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1. Introduction 
 

In recent years, many researchers have paid attention to 

reducing vibrations of civil structures subjected to 

excitations of natural phenomena such as wind and 

earthquake. For this purpose, various control systems such 

as passive, semi- active and active control tools have been 

developed. Among these techniques, Tuned Mass Damper 

(TMD) is the most reliable and simplest one. The 

components of this damper include a mass, a spring, and a 

viscous damper installed to the structure. Although it is  
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common for vibrations control of high-rise buildings to 

focus on the smart material and viscous dampers (Aly et al. 

2012, Aly et al. 2011, Taylor 2010), however, in some 

buildings, using these tools is faced with a challenge. 

Nevertheless, for many structures without enough space to 

install exterior bracing, TMDs can be used efficiently 

without any significant changes. 

In 1909, Frahm (1911) invented a tool to reduce the 

vibrations due to the volatility of ships. The basis of TMD 

is composed of this invention operation concept. This tool is 

just effective while the natural frequency of the absorbers is 

very close to the vibration frequency of structures, because 

this tool has no inherent damping. Ormondroyd and Den 

Hartog (1928) tried to find useful results under the various 

excitations with different frequencies by connecting the 

viscous damping to a specified TMD. Finding TMD optimal 

parameters to best reduce vibrations is one of the most 

severe problems designers encounter. For this purpose, in 

1940 Den Hartog (1947) proposed a close form of optimal 

parameters including frequency and damping ratio of 
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Abstract.  One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass 

Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce 

the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal 

parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered 

based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to 

obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to 

cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy 

system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is 

required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is 

obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The 

design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After 

that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of 

Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive 

Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data 

clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating 

frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 

78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid 

partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom 

structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical 

relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is 

obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to 

those obtained by empirical relations. 
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TMDs. However, these relations were stated only based on 

Single-Degree of Freedom (SDOF) systems without 

damping. Afterward, original system's damping was 

considered by researchers (Bishop and Welboum 1952, 

Snowdon 1959, Falcon et al. 1967, Ioi and Ikeda 1978). 

Warburton and Ayorinde (1980) represented that for 

complicated systems the achievement of TMD optimal 

parameters is possibly faced with some problems as they 

assume equivalent to SDOF systems. Warburton (1982) 

offered simple equations for these optimal parameters based 

on undamped SDOF system subjected to harmonic 

excitations and random white-noise. 

Rana and Soong (1998) designed an optimal TMD to 

control a specific mode of structures through a numerical 

approach. To use a damper, there are some inherent limits 

such as narrow frequency bandwidth and sensitivity of 

tuning TMD frequency to frequency of the structure and 

also the difference between the TMD damping and its 

optimal value. Either incorrect tuning for damping ratio or 

using a non-optimal one can extremely decrease TMD 

efficiency (Bakre and Jangid 2004, Hoang and Warnitchai 

2005, Lee et al. 2006, Li and Qu 2006). Chang (1999) 

achieved a closed form solution for optimal parameters of 

TMD corresponding to both wind and earthquake loads. 

Using numerical search method, Bakre and Jangid (2007) 

proposed the explicit mathematical relations through the 

curve-fitting method for TMD optimal parameters. After 

presenting the meta-heuristic approaches such as genetic 

algorithm, particle swarm, ant colony algorithm, and 

harmonic search, these algorithms have been used to solve 

the optimization issues. The Genetic algorithm has been 

widely utilized to tune damper parameters (Hadi and Arfiadi 

1998, Singh et al. 2002, Desu et al. 2006, Pourzeynali et al. 

2007). Leung and Zhang (2009) optimized the mass, 

damping, and frequency ratio of TMDs installed to the 

damped SDOF structures by studying the particle swarm 

algorithm. Bekdas and Nigdeli (2011) employed the 

harmonic research algorithm to find TMD optimal 

parameters under the seismic vibrations. 

Tuned Liquid Damper (TLD) is a mechanical passive 

damper designed to reduce random vibration of structures 

caused by fluid turbulence in a rigid tank. Vibrational 

energy is dissipated as friction through the liquid boundary 

layers, the liquid free-surface participation and wave 

reflections. In these studies, the effect of seismic loading 

parameters on TLD operation has been investigated in 

different conditions (Kavand and Zahrai 2006, Zahrai and 

Kavand 2008). 

Mousaad Aly (2014) studied the probable challenges in 

designing TMD, for instance, ambient temperature and the 

relative changes of moisture among the other factors. He 

proposed a method in his study to design TMDs by 

considering the fundamental unreliability, the optimization 

goals and the division of input excitations (wind or 

earthquake). 

Numerous experimental and mathematical relations are 

proposed by different researchers to determine the optimal 

parameters of TMD. These relations have been mainly 

extracted through studying the SDOF systems under 

harmonic excitation. High-rise structure simplification 

using SDOF systems and complex loads such as wind or 

earthquake approximation cause many uncertainties in these 

relations. On the other hand, in some research, various 

methods have been presented to recognize these 

uncertainties to find TMD optimal parameters. However, to 

apply these methods, the model of the basic structure is 

required. Furthermore, assigning these obtained optimal 

parameters to the other structures is impossible. In this 

study, to consider mentioned uncertainties caused by 

modeling structures as a SDOF system, a set of MDOF 

systems with different numbers of stories has been used to 

design the fuzzy system. It should be mentioned that a set of 

far and near field earthquakes has been used as base 

excitations. Therefore, by prediction of these uncertainties 

and approximation of real structural behavior, the defects 

observed in relations presented by previous researchers are 

compensated. In addition, the design of fuzzy systems in 

order to estimate the TMD optimal parameters allows 

scholars to employ this proposed system in short time 

without any information about data used due to the design 

process. Moreover, this system can be applied to all kind of 

buildings with various frequencies. Thus, through 

eliminating inaccuracies of simple relations assumed by 

previous researchers, the efficient operation of this fuzzy 

system for all users will be demonstrated. 

 

 

2. The equations of motion for a MDOF system with 
TMD 
 

In Fig. 1, the MDOF system equipped with energy 

dissipation of TMD has been shown. The equation of 

motion for a linear MDOF system subjected to the external 

load ( )tP  is 

( ) ( ) ( ) ( )t t t t  Mx Cx Kx P  (1) 

Where M , C , K  are the mass, damping and stiffness 

matrices of structure, respectively and ( )tx is the horizontal 

displacement vector relative to the ground. Assuming 

ground acceleration as the applied load leads to 

( ) { } ( )gt x t P M 1  (2) 

Assuming ( )tP , from Eq. (2) into Eq. (1), one obtains 

 1( ) ( ) ( ) { } gt t t x   x M Cx Kx M 1  (3) 

Therefore, the acceleration is measured in TMD level 

(usually, the highest elevation of structure). Then, TMD is 

analyzed as a SDOF system and the absolute acceleration 

equals to the summation of the earthquake acceleration and 

acceleration at TMD level. Thus, TMD force can be 

obtained by multiplying the TMD mass by absolute 

acceleration and can be applied to structure at TMD level. 

To verify the conducted dynamic analysis by Simulink, 

a three degree of freedom system is modeled in SAP2000 

software and the obtained results are compared to each 

other. In Fig. 3 this MDOF model in SAP2000 software is 

shown. It should be noted that, the spring stiffness, the mass 

related to each degree of freedom and damping ratio are  
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Fig. 1 Schematic model of multi-story building equipped with a TMD 

 

Fig. 2 The model designed in Simulink for a structure with n degrees of freedom with TMD 

 

Fig. 3 MDOF system modeled in SAP2000 software 
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Fig. 4 Time history response for roof displacements 

obtained by SAP2000 and Simulink software 

 

 

selected equally as 81 10 /N m , 51 10 kg  and 0.05 

respectively. The frequency, mass and damping ratios of 

TMD are assumed 0.95, 0.05 and 0.07 respectively. In Fig. 

4, roof displacement of structure modeled in SAP2000 and 

Simulink software under the El Centro earthquake is 

observed. 

 

 

3. Fuzzy algorithm 
 

Recently, using fuzzy logic has risen in industrial sector 

and scientific areas. It can be worked in two different 

meanings. From the detailed point of view, the fuzzy logic 

is a logical system generated by the development of a multi-

valued logic. However, in a generalized view, the fuzzy 

logic can be considered equivalent to "the theory of fuzzy 

sets". The theory of fuzzy sets analyzes an object series in 

which there is no actual bound. So the object membership 

issue in a set is not accurate and is determined using the 

membership functions. In other words, an object can be a 

member of a set in different orders in this theory. The order 

of the object membership in a set varies from 0 to 1. In a 

considered set, zero order shows the non-membership of 

objects and one order indicates their perfect membership.  

One of the great advantages of fuzzy logic usage is the 

possibility of mapping input data sets to output one. In other 

words, a fuzzy inference system (FIS) can be created by 

introducing special rules called fuzzy rules in which the 

system can determine output by applying input sets.  

In this study, taking advantages of three important 

features of fuzzy logic adjusting to a popular estimate 

functions, the modelling of the fuzzy system has been 

established in order to predict TMD optimal parameters. 

These features include: 

 The description of the uncertainties. 

 New tool to solve those problems that the probability 

theory doesn't have any solution for it. 

 The fuzzy logic can model any complex non-linear 

function. 

 In fuzzy logic, there is the possibility of using the 

experts’ practices. 

In this study, instead of experts’ experience, the data sets 

obtained by modelling different MDOF structures and 

gaining TMD optimal parameters, have been used. 

 

3.1 Internal and external data of the fuzzy system 
 

The structures simulated through MATLAB software are 

laterally subjected to the earthquakes. For this purpose, two 

far-field and two near-field earthquake records suggested by 

the International Association for Structural Control can be 

used. These earthquakes include the 1940 El Centro, 1968 

Hachnohe, 1994 Northridge and 1995 Kobe. To increase the 

number of data for reducing the uncertainties related to 

loading, four other earthquakes have been used in addition 

to these records. 

To model the fuzzy system, 644 data are used. Required 

information to design fuzzy system includes optimal 

parameters of TMD for buildings from 8 to 80 stories 

subjected to different earthquakes. 

 

3.2 Fuzzy system design using Look-up table 
optimized by genetic algorithm 

 

The experts in control vibration are among the most 

reliable sources in the major of fuzzy system design. In this 

study, to achieve the desired accuracy, a data set is used to 

estimate the optimal parameters of TMD. 

As shown in Fig. 5, a Simulink model like a black box is 

accessible, as the optimal parameters of TMD are identified 

for a MDOF system using the trial and error method. 

However, its contents, i.e. how this parameter for a MDOF 

structure varies under any special base excitation, is not 

clear. 

In MATLAB software, the specified function is not 

considered to design the fuzzy system by look-up table 

method. For this purpose, the design of the fuzzy system is 

implemented based on the look-up table according to 

following steps: 

1. Classification and identification of fuzzy steps for inputs 

and outputs. 

2. Formation of the possible rules 

3. Calculating the score of each rule 

4. Removing the opposed and weaker rules 

Considering the characteristics of the problem, data are 

( , )p pX Y where, pX is the input vector and pY is the output 

vector, 1, 2, ...,p P  is the number of data or existent 

pattern to design the fuzzy system.  

Parameters used as input and output are 

 p s mX  (4) 

 

[ ]p d d Y  (5) 

 

 

 

Fig. 5 The system before designing the fuzzy system 

 

 

Black box Input Output 
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where, 
s  is the first mode frequency of MDOF system; 

m  indicates the ratio of mass damper to total mass of the 

MDOF system; 
d  is the TMD frequency, and 

d  is the 

TMD damping ratio. 

Since the basis of the fuzzy function estimation system 

is a multi-input-single-output system, a single-output fuzzy 

system is designed without changing the whole problem 

conditions for each output. In the fuzzy system of each 

existent data, a rule is identified. To classify the output and 

input space as a fuzzy system 

min

min max

max

min
,

max

i p ip

ip i i

i p ip

x x
x x x

x x

 
    



 (6) 

 

min

min max

max

min
,

max

p p

p

p p

y y
y y y

y y

 
    



 (7) 

Where, 1, 2, ,i n  is the number of input variables. 

Then, the changing range of each input is specified. The 

input and output spaces of the problem are given as follows 

min max min max min max

1 1 2 2, , ,n nX x x x x x x               (8) 

 

min max,Y y y     (9) 

Indeed, the objective of the problem is to design a fuzzy 

system implementing the following mapping 

:f X Y  (10) 

To allocate the input space to fuzzy sets, it should be 

noted that a positive membership function is defined for 

each input 

min max, : 0i i i ijx x x j         (11) 

Where,   is the membership order, i is the input 

variable number, and j  is the membership function 

number. 

 

 

 

Fig. 6 The uniform distribution of membership functions 

 

In fuzzy system design process using look-up method, 

because of its non-smart and inadequate information about 

the distribution of data, the membership functions are 

mostly uniform distribution functions as shown in Fig. 6. In 

this case, by assuming Gaussian membership functions, the 

distance between two consecutive centers of membership 

functions is obtained 

max min

1

i i

i

x x
x

n


 


 (12) 

Where, x  is the distance between centers of two 

consecutive membership functions and n  is the number of 

membership functions. 

By dividing the input and output data, the possibility of 

performing their rules is provided. The total number of rules 

which can be created for a fuzzy system is equal to all the 

possible combinations of inputs and outputs 

1 2 n y

inputs output

NR m m m m      
(13) 

Where, m  is the number of membership functions 

defined for each input and output variable. 

Now, according to the data or patterns prepared for input 

and output, each of these rules is strengthened. 

Eventually, every rule that is further strengthened will 

remain in the fuzzy system. According to this definition, the 

accuracy of any rule related to each data should be 

investigated. In this study, the Mamdani system is used to 

achieve this goal. For each rule, such as 

1 1 2 2:Ru IF x is A and x is A THEN y is B  (14) 

Where, 1A  and 2A  are the fuzzy sets related to the 

input variable and B is the fuzzy set related to the output 

one. The proposition before "THEN" is called the 

Antecedent section and the proposition after "THEN" is 

called the consequent section. 

According to Mamdani implication, this rule for input 

and output is equal to 

1 21 2( , ) ( ) ( ) ( )r p p A p A p B pS x x y    x y  (15) 

Where, rS  is the degree of rule accuracy ( r ). That 

1,2,...,r NR  and   is the data membership order in the 

fuzzy set. 

By assigning all data to available rules, the final score of 

each one can be reproduced by two different methods 

1

( , )

max ( , )

P
Total

r r p p

p

Total

r p r p p

S S

S S







 

 x y

x y

 (16) 

Since all input and output combinations are considered 

as the possible rules, there are some rules that have the 

same antecedent section, but the consequent section is 

different. Indeed, these rules are opposed to each other; 

therefore, that rules having lower score, are removed. 

Therefore, the initial fuzzy system is created by the 

look- up table method. Since the designed fuzzy system is 
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kind of Mamdani, in MATLAB environments there is no 

function to optimize the Mamdani fuzzy system. Then, 

through an innovative method using genetic algorithm, the 

weights of rules are optimized. In Fig. 7, the reduction 

process of MSE related to frequency data by the genetic 

algorithm is shown. 

To achieve better evaluation among design methods of 

the fuzzy system, here a statistical comparison of TMD 

optimal parameters identified by Simulink analysis and 

optimal results proposed by the fuzzy system is drawn. 

Table 1 presents the information related to statistical 

investigation of the results of the fuzzy system designed by 

look-up table method. 

Where, 
d  and 

d  are the frequency and the optimal 

damping ratio of TMD respectively and   is the average 

difference between actual optimal parameters and fuzzy 

system results. The difference between both quantities is 

due to the estimation of considered functions;   is the 

standard deviation of errors, MSE  is the Mean Square of 

Errors, RMSE  is the Root Mean Square of Errors, and R  

is the correlation coefficient between actual optimal 

parameters and the fuzzy system results. It is clear that as 

much as this amount is closer to 1, it indicates more 

accurate results of the fuzzy system design. 

 

3.3 Fuzzy system design by grid partitioning the data 
space optimized by ANFIS 
 

In this method, a fuzzy system is designed by simulating 

the models according to the actual behavior of real 

structures. As shown in Fig. 8, the output obtained from 

fuzzy system or any other model, is always different from 

the real system. 

To minimize the errors of these both system outputs, the 

fuzzy system parameters are adjusted in which the cost 

function is minimized. So, to design and optimize the fuzzy 

system using existent data, the ANFIS (Adaptive Neuro-

Fuzzy inference system) toolbox in MATLAB software is 

designed. 

 

 

 

Fig. 7 The process of minimizing the MSE by genetic 

algorithm 

 

Table 1 Statistical parameters based on look-up table 

method 

(%)d  
( / )d rad s

  

0.0010 -0.0859 
 

0.0405 0.5321   
0.0016 0.2901 MSE  

0.0405 0.5386 RMSE  

0.6290 0.9254 R  

 

Table 2 Statistical parameters based on the method of grid 

partitioning of data space 

(%)d  
( / )d rad s

  

0.0000 0.0000 
 

0.0394 0.3059   
0.0016 0.0934 MSE  
0.0394 0.3057 RMSE  
0.6535 0.9751 R  

 

 

 

Fig. 8 Designing the fuzzy system with minimizing the 

errors 

 

 

In this process, a crude form of a fuzzy algorithm is 

designed as Takagi Sugeno (TSK). Then, through existent 

data, with the aim of minimizing the cost function, their 

parameters are optimized while the weight of produced 

rules is the same. The contrast between TSK system and 

Mamdani system presented in look- up table method, is that 

in Mamdani system the antecedent and consequence 

sections of rules are considered as the fuzzy propositions, 

however the consequence section in TSK system is 

expressed as the function of the inputs. The information 

related to statistical investigation of the fuzzy system results 

designed by the grid partitioning method is presented in 

Table 2. 

 

3.4 Designing fuzzy system based on clustering 
optimized using the ANFIS 
 

In designing the fuzzy system based on clustering, the 

available data are classified. Then, due to similarity of each 

group members, it is tried to offer an approximately 

identical rule for that group. 

One of the advantages of using clustering methods is the 

increase and reduction of complexity, in case of necessity. 

For instance, in areas of high population density of data, the 

density of membership function and rules has risen. In 

contrast, if there is some disperse data in data sets, only one 

membership function can be satisfied in that area. 

Input 

+ 

Fuzzy system - 

Black box 

 
Error 
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In every clustering problem, for ni xxxx ,...,...,, 21 ∈R
d 

data, that are the members of 
1 2, ,..., ,...,j kA A A A  clustering 

sets, the ix  is a member of 
jA  if and only if 

jc  is the 

closest cluster center to ix . 

A data arrangement is suitable for clustering as the 

distance between the cluster members and cluster center is 

minimized. Indeed, a cluster center is proper when placed in 

the members’ mass center.  

There are two methods of subtractive clustering and 

clustering by fuzzy c-means in MATLAB software making 

it possible to use fuzzy logic. In other words, each data with 

any membership degree can belong to several clusters. In 

this study, the c-means method is used to cluster the data. 

In Table 3, the results obtained by the statistical study of 

designed fuzzy system using the data clustering method is 

presented. 

 

 

 

To compare design methods of fuzzy system and choose 

the best one, the Gaussian membership functions are used 

for inputs and outputs of Mamdani fuzzy system and linear 

membership functions are used for TSk fuzzy system. In all 

three fuzzy system design methods, the equal rules (12 

rules) are established. 

Tables 4 and 5 present parameters and Table 6 presents 

required rules to design the fuzzy system in order to 

estimate the TMD damping and frequency respectively. 

This fuzzy system is designed based on data clustering and 

optimizing parameters by ANFIS. 

In Tables 4 and 5, the parameters , c  are related to 

Gaussian membership function. This membership function 

is defined as follows 

2

2

( )

2( ; , ) e

x c

f x c 

 

  (17) 

 

Table 3 Statistical parameters based on clustering method 

 ( / )d rad s
 

(%)d  


 

0.0000 0.0000 

  0.2992 0.0387 

MSE  0.0894 0.0015 

RMSE  0.2989 0.0387 

R  0.9762 0.6683 

Table 4 Required parameters for designing the fuzzy system to estimate the TMD damping 

Input 1 m  Input 2 
s  Output 1 

d  

MFs   c  MFs   c  MFs Linear Parameters 

m1 0.0067 0.0610 w1 0.4034 3.0515 xsi1 -9.7083 -0.0220 0.8183 

m2 0.0373 0.0511 w2 0.3879 1.2499 xsi2 2.2959 -0.4965 0.5502 

m3 0.0133 0.0758 w3 0.3636 1.4948 xsi3 -0.9081 0.0597 0.1501 

m4 0.0393 0.0314 w4 0.3611 2.6071 xsi4 1.2101 -0.0332 0.1908 

m5 0.0343 0.0421 w5 0.3631 1.8063 xsi5 2.2214 -0.4142 0.9263 

m6 0.0073 0.0413 w6 0.6665 4.7958 xsi6 4.4765 -0.3398 1.8666 

m7 -0.0002 0.0455 w7 0.3398 2.1880 xsi7 0.0000 0.0000 0.0000 

m8 0.0314 0.0548 w8 1.1560 7.2925 xsi8 1.1154 -0.0090 0.1517 

m9 0.0161 0.0543 w9 0.9294 6.2014 xsi9 1.2496 -0.0458 0.4879 

m10 0.0076 0.0365 w10 0.4669 3.5648 xsi10 
-

15.4274 
-0.1445 0.9221 

m11 0.0175 0.0487 w11 0.7774 5.4176 xsi11 0.7773 -0.0657 0.3786 

m12 0.0059 0.0451 w12 0.5394 4.0500 xsi12 -1.9420 -1.1008 4.5851 

Table 5 Required parameters for designing the fuzzy system to estimate the TMD frequency 

Input 1 m  Input 2 
s  Output 1 

d  

MFs   c  MFs   c  MFs Linear Parameters 

m1 0.0346 0.0551 w1 0.4332 1.2542 fr1 -8.2518 23.5355 -20.0633 

m2 0.0147 0.0826 w2 0.5516 3.8524 fr2 28.7752 1.2457 -4.2178 

m3 0.0244 0.0396 w3 0.4759 3.2818 fr3 11.9798 1.5566 -2.9127 

m4 0.0247 0.0386 w4 0.4081 1.4320 fr4 31.8011 -10.9922 11.8030 

m5 0.0204 0.0277 w5 0.3907 2.4622 fr5 20.2428 -8.1205 26.5513 

m6 0.0075 0.0437 w6 0.6448 4.4289 fr6 37.8436 1.9109 -5.5324 

m7 0.0131 0.0411 w7 0.9678 6.1597 fr7 -18.6847 2.1963 -6.8075 

m8 0.0354 0.0459 w8 0.7984 5.2994 fr8 -10.7933 0.9855 0.1441 

m9 0.0241 0.0343 w9 0.3537 2.0494 fr9 76.4566 -19.1229 36.1779 

m10 0.0164 0.0447 w10 1.2038 7.2640 fr10 3.4747 0.3726 2.6418 

m11 0.0466 0.0500 w11 0.4317 2.8933 fr11 -25.3585 0.8095 2.3080 

m12 0.0329 0.0539 w12 0.3840 1.7356 fr12 -49.1084 15.2672 -31.6863 
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In designing the fuzzy system using three methods as 

look-up table, grid partitioning the data space, and 

clustering, it has been found that the method based on 

clustering has higher accuracy in estimating the parameters. 

Therefore, in the following, this method is used to estimate 

the TMD parameters 

 

 

4. Fuzzy system design for TMD optimal parameters 
to reduce seismic 
 

In this research, a TMD is used to control the vibrations 

of a MDOF structure in which its optimal damping and 

frequency parameters are proposed by the fuzzy system. 

The intended structure has 15 stories with horizontal 

degrees of freedom. Whereas the destructive influences of 

the earthquake are due to horizontal vibrations, in this 

study, it is assumed that all degrees of freedom are in the 

horizontal direction (Guclu and Yazici 2008). 

In this building, a TMD with two percent of mass ratio 

is used to control the dynamic vibrations. To conduct time 

history analysis, eight different earthquake records along 

East-West direction offered by 'guidelines FEMA P695' are 

applied to this building. Among these selected earthquakes, 

the Duzce Turkey, Hector Mine, Imperial valley and Kobe 

are far-field earthquakes and the Irpinia Italy, Cape 

Mendocino, Landers and Loma Prieta are near-field ones.  

 

 

 

 

These records were not used in fuzzy system design 

process. It should be mentioned that their peak accelerations 

are scaled to 0.5 g. In Table 7, the related details of the 

earthquakes are given. 

Dynamic properties of the investigated structure 

presented by Guclu and Yazici (2008) and used as a 

benchmark structure in this research, are 

 

 

 

1 2 3 15

1 2 3 15

1 2 3 15

450000, ... 345600 kg

18050, ... 340400 kN/m

26170, ... 293700 Ns/m

m m m m

k k k k

c c c c

    

    

    
 

To study the TMD operation, the criterion of the 

minimum root mean square of displacements is used: 

c

uc

X
C

X
  (18) 

 

2

0

1
. (.)

ft

f

dt
t

   (19) 

Where, X  is the horizontal displacement, c  and uc

indexes show the controlled state, and the uncontrolled one 

respectively. Then, the evaluation is performed by dividing 

the controlled responses to uncontrolled one by C  

parameter. In Table 8, the undamped frequencies related to 

the first three modes of the 15-degree of freedom system are 

given. 

 

Table 6 Required rules for designing the fuzzy system to estimate the TMD damping and frequency 

If ( m  is m1) and (
s  is w1) then (

d  is xsi1) If ( m  is m1) and (
s  is w1) then (

d  is fr1) 

If ( m  is m2) and (
s  is w2) then (

d  is xsi2) If ( m  is m2) and (
s  is w2) then (

d  is fr2) 

If ( m  is m3) and (
s  is w3) then (

d  is xsi3) If ( m  is m3) and (
s  is w3) then (

d  is fr3) 

If ( m  is m4) and (
s  is w4) then (

d  is xsi4) If ( m  is m4) and (
s  is w4) then (

d  is fr4) 

If ( m  is m5) and (
s  is w5) then (

d  is xsi5) If ( m  is m5) and (
s  is w5) then (

d  is fr5) 

If ( m  is m6) and (
s  is w6) then (

d  is xsi6) If ( m  is m6) and (
s  is w6) then (

d  is fr6) 

If ( m  is m7) and (
s  is w7) then (

d  is xsi7) If ( m  is m7) and (
s  is w7) then (

d  is fr7) 

If ( m  is m8) and (
s  is w8) then (

d  is xsi8) If ( m  is m8) and (
s  is w8) then (

d  is fr8) 

If ( m  is m9) and (
s  is w9) then (

d  is xsi9) If ( m  is m9) and (
s  is w9) then (

d  is fr9) 

If ( m  is m10) and (
s  is w10) then (

d  is xsi10) If ( m  is m10) and (
s  is w10) then (

d  is fr10) 

If ( m  is m11) and (
s  is w11) then (

d  is xsi11) If ( m  is m11) and (
s  is w11) then (

d  is fr11) 

If ( m  is m12) and (
s  is w12) then (

d  is xsi12) If ( m  is m12) and (
s  is w12) then (

d  is fr12) 

Table 7 Specifications earthquake records for time history analysis 

JBR (km) 
Site Data 

wM  Fault Type 
dt (s) Station PGA Earthquake 

NC Vs (m/s) 

12 D 326 7.1 Strike-slip 55.85 Bolu 0.81 g Duzce, Turkey 

10.4 C 685 7.1 Strike-slip 45.30 Hector 0.33 g Hector Mine 

22 D 275 6.5 Strike-slip 100.1 Delta 0.35 g Imperial valley 

7.1 C 609 6.9 Strike-slip 40.95 Nishi-Akashi 0.48 g Kobe, Japan 

6.8 B 1000 6.9 Normal 39.34 Sturno 0.32 g Irpinia, Italy 

0.0 C 713 7.0 Thrust 35.90 Petrelia 0.66 g Cape Mendocino 

2.2 C 685 7.3 Strike-slip 48.10 Lucerne 0.79 g Landers 

7.6 C 371 6.9 Strike-slip 39.97 Saratoga - Aloha 0.51 g Loma Prieta 

wM =Moment magnitude, NC=NEHRP Class, 
JBR =Closest horizontal distance to rupture plane, 

dt =Duration 
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Table 8 Frequencies of the system with 15 degrees of 

freedom 

Mode No. 1st 2nd 3rd 

f (Hz)
 

0.26 1.10 2.07 

 

 

 

 

 

The contours related to parametric study of TMD 

characteristics are illustrated in Fig. 9 where they have less 

width in frequency ratio ( ) direction compared to those 

in damping ( ) direction. The reason is insensitivity of 

TMDs to their damping ratio while least alteration in TMD 

frequency can strongly affect its performance. This is the 

problem discussed in optimal design of the TMDs. In Fig. 

  

  

  

  

Fig. 9 Parametric study of TMD characteristics to find the optimal value 
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9, the optimal parameters proposed by the genetic 

algorithm, empirical relation (Brock 1946, Ioi and Ikeda 

1978) and fuzzy system are shown. 

To compare the optimal parameters, parametric study as 

a numerical method, genetic algorithm as a heuristic 

method and existent formulas are utilized. In parametric 

approach, frequency and damping ratio vary by 0.01 and 

0.05 steps respectively, within the range of possible optimal 

parameters. Therefore, after 400 times analyzing the 

structure, these parameters are identified. 

In genetic algorithm, the TMD optimal parameters are 

recognized due to assuming maximum generation of 50 and 

producing 8 chromosomes in each generation by 400 times 

analyzing the structure. In FIS method, TMD optimal 

parameters are obtained with admissible precision without 

any analysis. In this method, using TMD mass ratio and 

first mode frequency of structure, the optimal parameters 

are obtained.   

Also in Ioi and Ikeda's relation, the optimum parameters 

of TMD are obtained without analysis of structure, in the 

same way. The optimal properties of a TMD system 

implemented in an undamped (SDOF) system are 

determined as (Brock 1946) 

1

1
opt

m
 


 (20) 

 

3

8(1 )
opt

m

m
 


 (21) 

Where, opt  represents the ratio of the optimal TMD 

frequency to the natural frequency of the SDF system; and 

opt  denotes the optimal TMD damping ratio. 

The empirical formulations, for a damped SDOF system, 

should be modified as following (Ioi and Ikeda 1978) 

2 2 2(0.241 1.7 2.6 ) (1 1.9 )opt opt s sm m m m           (22) 

 

2 2 2(0.13 0.12 0.4 ) (0.01 0.9 3 )opt opt s sm m m m           (23) 

Where, 
s is the damping ratio of SDOF system. 

In Table 9, optimal parameters of TMD for the structure 

subjected to different earthquakes identified by genetic 

algorithm are given. Optimal parameters of TMD proposed 

by the fuzzy system are equal to: 0.094TMD  , 

1.635 (rad/s)TMD  . 

The values of frequency and damping ratio are 

optimized, if they vary in each time to minimize the 

response of structure. For this purpose, active and semi-

active control systems in structures have been invented. 

Since in this research it is assumed that the control system 

is passive and unable to have variable parameters, the 

optimal values are determined such that the control system 

has perfect operation within the whole vibrations. The 

damping ratio of TMD while helping to reduce structural 

response would reduce the displacement of TMD as well, in 

order not to excite the structure in the last seconds of 

earthquake when the ground motions decrease. Now, 

considering these two objectives (reduction in structure 

responses and TMD displacement in last seconds), optimal 

values can vary between the amounts related to these two 

cases. 

According to the parameters of TMD identified by 

genetic algorithm and fuzzy systems, there is very little 

difference between average optimum parameters of TMD. 

This similarity is not accidental; because to produce the 

required data for designing fuzzy system, a series of near 

and far-field earthquakes were used. Actually, the designed 

fuzzy system provides optimal parameters with regard to 

reconciliation between the near and far earthquakes. 

Therefore, the optimum parameters of TMD represented by 

fuzzy systems are more reliable than those of other methods 

without any analysis of structure to provide TMD 

parameters. 

In Tables 10 and 11 the results obtained by four far-field 

and four near-field earthquakes are presented respectively. 

According to these Tables, all three methods can reduce the 

RMS of displacements appropriately. Among these used 

methods, genetic algorithms and deterministic method 

always obtain the accurate results due to employing 

structural analysis to obtain optimum parameters of TMD. 

In the same number of analysis, genetic algorithm because 

of the intelligent search among the possible values of TMD 

parameters provides a more accurate answer in comparison 

with the others.  

In Fig. 10, responses of the roof displacement obtained 

by uncontrolled analysis, controlled analysis using TMD 

through Ioi and Ikeda formulas and controlled analysis 

using TMD through fuzzy logic system, are shown.  

In the early seconds of starting the vibrations, both 

displacements are almost the same. The reason of this result 

is the shortage of time to activate the TMD. However, after 

passing enough time, the mass damper obtains the required 

acceleration to control the structure vibrations. Since the 

frequency and damping parameters are tuned correctly, the 

TMD displacement is set in the opposite direction of roof 

motion and leads to reduce the vibrations of the structure. 

 

 

Table 9 Optimal parameters of TMD provided by genetic 

algorithm 

Earthquake d  
d  

Duzce, Turkey 0.071 1.625 

Hector Mine 0.127 1.595 

Imperial valley 0.079 1.625 

Kobe, Japan 0.076 1.649 

Irpinia, Italy 0.075 1.647 

Cape Mendocino 0.079 1.656 

Landers  0.127 1.656 

Loma Prieta 0.070 1.625 

Average 0.088 1.635 

Standard deviation 0.024 0.021 

 

70

https://en.wikipedia.org/wiki/1999_Hector_Mine_earthquake
https://en.wikipedia.org/wiki/1992_Landers_earthquake


 

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings 

 

 

It is noteworthy that to use the genetic algorithm, a 

model of real structure is required to obtain the accurate 

result by repeated analyses. However, in empirical formulas 

and fuzzy system, TMD optimal parameters are proposed 

with acceptable accuracy without any analysis and just 

based on prior analysis conducted for different structures 

under various earthquakes. To give analytical and empirical 

formulas, the loading and building structures are simplified. 

In fact, empirical and analytical relations for structures are 

faced with two types of uncertainty. The first one is 

structural uncertainty (usually SDOF systems) and the other 

one is loading uncertainty (usually assumed harmonic). 

In contrast, to design fuzzy system, a series of different 

MDOF models and far-field and near-field earthquakes 

were used. This justifies the results of the fuzzy system to 

have less uncertainty. So the results can be used with more 

reliability for structures 

 

 

 

 

 

 

Whereas the compared control system in all above states 

is exactly the same, a considerable reduction in responses is 

not expected. However, the efficient operation of TMD is 

provided by optimal parameters gained using fuzzy system, 

even though it is with a little bit of reduction. This 

improvement in results is because of unreliability to Ioi and 

Ikeda formula. Thus to design fuzzy system, the far and 

near-field earthquakes as inputs and MDOF system as 

structure have been used. Although the proposed method 

has mainly been effective in reducing displacements, under 

most earthquake records it has reduced maximum 

acceleration compared to the Ioi and Ikeda’s empirical 

relations. 

In Fig. 11, the roof acceleration resulted by uncontrolled 

analysis, controlled analysis using TMD through Ioi and 

Ikeda formulas and controlled analysis using TMD through 

fuzzy logic system, are shown. There is no tangible 

difference in reduced accelerations between these two 

control methods. However, it should be mentioned that it is 

declined a little after starting the earthquake controlled 

acceleration using TMD. 

Table 10 Comparison between controlled acceleration and displacement by various methods due to far-field earthquakes
 

Ioi and 

Ikeda, 1978 
FIS GA Contour Without TMD Top floor response Earthquake 

0.161 0.159 0.162 0.161 0.175 Max displacement (m) 

Duzce, Turkey 
0.049 0.048 0.048 0.048 0.087 RMS displacement 

5.237 5.237 5.234 5.237 5.263 Max acceleration (m/s2) 

0.525 0.523 0.526 0.525 0.586 RMS acceleration 

0.316 0.316 0.316 0.316 0.452 Max displacement (m) 

Hector Mine 
0.113 0.111 0.110 0.110 0.230 RMS displacement 

5.710 5.708 5.708 5.709 5.740 Max acceleration (m/s2) 

1.057 1.053 1.054 1.054 1.208 RMS acceleration 

0.518 0.508 0.491 0.488 0.715 Max displacement (m) 

Imperial valley 
0.178 0.175 0.175 0.174 0.254 RMS displacement 

5.933 5.932 5.926 5.931 5.939 Max acceleration (m/s2) 

1.066 1.059 1.045 1.055 1.208 RMS acceleration 

0.178 0.177 0.177 0.178 0.191 Max displacement (m) 

Kobe, Japan 
0.059 0.058 0.057 0.058 0.102 RMS displacement 

4.633 4.632 4.633 4.633 4.621 Max acceleration (m/s2) 

1.105 1.103 1.110 1.108 1.158 RMS acceleration 

Table 11 Comparison between controlled acceleration and displacement by various methods due to near-field 

earthquakes 

Ioi and 

Ikeda, 1978 
FIS GA Contour Without TMD Top floor Response Earthquake 

1.290 1.290 1.289 1.289 1.549 Max displacement (m) 

Irpinia, Italy 
0.437 0.441 0.431 0.435 0.938 RMS displacement 

6.507 6.503 6.506 6.502 6.656 Max acceleration (m/s2) 

1.549 1.547 1.537 1.532 2.764 RMS acceleration 

0.377 0.377 0.377 0.377 0.414 Max displacement (m) 

Cape Mendocino 
0.144 0.143 0.142 0.142 0.226 RMS displacement 

5.439 5.438 5.439 5.439 5.443 Max acceleration (m/s2) 

0.994 0.989 0.979 0.997 1.138 RMS acceleration 

0.287 0.287 0.286 0.284 0.337 Max displacement (m) 

Landers 
0.089 0.091 0.089 0.092 0.204 RMS displacement 

5.229 5.219 5.226 5.215 5.324 Max acceleration (m/s2) 

0.654 0.654 0.652 0.654 0.828 RMS acceleration 

0.277 0.276 0.276 0.277 0.284 Max displacement (m) 

Loma Prieta 
0.068 0.067 0.067 0.068 0.141 RMS displacement 

4.587 4.587 4.587 4.588 4.572 Max acceleration (m/s2) 

0.639 0.633 0.641 0.632 0.717 RMS acceleration 
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5. Conclusions 
 

In this study, it was tried to estimate optimal parameters 

of the TMD without performing the structural analysis and 

just through general information of structure. Therefore, to 

design a fuzzy system, the data sets including general 

information about MDOF systems subjected to different far 

and near-field earthquakes were used. 

Designing the fuzzy system by three methods i.e., the 

look-up table, grid partitioning the data space, and 

clustering indicated that the results of all three methods  

 

 

 

were almost the same. However, the proportional major 

operation of the designed fuzzy system based on clustering 

method optimized by ANFIS illustrated its ability of 

classifying and identifying the system behavior. 

To select the best fuzzy systems, statistical comparison 

was made between the optimal parameters of TMD 

identified by the Simulink analysis, and parameters 

proposed by the fuzzy system. Therefore, the fuzzy system 

based on data clustering with ERMS of 0.2989 for 

frequency and 0.0387 for damping ratio was used in the rest 

of this research as the best method.  

  

  

  

  

Fig. 10 Comparison between roof displacement of controlled and uncontrolled cases 

72



 

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings 

 

 

The ERMS ratios of frequency were given 0.3057 and 

0.5386, and ERMS ratios of damping were given 0.0394 

and 0.0405 for grid partitioning and look-up table method 

respectively. 

After that, In order to evaluate the performance of the 

designed fuzzy system, a 15-story benchmark structure was 

studied under four near-field and four far-field earthquakes. 

The optimal parameters of TMD were obtained for this 

structure using four methods, i.e. parametric study as a 

numerical method, genetic algorithm as a heuristic method, 

fuzzy system as a system able to consider unreliability and 

empirical relation. The results showed that TMD optimal  

 

 

parameters gained from the fuzzy method are more accurate 

compared to the empirical relationships considered as 

approximate methods without structural analysis. Based on 

obtained results, the progress up to 1.9% and 2% under far-

field earthquakes and 0.4% and 2.2% under near-field 

earthquakes was obtained in decreasing respectively roof 

maximum displacement and its RMS ratio through fuzzy 

system method compared to those obtained by empirical 

relations. In addition, the averages of optimal parameters 

identified by genetic algorithm were approximately equal to 

the parameters identified by the fuzzy system. This means 

that, those parameters identified by the fuzzy system were 

  

  

  

  

Fig. 11 Comparison between roof acceleration of controlled and uncontrolled cases 
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the average values due to the near and far-field earthquakes. 

So, the optimal parameters provided by the fuzzy system 

can be used to design TMD with more reliability. 

The error in frequency has more contribution to divert 

the correct response in structure. The error in damping 

estimation that was clear in all three methods is due to the 

less sensitivity of TMD to the damping ratio compared to 

the structure frequency. Therefore, the fuzzy system can be 

employed to estimate the TMD damping ratio without 

worrying about the modeling errors. Thus, by combining 

the existent advantages of estimating the TMD optimal 

parameters based on both old simplified and modern 

methods requiring a perfect model of structure, the fuzzy 

system approach proposed a novel technique to consider the 

uncertainties while being practical like presented equations. 

Finally, for further achievement and reliability in designed 

fuzzy system operation, a wider range of structures and 

earthquakes should be investigated to increase efficiency of 

nonlinear decision-making process. 
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