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1. Introduction 
 

Remote health monitoring of large scale structures has 

become possible with the advancement of Wireless Sensor 

Networks (WSN). The main advantage of using wireless 

sensor networks is, ability to monitor the structure 

continuously, easy to install, low maintenance costs etc. But 

WSNs do suffer from corruption of data and data losses in 

the wireless communication between nodes and base 

station. A brief discussion about different factors that are 

responsible for data losses in WSNs is given by Zou et al. 

(2015) and Srinivasan et al. (2006). Nagayama et al. (2007) 

had presented how data losses affects the estimation of 

modal parameters of a structure. They had shown that 0.5 

∼ 2.5% of data losses has a similar effect as that of 10% 

measurement noise on the coherence function used for 

structural analysis. Traditionally, there are two ways to deal 

with data losses in WSNs, ACK (Acknowledgment) based 

retransmission technique and FEC (Forward Error 

Correction) based redundancy coding. ACK based 

retransmission techniques are most popular in WSNs as 

they are simple to implement on low power sensor nodes. 

But ACK based retransmission technique is not suitable for 

delay constrained networks and multi cast purposes 

(Charbiwala et al. 2010). FEC based redundancy coding is 

another way to mitigate data losses where coded packets 

(which have redundant information) are transmitted to 

receiver and faithful reconstruction of original data is  
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possible if adequate number of packets are received 

(Hayinga 1999). FEC based method suffers from its 

inability to reconstruct the signal when sufficient number of 

coded packets are not received. Recently, a new redundancy 

based approach using compressive sensing (CS) has 

become popular for data loss recovery. In this technique, 

measurements obtained from an encoding process is 

transmitted and using an optimization technique at receiver, 

original signal is reconstructed. The main advantage of 

compressive sensing based approach is; even if sufficient 

number of measurements are not received, a reasonably 

accurate signal can be recovered (Charbiwala et al. 2010). 

Basically there are two ways to implement CS based 

redundancy coding. First, taking extra number of 

measurements than the optimal number according to the 

channel losses. An in-depth outlook of this type of 

technique is presented in (Charbiwala et al. 2010, Yu et al. 

2016). Next, a redundancy coding where number of 

measurements are taken as that of the considered signal 

length (sampled at Nyquist rate) (Zou et al. 2015). In this 

paper we are discussing a technique similar to latter. A 

technique of such type was introduced by Zhang (2006), 

where DCT frames are used for missing data recovery. In 

telemedical applications, Garudadri et al. (2011) have 

introduced packet loss mitigation using CS. They had 

presented a simulated data loss analysis and shown the 

robustness of CS based redundancy coding for the 

reconstruction of ECG signals. This compressive sensing 

based redundant coding is also popular in speech signal 

transmission (Ma et al. 2009). 

For Structural Health Monitoring (SHM) applications, 

Bao et al. (2013) introduced this CS based redundant 

coding for the data loss recovery of vibration signals of a 

structure. In (Bao et al. 2013, 2015, Yu et al. 2015) Bao et 

al. presented the simulated data loss recovery using 
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encoding process with random measurement matrices (like 

Gaussian, Bernoulli measurement matrices). In (Bao et al. 

2015) it is also shown that using mobile base station helps 

in having better spatial resolution but data losses increase 

because of Doppler Effect. In (Yu et al. 2015) Wi-Fi nodes 

with random sensing matrix based on Bernoulli distribution 

is used. But implementing random measurement matrices 

on WSN nodes consumes significant sensor memory and 

also increases the data acquisition time (Zou et al. 2015). 

So, a Random Demodulator (RD) based technique is 

presented in (Zou et al. 2015). Although RD based 

technique is said to be easily implementable on sensors 

when compared to random matrices, still it costs some 

memory and also requires significant operations. So, 

basically a technique with fast and efficient encoding 

process is desirable. Since it was shown in (Zou et al. 2015) 

that acceleration signals can be sparsely represented in 

frequency domain. Using this property, in this paper we are 

presenting a model where no additional encoding process 

other than sampling a signal is required. A similar type of 

technique is also discussed in (Selesnick 2012) and (Wu et 

al. 2015). In this model we transmit the data without any 

encoding process and at receiver using CS reconstruction 

techniques the complete original data is recovered from 

received incomplete data. The main advantage of this type 

of technique is, there will be no load on sensor node in the 

form of encoding process as discussed in (Zou et al. 2015, 

Bao et al. 2013). 

Section II presents the preliminaries about CS. Section 

III presents details about the model proposed for SHM and 

its advantages. Section IV provides the simulated data loss 

analysis using acceleration signals obtained from a real 

bridge. It is also shown how the reconstruction error 

depends on data losses, sparsity and also on pattern of 

losses. Section V presents the conclusion and future scope. 

 

 

2. Preliminaries of Compressive Sensing (CS) 
 

Compressive sensing (CS) mainly deals with 

reconstruction of sparse and compressible signals. 

According to CS, sparse signals can be faithfully 

reconstructed using few linear non adaptive measurements. 

In CS, measurements are obtained using a linear process as 

shown below 

Avb   (1) 

Where v  is the original signal of dimensions N× 1, 

A  is the measurement matrix of size M× N, b is the 

measurement vector of size M× 1 (M < N). Eq. (1) is also 

called as encoding or transformation process (Zou et al. 

2015). In this paper we are discussing discrete form of CS 

where v  is a Nyquist rate sampled signal. If v  is sparse 

in some orthonormal basis   then Eq. (1) can be written 

as 

rv   (2) 

 

BrrAb   (3) 

where r  is the sparse representation of v  in   basis 

(also called as sparsifying basis). 

Two important conditions need to be satisfied for the 

stable recovery of original signal using fewer 

measurements. 

• Signal should be sparse or compressible in some 

basis. 

• The measurement matrix should have a special 

feature of capturing all the information content present in N 

length signal on to the M length signal. 

It is proved in (Baraniuk et al. 2011, Candes 2006) that 

stable recovery of sparse signal is possible if a measurement 

matrix satisfies Restricted Isometric Property (RIP). 
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Where K  is the Restricted Isometric Constant, Eq. 

(4) represents RIP of order K. Although measurement 

matrix satisfying RIP guarantees a stable recovery, checking 

whether a particular matrix satisfies RIP is a bit complex 

process. Instead of checking RIP, one can check mutual 

coherence property which is easy to calculate and also 

guarantees stable recovery. The mutual coherence for a 

matrix B  is given by Eq. (5). 
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Where  B  gives coherence of B  and iB , jB are 

the i
th

 and j
th

 columns of the matrix. B  with small 

coherence value is preferred (Baraniuk et al. 2011). The 

range of mutual coherence is given by Eq. (6) 
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It has been proved that for exact reconstruction of 

original signal, the K-sparse signal should satisfy Eq. (7). 
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Although these aforementioned properties helps in 

building a good measurement matrix but having a 

generalized/universal measurement matrix is a necessity. 

Random measurement matrices are one such type of 

matrices which are incoherent with any sparsifying basis 

with high probability (Candes and Wakin 2008). It is also 

proved that Independent and Identically Distributed (IID) 

Gaussian measurement matrices (Candes and Wakin 2008) 

satisfy RIP with high probability and the number of 

measurements required is given by Eq. (8) 
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The signal recovery can be done using different methods 

like convex optimization techniques, greedy reconstruction 

techniques, combinatorial techniques etc. In this paper, 

convex optimization technique is used. 

A sparse signal recovery using b and A can be done 

using l0 norm minimization process as given below 

zAbzr
z

          ..      minarg~
0

ts  (9) 

But Eq. (9) is NP hard to solve. It is proved that solving 

Eq. (9) using l1 minimization also provides stable sparse 

signal recovery (Candes 2006). 

zAbzr
z

          ..       minarg~
1

ts  (10) 

 

rv ~~   (11) 

From Eq. (10) we obtain a sparse approximate of r  
and using Eq. (11) one can find out the approximate of v . 

This convex optimization problem Eq. (10) which is called 

as Basis Pursuit (BP) can be solved by casting it as a linear 

program. In this paper we are using SPGL1 (Berg and 

Friedlander 2007) solver for signal reconstruction. 

 

 

3. Proposed model for data loss recovery 
 

Compressive sensing technique helps in capturing the 

information of the signal using as few measurements as 

possible (data compression). The more sparse the signal, the 

lesser the measurements required which can be easily 

understood from Eq. (8). The same technique can be re-

viewed from data loss recovery perspective, where data loss 

is considered as a compression process. This type of data 

loss recovery technique is already discussed by many 

researchers (Zou et al. 2015, Garudadri et al. 2011, Wu et 

al. 2015, Selesnick 2012). The main step is instead of 

taking few measurements, we take number of measurements 

as that of the length of the signal (i.e., M = N) to be 

encoded. The extra number of measurements help in data 

loss recovery, that is the reason we sometimes call this 

method as redundant coding. If seen from data loss recovery 

perspective, the sparser the signal the fewer the 

measurements required and more robust to data losses. In 

this paper, reliability of data transmission through wireless 

channels is considered of primary importance than 

transmission cost. At first we will see how the present data 

loss recovery techniques using compressive sensing (Zou et 

al. 2015) work and later proposed model. 

The basic difference between data compression and data 

loss recovery technique is, the usage of measurement 

matrices size. In data compression based techniques, the 

measurement matrix size is M× N (M < N). But for data loss 

recovery technique the matrix size is N× N. So the encoding 

process is similar to Eq. (1) with measurement matrix size 

as N× N. 

Let us consider a scenario to better understand how the 

data loss recovery technique using compressive sensing 

works. From Eq. (8), one can note that minimum number of 

measurements for stable and exact solution depends on 

sparsity K, signal length N and usage of proper constant 

value „c’. Now assuming M  (< N) as the minimum 

number of measurements required for exact solution then all 

the measurements greater than or equal to M   will also 

give exact solution. 

Now a data loss recovery technique which considers a 

N× N measurement matrix will take N such measurements 

and all the MN  measurements are happened to be extra 

measurements. So, even though less than or equal to 

MN   measurements are lost during transmission one 

can recover the original signal exactly as it requires 

minimum M  measurements. This is how the data loss 

recovery technique successfully reconstructs the signal even 

when some of the measurements are lost. The main 

advantage of compressive sensing based approach is even if 

sufficient amount of data is not received, an acceptable 

approximate of the signal is reconstructed (Charbiwala et 

al. 2010). 

While performing reconstruction of original signal, a 

measurement matrix Â  after discarding the rows in A  

is used. The rows in A  are discarded with respect to the 

lost measurements by using sequence numbers of received 

packets 

zAbzr
z

 ˆˆ      ..       minarg~
1

ts  (12) 

Where b̂  is formed after discarding lost measurements 

from b . The encoding process and reconstruction is 

shown in Fig. 1(a). 

It has been proved by Candes and Wakin (2008) that 

spike basis and Fourier basis are highly incoherent. It is 

shown in (Zou et al. 2015) that acceleration signals have 

sparse representation in Fourier basis/frequency domain. 

So, using identity matrix as measurement matrix would be 

the best choice. In our proposed model for SHM 

applications we are directly transmitting the sampled signal 

without any encoding process, and sampling of a signal in 

discrete form can be represented as multiplication of 

original signal with identity matrix. So, direct transmission 

of sampled acceleration signal can be thought as a CS based 

data loss recovery technique with measurement matrix as 

identity matrix (N× N) and sparsifying matrix as Fourier 

matrix. Since, we are directly transmitting the signal 

without any encoding process it is termed as Direct 

transmission technique. 

While reconstructing the signal, the effects of data loss 

are considered using dumping matrix D  (Wu et al. 2015) 

of size W× N. Where W indicates the length of the received 

data after discarding the lost packets. The D  matrix helps 

in considering only those rows of   with respect to the 

received measurement vector after data losses (of size 

W× 1). Where N−W represents the lost data. The dumping 

matrix is constructed with each row having only one non-

zero element of value „1‟. So the recovery process using l1 
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minimization looks as follows 

zDzIDvzr
z

 ˆ       ..       minarg~
1

ts  (13) 

The Direct transmission technique is shown in Fig. 1(b). 

Fig. 2 shows how Dumping matrix looks with the help of an 

example scenario. The scenario considered is, the signal to 

be reconstructed is of length N = 20 and each packet having 

2 samples and packets with even sequence number are lost. 

In this paper, we had considered single measurement per 

packet. A much deeper insight in to the payload length 

effect on the reconstruction process is shown in (Wu et al. 

2015). 

For spectrally sparse signals acquiring random samples 

is sufficient for CS to accurately reconstruct the original 

signal (Wu et al. 2015). In the Direct transmission 

technique, the random losses can be thought as random 

sampling (compression) of a signal. 

 

 

 
(a) 

 
(b) 

Fig. 1 (a) Data loss recovery model given by Bao et al. 

(2013) and (b) Direct transmission technique 

 

 

 
Fig. 2 Dumping matrix of size 10×20 

 

 

 
(a) 

 
(b) 

Fig. 3 (a) An Example scenario demonstrating the 

random interleaving process and (b) Direct Transmission 

with interleaving 

 

 

In real world wireless communication, continuous losses 

are also present and they degrades the CS reconstruction 

accuracy. It has been theoretically and experimentally 

proved (Charbiwala et al. 2010, Wu et al. 2015) that using 

an interleaving technique, the effect of continuous/bursty 

losses can be efficiently tackled. Interleaving technique 

converts continuous losses in to random losses and helps in 

accurately reconstructing the original signal. In this paper, a 

random interleaver is used to randomly permute the data 

before wireless transmission. The random interleaving is 

performed by creating permuting index using uniform 

random distribution. 

Fig. 3(a) shows a pictorial representation of one such 

random interleaving-deinterleaving process by taking an 

example scenario with an original signal of length 10. The 

red boxes represents the lost data. From Fig. 3(a) one can 

observe that continuous losses are converted into random 

losses after deinterleaving. As the size of the signal to be 

interleaved increases the depth of the randomization 

increases which helps in better handling of losses. Fig. 3(b) 

shows the Direct transmission with interleaving technique. 

To explain the necessity of interleaving technique, 

mutual coherence for reconstruction matrix ‘ D ’as given 

in Eq. (5) is calculated for varying data loss rate (10 to 

50%). Fig. 4 shows the impact of interleaving technique for 

random losses and continuous losses for signal length of 

N=3000. From Fig. 4 it can be observed that when 

interleaving technique is not used, the mutual coherence 

value is small for random losses and very large for 

continuous losses. When interleaving technique is used, the 

mutual coherence is small for both random losses and 
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continuous losses. It has been shown that (Wu et al. 2015) 

smaller the coherence value smaller the reconstruction error. 

So, Direct transmission with interleaving technique can 

efficiently tackle all patterns of data loss. 

 

3.1 Advantages of direct transmission with 
interleaving 

 

• As samples are directly transmitted without any 

encoding process, it helps in reduction of measurement 

acquisition time. It is shown in (Zou et al. 2015) that an 

encoding process with a Gaussian measurement matrix of 

size 60× 60 using imote2 sensor took 50 seconds as much as 

sensing time. 

• Direct transmission along with interleaving 

technique can be used to tackle any type of data loss. 

• It helps in deployment of sensor nodes without 

any significant modifications. 

• All the computational load is transferred to Base 

station, which is usually implemented on computers or high 

end devices. 

• It helps in reduced usage of resources present on-

board, eventually helps in using onboard resources for other 

purposes. 

• As there is no additional encoding process, it 

helps in reducing computational power. 

 

 

4. Results and discussion 
 

In this paper, acceleration data of a real bridge is 

considered for performance analysis. For more details about 

considered acceleration signal see (Li et al. 2014). In CS 

based data loss recovery techniques, segment wise encoding 

and decoding (reconstruction) process is performed and 

segment length of the original signal (i.e., N) is an 

important factor. Usually in data loss recovery techniques 

(Zou et al. 2015, Yu et al. 2015) a tradeoff is made while 

considering segment length because of encoding process 

involved. 

 

 

 

Fig. 4 Mutual coherence vs Data loss (%) 

 

 

Fig. 5 Mean spectral sparsity ratio vs segment length (N) 

 

 

Table 1 Acceleration signals 

Acceleration signals Sparsity ratio 

Signal-1 0.8187 

Signal-2 0.7493 

Signal-3 0.6643 

 

 

If the segment length is large, the encoding process 

becomes complex and heavy for the sensor node (because 

of measurement matrix). If length is small, the signal has 

low sparsity which shows poor performance. In this work 

also we had considered segment wise reconstruction 

process but in the presented technique as we are sending the 

data to the receiver without any encoding/transformation 

process, one can also consider segments of larger lengths. 

To find the suitable segment length, a similar approach 

as given in (Zou et al. 2015) is used. In this approach, 

segment length is decided by calculating spectral sparsity 

ratio. Fig. 5 shows the mean sparsity ratio with respect to 

segment length. The mean sparsity ratio is calculated by 

taking 200 random segments for each segment length. In 

this paper a segment length of 3000 is considered, as the 

mean sparsity ratio is varying slightly after 3000. 

To show the performance of Direct transmission 

technique on reconstruction of acceleration signals, three 

segments with different sparsity ratio as shown in Table 1 

and simulated random data loss are considered. For 

quantitative analysis, Signal to Error Ratio (SER) as given 

in Eq. (14) is used. The higher the value of SER, the 

reconstructed signal is better approximate of original signal. 

In all these analysis, we had removed the offset present in 

the acceleration signal. One should be careful about this 

redundant offset as it affects in various ways. Offset can 

cause overflow of sensor node memory. It also affects the 

calculation of mean sparsity ratio and Signal to Error Ratio 

(SER). 
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Figs. 6 to 8 present the visual representation of the 

considered three acceleration signals along with 
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reconstructed signal and error plots. In all the plots shown 

from Fig. 6 to Fig. 8, random data losses of 20% are 

considered. Fig. 6(a) shows the considered acceleration 

signal (represented as Signal-1). Fig. 6(b) shows the 

received signal with data losses. Figs. 6(c) and 6(d) presents 

the reconstructed signal in time domain and frequency 

domain respectively along with error plots. The error for 

time domain and frequency domain is calculated using Eq. 

(15), Eq. (16) respectively. 

error(time domain) = vv~  (15) 

 

error(frequency domain) =  
ff vv ~  (16) 

 

  
(a) (b) 

  
(c) (d) 

Fig. 6 (a) Acceleration Signal-1, (b) Received signal with 

data losses, (c) Reconstructed signal along with error plot 

(red) and (d) Spectrum of reconstructed signal and error 

plot (red) 

 

  
(a) (b) 

  
(c) (d) 

Fig. 7 (a) Acceleration Signal-2, (b) Received signal with 

data losses, (c) Reconstructed signal along with error plot 

(red) and (d) Spectrum of reconstructed signal and error 

plot (red) 

 

  
(a) (b) 

  
(c) (d) 

Fig. 8 (a) Acceleration Signal-3, (b) Received signal with 

data losses, (c) Reconstructed signal along with error plot 

(red) and (d) Spectrum of reconstructed signal and error 

plot (red) 

 

 

Table 2 Comparison w.r.t SER 

Signals Type of Losses Data loss SER(dB) 

Signal-1 Random 20% 31.22 

Signal-2 Random 20% 23.29 

Signal-3 Random 20% 17.50 

Signal-1 Continuous  20% 6.11 

Signal-1 
Continuous 

(with interleaving) 
20% 30.88 

 

 

Where fv~ , vf contains the values of magnitude 

spectrum of v~  and v  respectively. Similarly Figs. 7 and 

8 present Signal-2 and Signal-3 respectively. 

From Figs. 6(c)-8(c), it is clearly seen that error between 

reconstructed and original signal is increasing as the 

sparsity ratio is decreasing. These results are following the 

theoretical explanation, where a less sparse signal requires 

more measurements for exact reconstruction of original 

signal. So, for a fixed number of measurements (i.e., for a 

fixed data loss), error for less sparsity ratio signals is more 

compared to high sparsity ratio signals. Along with visual 

analysis, Table 2 provides details about the SER values of 

signals considered. From Table 2 also one can see that as 

the sparsity ratio decreases, the SER decreases (for random 

losses). 

To have an understanding of how better the Direct 

transmission technique is performing, a comparative 

performance analysis with redundancy technique (Bao et al. 

2013) using Gaussian measurement matrices is done. The 

Gaussian measurement matrices are constructed using 

Gaussian distribution with mean = 0, variance = 1. Fig. 9 

presents the comparative performance analysis between 

Direct transmission and Redundancy technique using 

Gaussian matrices for different random losses (10 to 50%). 

From Fig. 9, it is observed that Direct transmission is 
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performing at par with redundancy technique based on 

Gaussian measurement matrices. Since, similar type of 

results are obtained for Direct transmission with 

interleaving technique they are not presented. 
In all the above cases we had considered uniform 

random losses but real time communication sometimes 

suffers from continuous losses also. In that case, an 

interleaving technique should be used to tackle continuous 

loss. „Signal-1‟ is used to show the effect of continuous 

losses on Direct transmission technique. Fig. 10 presents the 

effect of continuous losses on the reconstructed signal. 

From Figs. 10(c) and 10(d) one can observe an increase in 

reconstruction error and degradation of SER to 6.11dB 

(Table 2), when compared to random losses (SER of 

31.22dB). This indicates that Direct transmission has poor 

performance for continuous losses. The reason for this poor 

performance is the large coherence value as shown in 

previous section.  

 

 

 

Fig. 9 SER(dB) comparison between both the techniques 

for different random losses 

 

 

  
(a) (b) 

  
(c) (d) 

Fig. 10 (a) Acceleration Signal-1, (b) Received signal with 

continuous data losses, (c) Reconstructed signal along 

with error plot (red) and (d) Spectrum of reconstructed 

signal and error plot (red) 

 

To curb continuous losses, a uniform random 

interleaving is implemented. When interleaving is 

implemented an SER of 30.88dB is obtained, which clearly 

shows an improved performance even under continuous 

losses. Fig. 11(c) presents the visual representation where 

error becomes minimal as continuous losses are converted 

into random losses. Fig. 12 shows the comparative 

performance analysis using interleaving and without 

interleaving for different percentage of continuous losses. 

From Fig. 12 one can see that Direct transmission with 

interleaving performs at par with redundancy technique 

using Gaussian matrices. 

Table 3 provides the details about the time taken 

(simulated) to implement interleaver and encoding process 

using Gaussian matrix. The time calculations are obtained 

from Matlab. From Table 3 one can see that implementing 

interleaver is taking less time when compared to encoding 

process using Gaussian matrix. The average time is 

obtained by repeating the experiment for 1000 times. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 11 (a) Acceleration Signal-1, (b) Received signal with 

data losses (after performing deinterleaving), (c) 

Reconstructed signal along with error plot (red) and (d) 

Spectrum of reconstructed signal and error plot (red) 

 

 

 

Fig. 12 SER(dB) comparison between techniques for 

different continuous losses 
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Table 3 Comparison between both the techniques w.r.t time 

Technique Average time taken (ms) 

Interleaver 0.03 

Encoding process using Gaussian 

Matrix 

4 

 

 

 

In (Zou et al. 2015) it is shown that reconstructed 

acceleration signal with SER of above 15dB (time domain) 

is considered as a good approximation of original signal. 

From Fig. 9 one can see that SER value of greater than 

15dB is obtained even for low sparsity ratio signals when 

the data losses are below 30%. 

 

 

5. Conclusions 
 

In this paper, an efficient data loss recovery model 

(Direct transmission with interleaving) for SHM 

applications is presented. We also discussed the effects of 

random losses, continuous losses on reconstruction process 

and the advantage of using interleaving technique. In the 

presented model there is minimal computational cost 

(interleaving) to handle all patterns of data loss. Since there 

is no additional encoding process, the proposed model helps 

in reduction of computational power, delay etc. We had 

shown that even for a low sparsity ratio signal an SER of 

greater than 15dB in time domain is achieved for data losses 

less than 30%. This shows that the presented model 

provides better performance even for less sparse signals. At 

the receiver, a faster and efficient reconstruction algorithm 

can be developed instead of using convex optimization 

technique.  
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