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1. Introduction 

 

Structural damage detection is an important issue in 

structural health monitoring. However, one of the main 

challenges of the practical application in a damage detection 

method to civil structures is that a significant amount of 

uncertainties such as the structural parameters of the finite 

element model, the excitation force acting on the structure, 

and the measurement errors are inevitably involved in the 

damage detection procedure for civil structures. 

Conventional deterministic approaches usually lead to the 

error and mistake in quantitative damage identification 

results. Housner (1997) indicated that structural 

identification within a statistical framework appears to be a 

promising general approach to structural health monitoring 

of civil structures in view of inescapable data and modeling 

uncertainties. Therefore, many studies have been performed 

in the area of statistical and probabilistic structural damage 

detection to take the effects of uncertainties into 

consideration (Xia and Hao 2003, Lu and Law 2007, Li and 

Law 2008, Zhang et al. 2013, Wang et al. 2014, Li et al. 

2016, Ye et al.2016) 

Previous statistical and probabilistic structural damage 

detection approaches can be divided into two major  
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categories: Bayesian model updating and stochastic finite 

element model updating (Xu et al. 2010). Beck and 

Katafygiotis (1998) came up with the idea that the dynamic 

response data of Bayesian stochastic frame structure could 

be applied in model updating and dealing with uncertainty. 

Then, Bayesian probabilistic approaches have been widely 

used to detect structural damage with consideration of 

uncertainties (Katafygiotis and Beck 1998, Beck and Au 

2002, Yuen and Katafygiotis 2005, Mustafa et al. 2007, 

Yuen 2010, Hao and Betti 2015). Compared with Bayesian 

based approaches, the probability and statistics 

characteristics of structural parameters can be obtained by 

stochastic analyses of test data and the model parameter 

(Moaveni et al. 2005, Xu et al. 2010). Especially, it is 

straightforward and efficient to conduct analytical 

formulation of probabilistic structural damage detection 

based on the analysis of response sensitivity to the uncertain 

parameters (Lu and Law 2007, Li et al. 2008, Law and Li 

2010, Wang et al. 2014). The propagation of each of these 

uncertainties in updating damage detection is studied based 

on the response-sensitivity approach. However, the 

response-sensitivity is sensitive to measurement noise 

pollution; it is usually requested to adopt Tikhonov 

regularization (Li et al. 2008, Law and Li 2010, Wang et al. 

2014) to stabilize the inverse solution by the response-

sensitivity damage detection approach. 

It is well known that measured structural responses are 

always contaminated by measurement noise but model 
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updating exactly reproduces the contaminated structural 

responses (Yi et al, 2012). The results of damage detection 

from the model updating may become unreliable. To reduce 

the influence of measurement noise on damage 

identification, Zhang and Xu (Zhang et al. 2008, Xu et al. 

2009, Zhang et al. 2013) proposed a novel statistical 

moment-based damage detection (SMBDD) method to 

locate and identify structural damage. A significant 

superiority of SMBDD lies in that it is robust to 

measurement noise but sensitive to structural damage as 

statistical moment of response is not sensitive to 

measurement noise. Furthermore, Xu et al. (2011) 

investigate stochastic damage detection method for building 

structures with parametric uncertainties by integrating 

SMBDD with the probability density evolution method 

developed by Li and Chen (2004). However, the 

computational effort is quite involved. Moreover, it is 

requested by the SMBDD method that the number of 

measured responses is not less than that of unknown 

structural parameters to avoid ill-conditioned nonlinear 

optimization problem for structural damage identification. 

In this paper, two probabilistic structural damage 

detection approaches are proposed to consider uncertainties 

in structural parameters and external excitation. The first 

proposed approach adopts the statistical moment-based 

structural damage detection (SMBDD) with the sensitivity 

analysis of the damage vector to the uncertain parameters.  

The approach is robust to measurement noise due to the 

advantage of SMBDD method. To reduce the number of 

measurements requested by the SMBDD algorithm, another 

probabilistic structural damage detection approach is 

proposed based on the integration of structural damage 

detection using time segment temporal moment-based 

structural damage detection (TSTMBDD) with the 

sensitivity analysis of the damage vector to the uncertain 

parameters. In both approaches, probability distribution of 

damage vector is estimated from those of uncertain 

parameters based on stochastic finite element model 

updating and probabilistic propagation. The probability of 

damage existence and damage extent is identified by 

comparing the two probability distribution characteristics 

for the undamaged and damaged models. Some numerical 

examples are used to validate the two proposed approaches, 

respectively. 

 

 

2. Probabilistic structural damage detection 
approaches by integrating SMBDD and sensitivity-
based analysis 
 

The first proposed approach for probabilistic structural 

damage detection is based on the integration of SMBDD 

and sensitivity analysis of the damage vector to the 

uncertain parameters. 

 

2.1 Deterministic structural damage detection by 
SMBDD and sensitivity analysis 

 

The equation of motion of a linear structure under 

external excitation can be written as 

(t) + (t) + (t) = (t)Mx Cx Kx Bf
 (1) 

where x , x and x are the vectors of displacement, velocity, 

and acceleration responses， respectively, (t)f is a known 

external excitation vector, B is the position matrix of 

the (t)f , M is the mass matrix of the structures, and C is the 

damp matrix of the structures. It is assumed that matrix M 

and the external excitation f(t) are known. In this paper, 

structural damage id defined as the degradation of structural 

element stiffness. The structural global stiffness matrix 

K is expressed as 

nn

n

i

ii KKKKK  

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in which αi is the i-th elemental relative stiffness parameter 

of reference FE model( 0 1i  ),n is the number of 

elements in the structure; Ki is the -i th elemental stiffness 

matrix. 

By differentiating both sides of Eq. (1) with respect to 

the stiffness parameter αi,it leads to 

(t) (t) (t)
(t) (t)

i i i i i
    

    
    

    

x x
x x

x K C
M C K  (3) 

Then, structural response and its derivatives can be 

obtained from Eqs. (1) and (3), respectively. 

In this paper, structural fourth-order statistical moment 

is used and it is estimated by 

4 3 2 2 4

1 1 1

1 4 6
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s s s
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i ik i ik i ik i

k k k

M
N N N  

     x x x x x x  (4) 

where Ns is the number of sampling points and ix denotes 

the average of the i-th response. 

The sensitivity analysis of the structural fourth-order 

statistical moment for damage identification is given as 

m c  αS M M  (5) 

where m
M and c

M are the vectors of the measured and 

calculated of structural fourth-order statistical moments, 

respectively. S is the sensitivity matrix of structural 

statistical moment with respect to structural stiffness 

parameter defined as 
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
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   
x

x x x
 
(6) 

Therefore, structural element stiffness vector α, which is 

also structural damage vector according to Eq. (2), can be 

estimated from Eq. (5) in an iterative least-squares 

procedure as 

( )m c  α S M M  (7) 

in which S
+
 is the Moore–Penrose generalized inverse of 

matrix. As higher-order terms are neglected in the first-

order sensitivity Eq. (4), an iterative procedure is employed. 
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2.2 Probabilistic structural damage detection 
considering uncertainties 

 

Due to the inevitable uncertainties such as structural 

parameters, external excitations and measurement noises, it 

is necessary to take the effects of uncertainties into 

consideration in structural damage detection. In this paper, 

the uncertainties in both structural parameters and external 

excitations are considered. Eqs. (1) and (3) can be re-

written as 

( ) ( ) ( ) ( ) ( ) ( ) ( , )t t t t  CM Θ x Θ x K Θ x Df Ψ  (8a) 

 

( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

i i i i i

t t t
t t

    
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    
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x x x K C
M C K x x

Θ Θ
Θ Θ Θ  

(8b) 

where is a n-dimension random parameter vector 

reflecting the uncertainty in the structural parameters with 

the known probability density function p (), is a m-

dimension random parameter vector with probability 

density function p (), reflecting the uncertainty in the 

known external excitation. All the uncertain parameters 

both in structures and in external excitations can be written 

together to form a general uncertain vector X=[] with a 

mean value vector  0 0qXX .(q=1,2,…,n+m) 

Analogous to the formula by other researchers (Xia and 

Hao 2003, Li and Law 2008, Law and Li 2010), the 

structural damage vector α is expended by the first-order 

Taylor series in terms of the general uncertain variable X, it 

is obtained as 

0

0
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( ) ( ) ( )
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X
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


α
α X α X  (9) 

in which 
0( )α X can be estimated from Eq. (7) by the 

deterministic structural damage detection based on SMBDD 

and sensitivity analysis when the uncertain variable X in its 

mean value X0 as 

0 0( ) ( ( ))c  α X S M M X  (10) 

By differentiating both sides of Eq. (5) with respect to 

the general random variable Xq, it is derived as 

c

q q qX X X

  
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S M
S

α
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Then, the derivative

0q q
q X X

X






α can be estimated by 

least-squares as 
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
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(12) 

 

In Eq. (12), Matrix 
0( )

S X and vector
0( )α X can be 

obtained from Eqs. (6) and (7) but the terms 

0q q

c

q X X
X


 M and 

0q q
q X X

X


 S need to be estimated 

according to the type of uncertainty. In this paper, the 

uncertainties in the material mass density of structural 

model and external excitation are included in the study and 

they are assumed independent. 

 

2.2.1 Uncertainties in the structural parameter 
As an example, the uncertainty of mass density is 

studied herein. This uncertainty is expressed as 

0 (1 ) ( 1, , )
ii i mm m X i n    (13) 

where im is the uncertain element mass density, 0im denotes 

its nominal value, and
imX is the uncertain variable with 

given probabilistic distribution. The sensitivity of structural 

response with respect to
imX can be obtained by taking 

differentiation with respect to
imX on both sides of Eq. 

(8(a)) as 

(t) (t) (t)
(t) (t) (t)

i i i i i im m m m m mX X X X X X
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(14) 

in which

imX





K can be estimated by 

1
i i

N
j

jm j mX X





 
 
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

K K
 (15) 

Differentiating both sides of Eq. (8(b)) with respect to 

the random variable
imX gives 

2 2 2(t) (t) (t) (t) (t) (t) (t) (t)

i i i i i i im i m i m i m i m i i mi m i i m

C

X X X X X X X X       

            
       

               
C

x x x M x x C x K x K x
M K

 
(16) 

From Eq. (3), 
i





x
,

i





x
and 
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



x
 can be estimated. 

However, 
miX





x
, 

miX





x
and 

2

i miX



 

x
in Eqs. (14) and 

(16) need to be calculated iteratively from Eqs. (12)-(16) 

with an initial value =0
miX





K
. Finally,

0q q
q X X

X






α can be 

estimated from Eq. (12). 

 

2.2.2 Uncertainty in the external excitations 
Two types of uncertain external excitations are 

investigated in this paper. 

 

2.2.2.1 Uncertainty in the external exciting 
magnitudes 

Sometimes, the magnitudes of external excitations are 

uncertain variables. This uncertainty is expressed as 
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0 ( 1, , )
jj j ff f X j m   (17) 

where jf is the uncertain external excitation, 0jf  denotes 

the nominal value, and 
jfX is a random variable with given 

probabilistic distribution. By taking the differentiation with 

respect to the random variable fiX on both sides of Eqs. 

(8(a)) and (8(b)), it is derived as 

0

fi fi fi fi fiX X X X X

    
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(19) 

Analogously,

fiX





x
, 

fiX





x
and 

2

i fiX



 

x
in Eqs. (18) 

and (19) need to be calculated in an iterative approach. 

 

2.2.2.2 Uncertainty in the Kanai-Tajimi ground 
excitation 

If the structure is subject to ground excitation in the 

Kanai-Tajimi spectrum, the equation of motion can be 

expressed by 

  g( ) (t) ( ) (t) ( ) (t) ( ) x ( , t)   CM Θ x Θ x K Θ x M Θ I Ψ  (20) 

where I is a identity vector and the ground acceleration 

gx ( , t)Ψ  is in the Kanai-Tajimi spectrum with the spectral 

density function in the form as 

2 2
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in which g , g and S0are the characteristic parameters of 

the ground motion. In this study, uncertainty of g is 

considered by 

0 gg g X   (22) 

where 0g denotes the nominal value and gX is the 

uncertain variable with given probabilistic distribution. 

The Kanai-Tajimi ground acceleration gx ( , t)Ψ can be 

treated as the output of soil layer excited by the motion of 

rock stratum, i.e. 

   gx ( , t) u Ut t Ψ  (23a) 

 

       2u t 2 u t u t U tg g g       (23b) 

and  U t is the rock acceleration which is usually 

regarded as white noise. 

Taking derivative with respect to gX on both sides of 

Eq. (20) gives 

(t) (t) (t) u(t)
(t) (t)
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in which 

g
X





K
can be estimated analogous to Eq. 

(15),
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g
gg
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








u can be calculated by differentiating both 

sides of Eq. (23(b)) with respect to gX as 
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(25) 

By taking the differentiation with respect to the random 

variable gX on both sides of Eq. (8(b)), it is also derived as 

2 2 2(t) (t) (t) (t) (t) (t) (t)
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(26) 

2 (t)

gi X



 

x  can also be estimated in an iterative procedure. 

In summary,

0q q
q X X

X






α can be implemented according to 

the following steps: 

Step1: Estimate
(t)

qiX





x
by Eq. (14), Eq. (18) or Eq. (24), 

with the initial 

qiX





K =0.  

Step 2: Calculate 

2 (t)

i qiX



 

x
according to Eq. (16), Eq. (19) 

or Eq. (26); 

Step 3: Evaluate 

0q q

c

q X X
X
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

M and 

0q q
q X X

X
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



S from the 

results of 
(t)

qiX
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

x
and 

2 (t)
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Step4: After obtaining

0



 X X

α

X
from Eq. (12), 

qiX





K
 is 

estimated according to Eq. (15) 

Step5: Repeat the Steps 1-4 till the convergence criterion 

for the iterative estimation 

0q q
q X X

X






α
is satisfied. 

2.2.3 Probability of damage existence and damage 
extent 

According to the linear relation from the first order 

Taylor expansion in Eq. (9), the probability distribution  

function of structural element stiffness parameters can be 
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estimated based on the assumed probability distribution of 

the uncertainties in structural modeling parameters and 

external excitations. 

Then, the probability of damage existence (PDEi) for the 

i-th element is defined as 

iPDE prob(0 ) 1 prob( )di i i uiL L         (27) 

in which the subscript u and d donate the quantities in the 

undamaged and damaged models, respectively. The value of 

PDE is between 0 and 1, larger value suggests greater PDE. 

Moreover, structural element damage extent is defined 

by 

DE 100%ui di
i

ui

 




   (28) 

 

2.3 Numerical examples for probabilistic structural 
damage detection by integrating SMBDD and sensitivity-
based analysis 

 
Some numerical examples are used to illustrate the 

proposed probabilistic structural damage detection approach by 

integrating SMBDD and sensitivity-based analysis. 

 
2.3.1 Damage detection of a shear building 

underground excitation with uncertain magnitude 
In this section, numerical investigation of a ten-story 

shear frame building is conducted to verify the proposed 

approach. Structural parameters of the building assumed 

as 2500kgim  , 67.0 10 N/mik    (i=1,2,..10), Rayleigh 

damping is applied herein. The first two damping ratios are 

3% and Rayleigh damping coefficients are 0.0705a  and 

0.0127b  . 

In this numerical example, The ground acceleration is 

modeled as the Kanai-Tajimi (K-T) spectrum with the 

parameters 15.6g  rad/s and 0.6g  in Eq. (21), but 

the magnitude of K-T spectrum is a uncertain variable with 

nominal value of 
1 2 3

0
4.64 10 m /radsS


  and a Gaussian 

distribution Xf~N(1,0.02) in Eq. (17). All story drifts are 

measured and measurement noises with 5% and 15% noise-

to-signal ratio in root mean square (rms) are considered, 

respectively. 

Structural damage is assumed as the 4th story stiffness 

reduction. In Table 1, the identification results of 

probability of damage existence (PDE) and damage extent 

(DE) are presented. It is found the PDE at the 4th story of 

damaged structure is 100% while the PDEs of intact stories 

are small. 

As seen from Figs. 1(a) and 1(b), the stiffness values 

corresponding to the peak values of the PDFs are almost at 

the same position for intact structural elements while 

stiffness parameters corresponding to the peak values of the 

PDFs after damage are apparently smaller than those before 

damage occurrence. 

Therefore, the identification results by the proposed 

approach are quite accurate even with a high measurement 

noise level of 15% in rms. 
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Fig. 1 (a) The PDF of 2 with 15% noise and (b) 

The PDF of 4 with 15% noise 

 

 

 

2.3.2 Damage detection of the ten-story shear frame 
with uncertainties in both floor mass and ground 
excitation 

The numerical example is similar to the above one 

except that two independent uncertain variables of the 

parameter g in Kanai-Tajimi ground excitation and the 

floor mass are considered simultaneously. The two 

uncertainties are assumed as independent Gaussian 

distribution with 
gω

X ~ N(1,0.02) and mX ~ N(0,0.02), 

respectively. From Eq. (9), the probability distribution of 

damage vector a can be estimated based on the linear 

relationship with respect to the above two independent 

uncertainties of floor mass parameter ( g ) in Kanai-Tajimi 

round excitation with Gaussian distribution functions. 

Similar identification results of identification are shown 

in Table 3 and in Figs. 2(a) and 2(b). From the Table and 

Figures, it is noted that the identification results by the 

proposed approach are accurate even with a high noise 

pollution level of 15% in rms 
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2.3.3 Damage detection of a continuous beam with 
uncertain mass density  

As an illustration for the identification of other type 

structure by the proposed approach, a three-span continuous 

beam shown in Fig. 3 is selected as another numerical 

example. The continuous beam with 1.5 m long is divided 

into 12 uniform finite elements with 22 degrees of freedom.  

The parameters of each element are selected as: cross 

section 2 27 10 mA b h     and bending 

moment 6 22.4 10 N mEI    . Then, the equivalent stiffness 

parameter of the i-th element is 
82.22 10 N / mik = E I l  i i i

. The damping ratio is 3% and 

Rayleigh damping coefficients are 0.0705a  , 0.0127b  . 

 

 

 

 

 

 

 

A white noise excitation is applied at a node in the beam 

as shown in Fig. 3 

In this example, the mass per unit length is considered 

as uncertain parameter with nominal value of 196 kg/m and 

a logarithmic Gaussian distribution with mean value m=1 

and standard variance =0.02 in Eq. (13). All nodal vertical 

acceleration responses and three angle acceleration 

responses as shown in Fig. 3 are measured. Also, 5% and 

15% noise in rms are considered, respectively. 

Structural damage is assumed as 10% reduction of the 

2nd element equivalent stiffness parameter. The results of 

identification are shown in Table 3 and Figs. 4(a) and 4(b). 

Again, the identification results by the proposed approach 

are quite accurate. 

Table1 Probabilistic damage detection of a shear building under ground excitation with uncertain magnitude 

Story 

No. 
DE 

5% noise 15% noise 

u d DE PDE u d DE PDE 

1 0 1.00 1.00 0.02% 2.07% 0.99 0.99 0.22% 1.94% 

2 0 1.00 1.00 0.00% 4.69% 0.99 0.99 0.03% 3.88% 

3 0 1.00 1.00 0.05% 1.36% 0.98 0.99 0.48% 1.28% 

4 -10% 1.00 0.90 9.94% 100.00% 0.98 0.89 9.36% 100.00% 
5 0 1.00 1.00 0.03% 2.09% 0.99 0.99 0.41% 0.18% 

6 0 1.00 1.00 0.03% 2.12% 0.99 0.99 0.32% 1.23% 

7 0 1.00 1.00 0.02% 2.58% 0.99 0.99 0.19% 2.61% 

8 0 1.00 1.00 0.01% 3.59% 0.99 0.99 0.12% 1.70% 

9 0 1.00 1.00 0.03% 1.61% 0.99 0.99 0.38% 0.22% 

10 0 1.00 1.00 0.04% 1.38% 0.99 0.99 0.44% 0.49% 

Table 2 Probabilistic damage detection of the shear building with uncertainties in floor mass and ground excitation 

Story No. αu  αd DE DE PDE 

1 0.99  1.00 0 0.10% 0.00% 

2 0.99  0.99 0 0.00% 0.00% 

3 0.99  0.99 0 0.22% 0.53% 

4 0.99  0.89 -10% -9.74% 100.00% 

5 0.99  1.00 0 0.14% 0.00% 

6 0.99  0.99 0 0.14% 1.19% 

7 0.99  1.00 0 0.09% 0.00% 

8 1.00 1.00 0 0.04% 0.00% 

9 0.99 1.00 0 0.15% 2.39% 

10 0.99  0.99 0 0.18% 5.98% 
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Fig. 2 (a) The PDF of 4 with 15% noise and (b) The PDF of 6 with 15% noise 
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3. Probabilistic structural damage detection by 
integrating TSTMBDD and sensitivity-based analysis 
 

The prominent advantage of the probabilistic damage 

identification methods based on statistical moment-based 

damage detection lies in its insensitive to measurement 

noise but sensitive to structural damage. However, to avoid 

ill-conditioned nonlinear optimization problem for 

structural  identification, the number of measured 

responses is requested to be not less than that of unknown 

structural parameters. Herein, another probabilistic 

structural damage detection approach is proposed based on 

the integration of structural damage detection using time 

segment temporal moment-based structural damage 

detection (TSTMBDD) with the sensitivity analysis of the 

damage vector to the uncertain parameters. 

 

 

 

 
 
3.1 Deterministic structural damage based on time 

segment temporal moment of measured response time 
histories 

 
The time history of the j-th response of the structure 

calculated from Eq. (1) can be denoted 

as  ,1 ,2 ,, , ,j j j j Nx x x x where N is the total number of 

sampling points. Then, jx can be split into s time segment as 

 ,1 ,2 , 1 , 2 2 ,(s 1) 1 ,(s 1) 2 ,s
, , , ; , , , , ,  , , ,

s s s s s sj j j j N j,N j N j , Ns j N j N j N
x x x x x x x x x x

     
  (29) 

in which Ns is the number of sample points in each time 

segment of response. 

Then, the second-order temporal moments of the j-th 

calculated acceleration response in the p-th time segment, 

 
Fig. 3 A three-span continuous beam with uncertain mass density 

Table 3 Probabilistic damage detection of a continuous beam with uncertain mass density 

Element 

No. 
DE 

5% noise 15% noise 

u d DE PDE u d DE PDE 

1 0 1.00 1.00 0.04% 5.33% 1.03 1.04 0.32% 7.37% 

2 -10% 1.00 0.90 9.96% 100.00% 0.99 0.89 9.89% 100.00% 

3 0 1.00 1.00 0.00% 5.30% 1.00 1.00 -0.01% 1.96% 

4 0 1.00 1.00 0.07% 5.56% 1.00 1.00 0.22% 0.06% 

5 0 0.99 0.99 -0.03% 3.90% 0.93 0.92 -0.53% 1.84% 

6 0 0.99 0.99 -0.01% 8.65% 0.98 0.98 -0.04% 0.00% 

7 0 1.00 1.00 0.01% 7.01% 0.98 0.98 0.02% 0.10% 

8 0 0.99 0.99 -0.02% 12.66% 0.96 0.96 -0.07% 0.00% 

9 0 1.00 1.00 0.04% 2.73% 0.95 0.95 0.20% 1.48% 

10 0 1.00 1.00 0.02% 9.56% 1.01 1.01 0.03% 0.41% 

11 0 1.00 1.00 -0.02% 2.20% 1.00 1.00 -0.08% 0.00% 

12 0 1.00 1.00 0.01% 4.05% 1.00 1.00 0.01% 2.42% 
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Fig. 4 (a) The PDF of 2 with 15% noise and (b) The PDF of 12 with 15% noise 
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denoted by ,

c

j pM , can be evaluated by 

),,3,2,1()
1

(
1 )1(

1

)1(

1

22

,

2

,, sjx
N

x
N

s

s

s

s

Np

pNi

Np

pNi

ij

s

ij

s

c

pj   








M  (30) 

Analogously, the second-order temporal moments of the 

j-th measured acceleration response 
2

,imjx  in the p-th time 

segment denoted by ,

m

j pM , can also be estimated by 

),,3,2,1()
1

(
1 )1(

1

)1(

1

22

,

2

,, sjx
N

x
N

s

s

s

s

Np

pNi

Np

pNi

imj

s

imj

s

m

pj   








M  (31) 

Both the calculated and measured acceleration time 

histories are divided into s time segments. When the 

number of partial measurements is r, two sets of time 

segment temporal moment vector can be obtained as 

                   c c c c c c c c c c T
11 12 1s 21 22 2s r1 r2 rs[ , ,... , , ,... ,...., , ,..., ]          M M M M M M M M M M  (32a) 

 

m m m m m m m m m m T
11 12 1s 21 22 2s r1 r2 rs[ , ,... , , ,... ,...., , ,..., ]M M M M M M M M M M  (32b) 

where αi is the i-th elemental stiffness parameter 

( 0 1i  ) in Eq. (2).  c M  is the vector of time 

segment temporal moment of the calculated acceleration 

responses while m
M is the vector of time segment temporal 

moment of the measured acceleration responses. 

Therefore, the dimension of the time segment temporal 

moment is sd • . Under the condition that nsd ≥• , 

structural element stiffness parameter αi of reference FE 

model ( 0 1i  ) in Eq. (2) can be estimated based on the 

sensitivity analysis of temporal moment with respect to 

structural stiffness parameter analogues to Sect.2.1. 

As an alternative approach, structural element stiffness 

parameter αi can also be estimated in a straightforwd 

numerical evaluation by minimization of the following 

object function as 

   m c F M M   (33) 

with the boundary condition of 0 1i   

By tracking the degradation of identified structural 

parameters, structural element damage can be detected. 

 

3.2 Probabilistic structural damage detection 
considering uncertainties 
 

When uncertainties such as structural parameters and 

external excitations are considered, probabilistic approach 

of structural damage detection should be performed. 

Analogous to Sect. 2.2, structural damage vector α is 

expanded by the first-order Taylor series in terms of the 

general uncertain variable X, as shown in Eq. (9). In which 

0( )α X can be estimated by the deterministic structural 

damage detection based on TETMBDD and sensitivity 

analysis when the uncertain variable X in its mean value X0. 

Also, 

0q q
q X X

X






α
can be estimated analogous to the 

procedure in Sect. 2.1. Alternatively, it can also be directly 

evaluated by the central difference as follows 

0 0

0

( ) ( )

2
q q

q q q q

q qX X

a X a X

X

 




   




α
 (34) 

where q denotes the minor deviation of 
0qX , 

0
( )q qX  α and 

0
( )q qa X    are estimated by the 

deterministic TETMBDD.  

Then, the probability distribution function of structural 

element stiffness parameters can be estimated according to 

the linear relation with the uncertainties in structural 

modeling parameters and external excitations.  

Finally, the structural probability of damage existence 

(PDE) and structural element damage extent can be 

evaluated analogously as those in Sect.2.2.3. 

 

3.3 Numerical examples of probabilistic structural 
damage detection by integrating TETMBDD and 
sensitivity-based analysis 

 

In this paper, two numerical examples are use to 

demonstrate the proposed probabilistic structural damage 

detection approach by integrating TETMBDD and 

sensitivity-based analysis. 

 

3.3.1 Damage detection of a continuous beam 
subject to uncertain excitation 

A two span continuous beam is selected as an example 

to demonstrate the proposed approach. The beam is divided 

into 10 elements with 16 DOFs. Structural parameters of the 

beam as: li=1.0 m, uniformly distributed mass is 785 kg/m; 

the equivalent stiffness is ki=EiIi / li= N/m10×11.1 5 .  

Rayleigh damping is adopted with the first two damping 

ratios equal to 3% and the two damping coefficients 

a=0.0705, b=0.0127. A white noise excitation in applied to 

the 4th node. Only seven acceleration responses in the 

vertical directions of nodes 2-5, nodes 7-8 and node 10 are 

used in damage detection by TETMBDD. All the 

measurements are polluted by white noises with 10% rms. 

In the TETMBDD, each time history of acceleration 

response is divided into 100 time segment. Structural 

damage is assumed as the 10% reduction of k7.In this 

example, the magnitude of the white noise excitation is 

regarded as uncertain variable which is assumed as 

Gaussian distribution with nominal value S0 = 15 m
2
/rads

3
 

and Xf  ~ N(1,0.02). 

In Table 4, the identification results of probability of 

damage existence (PDE) and damage extent (DE) are 

presented. It is noted that the PDE at the 8th bar element is 

100% while the PDEs of other intact elements remain small 

values. 
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In Figs. 5(a) and 5(b), the PDFs of stiffness parameters 

α7 and α10 in damaged and undamaged structure are 

illustrated. 

Therefore, the identification results by the proposed 

probabilistic structural damage detection approaches with 

integrating TSTMBDD and sensitivity-based analysis are 

quite accurate with a quite high measurement noise level of 

10% in rms. 

 

3.3.2 Damage detection of a truss with uncertainties 
of mass density and excitation magnitude 

As shown in Fig. 6, a plane truss consisting of 11 bars 

with the same cross section area 2-5m10×854.7=A , 

Young’s modulus 28 N/m10×2=E is subject to two 

external white noise excitations in the vertical directions at 

node 3 and node 4, respectively. 

Structural global stiffness matrix K can be formulated as 

the summation of each element stiffness matrices, in which 

/i ik EA l  is defined as the equivalent stiffness parameter 

of the i-th truss element. The mass is concentrated on each 

node. The damping of the truss is assumed as viscous 

damping.  

 

 

 

 

 

In this numerical example, uncertainties of bar mass 

density and the magnitudes of the two white noises 

excitation are considered. The nominal value of the mass of 

each horizontal bar is 1.223 kg and that of the inclined bar 

is 0.872 kg with mX ~ N(0,0.02). The two white noise 

excitations are in the same variations with nominal values 

of power density 32
0 rads/m 2.0=S  and fX ~ N(1,0.02).  

Structural damage is assumed as the deduction of the 8-

th element 

Only five acceleration responses indicated in Fig. 5 are 

used as the partial measurements for damage detection. The 

measured acceleration responses are polluted by white 

noises with 10% rms. In the TETMBDD, each time history 

of acceleration response is divided into 20 time segment. 

In Table 5, the identification results of probability of 

damage existence (PDE) and damage extent (DE) are 

presented.  

Figs. 7(a) and 7(b) illustrated the PDFs of stiffness 

parameters α4 and α8 in damaged and undamaged structure 

are illustrated. 

 

 

Table 4 Probabilistic damage detection of a continuous beam under uncertain excitation 

Element No. uα  dα  DE DE PDE 

1 1.02 1.02 0 0.35% 0.00% 

2 1.00 1.00 0 0.01% 19.12% 

3 0.97 0.97 0 0.23% 1.11% 

4 0.98 0.97 0 -0.30% 10.00% 

5 1.02 1.01 0 -0.67% 0.00% 

6 1.03 1.04 0 0.64% 0.00% 

7 0.97 0.88 -10% -9.90% 100.00% 

8 0.97 0.96 0% -0.07% 0.00% 

9 1.00 0.99 0 -0.33% 19.19% 

10 1.03 1.03 0 0.37% 0.00% 
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(a)                                            (b) 

Fig. 5 (a) The PDF of 7 with 10% noise and (b)The PDF of 10 with 10% noise 
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4. Conclusions 
 

To reduce the influence of measurement noise on 

previous response-sensit ivi ty based probabilistic 

structuraldamagedetection approahces, two probabilistic 

structural damage detection approaches are proposed in this 

paper. The first proposed approach adopts the statistical 

moment-based structural damage detection (SMBDD) 

algorithm together with the sensitivity analysis of the 

damage vector to the uncertain parameters. Some numerical 

examples have demonstrate that the identification results of 

of probability of damage existence (PDE) and damage  

 

 

 

extentby the proposed approach are quite accurate even 

with a high measurement noise level of 15% in rms. 

The first approach requests the number of measured 

responses is not less than that of unknown structural 

parameters. To reduce the number of measurements, another 

probabilistic structural damage detection approach is 

proposed. It is based on the integration of structural damage 

detection using temporal moments in each time segment of 

measured response time history with the sensitivity analysis 

of the damage vector to the uncertain parameters. Some 

numerical results validate that probability of damage 

existence (PDE) and damage extent (DE) by the proposed 

Table 5 The results of the truss damage identification with 10% noise 

Element No. uα  dα  DE DE PDE 

1 1.00 1.00 0 0.05% 0.44% 

2 1.00 1.00 0 -0.27% 1.49% 

3 0.99 0.99 0 0.15% 0.00% 

4 0.97 0.97 0 0.04% 0.00% 

5 1.01 1.01 0 -0.17% 0.01% 

6 1.02 1.02 0 -0.16% 0.00% 

7 1.02 1.02 0 0.13% 0.00% 

8 1.00 0.91 -10% -9.11% 100.00% 

9 1.02 1.01 0 -0.15% 0.00% 

10 1.02 1.01 0 -0.47% 0.00% 

11 1.01 1.01 0 -0.39% 0.01% 

 
Fig. 6 A plane truss with uncertainmass density and excitation magnitudes 
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Fig. 7 (a)The PDF of α4 with 10% noise and (b) The PDF of α8 with 10% noise 
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approach are satisfactorily even though the structural 

responses used are incomplete and the measurement noise 

has a quite high noise-to-signal ratio of 10% in rms. 

Although the second approach is not so robust to 

measurement noises as the first approach, it is not sensitive 

to measurement noise compared with previous response-

sensitivity based approaches. 

In both approaches, probability distribution of damage 

vector is estimated from those of uncertain parameters 

based on stochastic finite element model updating and 

probabilistic propagation. By comparing the two probability 

distributioncharacteristics for the undamaged and damaged 

models, probability of damage existence and damage 

extentat structural element level can be detected.The 

proposed approaches can not only locatestructural damage 

but also identify damage extents without the 

extensivecomputational efforts, and it can also handle both 

Gaussian and non-Gaussian uncertain parameters. 

In this paper, some numerical examples have 

demonstrated the effectiveness of the proposed structural 

dynamic response moment based algorithms. Lab 

experimental tests are under taken by the authors and results 

will be published later.  
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