frequencies for the 

damaged beam are normalised with respect to their 

undamaged counterparts, and the residual is formulated 

from the normalised values 
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where, fNi represents the i
th

 natural frequency; subscripts “c” 

and “m” stand for the FE calculated and the measured data, 

respectively; and subscripts “d” and “0” stand for the 

damaged and intact states of the beam, respectively. Nf is 

the number of modes used. 

(2) Residual from ABC frequencies (one-pin or two-pin) 

A similar form of residual, defined as RA, is formed for 

one-pin and/or two-pin ABC frequencies 
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where, fAi represents the i
th

 mode of ABC frequency (one-

pin or two-pin). NA is the number of ABC modes used. 

(3) Residual from Modal Assurance Criterion (MAC) 

Mode shapes may be applied to form the residual by 

directly using the mode shape changes or mode shape 

derivative changes. Residuals from these two different types 

of data might provide different results for model updating, 

so both methods are employed in the updating analysis here.  

Firstly the widely used mode shape derivative, Modal 

Assurance Criterion (MAC), is used here to gauge the effect 

of damage from the perspective of the mode shapes, and 

this is defined as 
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  (17c) 

where, i stands for the i
th

 mode shape vector of the beam; 

subscripts “0” and “d” stand for mode shapes of the intact 

and damaged beam, respectively. 

The residual is then formed by taking into account the 

difference between the measured and predicted MAC 

values of the first NMAC modes, as 
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where, subscripts “c” and “m” stand for the FE calculated 

and measured MAC values, respectively. 

(4) Residual from mode shape changes 

As mentioned, the residual can also be directly formed 

from mode shape changes, as shown in Eq. (17(e)). The 

first NMS modes of mode shapes are used in the formula. To 

make the mode shape displacements comparable, both the 

measured and predicted mode shapes are displacement-

normalized. 
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where, ji is the j
th

 element  in the i
th

 displacement-

normalized mode shape vector. The superscript “d” stands 

for damaged beam and NN is the total number of elements in 

each mode shape vector, which is 9 in the current 

measurements. 

The objective functions can then be formed with 

different combinations of the above residuals. Five different 

types of objective functions are used in the comparative 

study, as listed below. In all of the objective functions, unit 

weights were applied to different types of modal data in the 

study here. 

The first objective function is formed only with natural 

frequencies to serve as a reference for the other ones, as 

shown in Eq. (18(a)). The first five modes of natural 

frequencies are used in J1. 

f1 RJ   (18a) 

One-pin ABC frequencies are added in J1 to form the 

second objective function J2, as shown in Eq. (18(b)). The 

numbers in the subscript denote the “pin” locations. In each 

configuration, the first three modes of one-pin ABC 

frequencies are used, making the total number of one-pin 

ABC frequencies involved in the objective function to be 9. 

A8A7A4f2 RRRRJ   (18b) 

Two-pin ABC frequencies are added to J1 to form the 

third objective function J3, as shown in Eq. (18(c)).  

Similar to Eq. (18(b)), the numbers in the subscript denote 

the “pin” locations and the first three modes of two-pin 

ABC frequencies are used for each configuration. Similar to 

J2, the total number of two-pin ABC frequencies involved in 

J3 is also 9. 

A48A47A25f3 RRRRJ   (18c) 

The fourth objective function J4 is formed by adding the 

MAC residual to J1, as shown in Eq. (18(d)). Considering 

that in modal testing practice generally only the first couple 
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of mode shapes may be measured with reliable accuracy, 

the first two mode shapes are used in this objective 

function. 

MACf4 RRJ   (18d) 

The fifth objective function J5 is formed by adding the 

mode shape change residual to J1, as shown in Eq. (18(e)). 

Similar to J4, the first two modes are used in J5. 

MSf5 RRJ   (18e) 

 

5.3 Model updating considerations 
 
An FE model with 10 Timoshenko beam elements is 

used to model the damaged beams. Herein the damage is 

modelled as a reduction of the element stiffness for a beam 

element. A stiffness reduction ratio Di is defined for the i
th

 

element in the model by the following expression 

  0d 1 KK ii D  (19) 

where, K0 and Kd are the stiffness matrix of the intact and 

damaged beam element, respectively. 

In the model updating, for generality each element in the 

beam model is assumed to have an unknown damage state 

which need to be updated. So totally there are 10 

parameters to be updated, i.e., Di, i=1, 2, …, 10.  

For the search of the damage parameters the Genetic 

algorithm (GA) is employed. GA has been used widely as 

an optimization tool in engineering applications (Perera and 

Torres 2006). Compared with using traditional methods, 

GA-based model updating has several advantages. For 

example, the GA searching results do not depend on the 

initial setting of the updating parameters, thus a global 

optimal result rather than a local one is generally 

guaranteed. Furthermore, because the variable parameters 

are gradually optimized through an evolutionary algorithm, 

it does not involve the calculation of the sensitivity matrix 

of the structure, and this makes the updating process more 

robust. There have been many successful applications of 

using GA in model updating problem, some of which are 

summarized in Perera and Torres (2006). In the present 

study, the standard GA function in Matlab has been used to 

update the FE model. The convergence process of the GA 

calculation is monitored and it is found that a limit of 

maximum generation of 1500 is adequate to achieve 

satisfactory converging result in the present FE model 

updating applications. 

 

5.4 FE model updating (damage identification) 
results 

 

Five parallel updating procedures with five different 

objective functions listed in Eqs. (18(a)-18(e)) are carried 

out for the two damaged beams separately. The updating 

results are presented in Fig. 9-13. In beam B1, the damaged 

element should be the 4
th

 element, while in beam B2 the 

damaged elements should be the 4
th

 and 8
th

 elements. The 

equivalent element stiffness changes in the damage 

segments of the test beams were approximately 40% and  

25% respectively, according to the cuts. This means the 

expected damage index Di would be about 0.4 in element 4 

for beam B1, and 0.4 in element 4 and 0.25 in element 8 for 

beam B2. The rest of the elements should have a D value 

being virtually zero (undamaged). 

It can be seen that when only the lowest five modes of 

natural frequencies are used in the updating (J1, Fig. 9), the 

correct damage element cannot be identified for beam B1, 

whereas in beam B2, a false crack is identified in the 7
th

 

element. The first reason for the failed updating is that 

natural frequencies are global scalar properties and cannot 

resolve the symmetry problem in terms of the damage 

location. As seen from the result for beam B1, the real 

damage should be in the 4
th

 element but the identified 

damage is in the symmetric element along the beam span. 

Another reason here is that the number of unknown 

parameters (being updated) is larger than that of the input 

data, therefore it is an under-determined problem and 

consequently false identification of damages, such as the 

situation in beam B2, is basically inevitable. 

When one-pin ABC frequencies are added into the 

objective function (J2, Fig. 10), it is found that the above 

issues are readily avoided and correct damage elements can 

be identified in both beam B1 and B2. Even better results 

are obtained when two-pin ABC frequencies are joined with 

the natural frequencies (J3, Fig. 11). These outcomes 

demonstrate that both one-pin and two-pin ABC frequencies 

can provide enhanced information with local features, thus 

enable a reliable and more robust updating process.  

On the other hand, when mode shape information is 

added to the objective functions (J4 and J5, Fig. 12 and 13), 

good updating results can also be achieved for beam B1. 

However, a false damage element is identified in Beam B2 

in both combinations. This is believed to be attributable to 

the measurement errors in the mode shapes. 

The above comparisons between the updating results 

show that the incorporation of ABC frequencies performs 

very well in the damage identification of both single- and 

multiple-damaged beams, whereas use of the measured 

mode shapes show inconsistent performance in the 

damaged cases. Considering that ABC frequencies and 

mode shapes provide similar sort of information to the 

updating process, and the fact that the measurement 

accuracy of ABC frequencies can be more reliable than 

mode shapes, it may be concluded that ABC frequencies 

can be good alternatives to mode shapes in the model 

updating. 

It should also be pointed out that in the present updating 

examples, only three sets of one-pin or two-pin ABC 

frequencies, corresponding to three pin location 

configurations, have been utilised. There exists an abundant 

choice of other possible configurations and as a result a lot 

more of such modal information can be available for the 

updating purposes. This special feature of ABC frequencies 

can be very useful when it comes to identification of a large 

number of unknown structural parameters, making the 

incorporation of the ABC frequencies potentially even more 

beneficial for general structural parameter identification. 
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Fig. 9 Updating results with J1. Left: Beam B1; Right: Beam B2 

 
Fig. 10 Updating results with J2. Left: Beam B1; Right: Beam B2 

 
Fig. 11 Updating results with J3. Left: Beam B1; Right: Beam B2 

 
Fig. 12 Updating results with J4. Left: Beam B1; Right: Beam B2 
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6. Conclusions 

 

The ability to obtain good-quality additional modal 

frequency data is highly desirable in structural health 

monitoring and damage detection applications. Introducing 

ABC frequencies to the spectrum of modal data provides a 

promising opportunity to expand the modal frequency 

dataset and enhance its overall sensitivity for detecting and 

identifying structural changes, as has been demonstrated in 

the preceding studies using simulated ABC frequency data. 

However, to bring the approach closer to practical 

applications, acquisition of the ABC frequencies from real 

measured data is a key.  

In this paper a comprehensive experimental 

investigation on the acquisition of ABC frequencies from 

laboratory experiments has been presented. The effects of 

general modal testing operation, data acquisition and signal 

processing have been examined systematically in the 

context of acquiring ABC frequencies. Since the ABC 

frequencies, especially in multi-pin situations, do not 

generally coincide with either the antiresonances or 

resonances in individual FRF, particular attention is 

required to ensure smooth FRF curves across the whole 

frequency range. In this connection, specific requirements, 

such as an accurate measurement of the excitation impact 

force history, as well as the use of RFP to enhance the 

identifiability of the ABC frequencies, have been 

highlighted. The possible error sources in the measurement 

of ABC frequencies have also been discussed.  

Results from the representative beam experiments 

demonstrate that, with a careful implementation of modal 

testing and data analysis procedures, one-pin and two-pin 

ABC frequencies in the first few ABC modes for any pin 

location configurations can be obtained with good quality, 

and the accuracy can be comparable or close to that of the 

natural frequencies.  

Through finite element model updating, it is shown 

that the incorporation of ABC frequencies in the dataset 

significantly improves the parameter identification results, 

and both single- and multi-damage scenarios in the 

experimental beams can be identified correctly. In 

comparison, the results using combined natural frequencies 

and limited mode shapes exhibit less satisfactory results due 

to higher measurement errors in the mode shapes. Therefore, 

using ABC frequencies as alternatives to mode shapes is  

 

 

 

deemed promising in structural identification applications.  

Further study can now focus on extending the ABC 

frequency measurements and its application for damage 

identification in more sophisticated structural conditions. 
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