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1. Introduction 
 

Structural health monitoring has become increasingly 

important to assure structural safety and reliability. As one 

of the monitoring items, strain reflects the stress state of in-

service bridges directly, providing an important basis for 

bridge safety assessment. To acquire more strain 

information, a large number of strain sensors are deployed 

in the structural health monitoring systems. For example, 

140 strain gauges were installed on the Tsing Ma Bridge in 

Hong Kong (Wong 2004), and 80 strain sensors were 

adopted on the Runyang Yangtze River Bridge in China (Li 

et al. 2009). In addition, 80 fiber optic strain gauges were 

added into the upgrading and modifying project of Jiangyin 

Yangtze River Highway Bridge Structural Health 

Monitoring System (Han 2006).  

Recently, attentions have been paid to the temperature 

effect on bridge strain especially for those statically 

indeterminate bridges since the impact is significant (Catbas 

2008, Duan et al. 2010). Severe cracking caused by 

temperature effect are observed, such as the Jagst Bridge in 

Germany and several viaducts in United States (Branco and  
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Mendes 1993). The environmental temperature effect on 

strain state of bridges should be taken into account to 

achieve reliable results of load analysis, state evaluation and 

so on. A large volume of research work has been conducted 

to investigate the impact of temperature gradient on stress 

condition of bridges (Krkoška and Moravčík 2015, Saetta et 

al. 1995). In addition, some researchers have separated the 

temperature effect from the measured strain data. Wu et al. 

(2014) decomposed the measured strain-time history of 

Tsing Ma Bridge in Hong Kong into two parts which are 

due to temperature and vehicle load, and results showed that 

strain due to temperature variation in 24 hours was greater 

than that due to the heaviest vehicle on the bridge in the 

same day. Same conclusion has been drawn based on the 

strain data acquired from the structural health monitoring 

system installed on the Baling River Bridge in China (Li et 

al. 2014). 

In this paper, the extreme value (EV) of the strain due to 

temperature is estimated because the value is closely related 

to the safety of in-service bridges. For those conventional 

EV estimation methods, such as peaks-over-threshold 

(POT) method and block maxima method, sampled data 

required need to be statistically independent and identically 

distributed (Obrien et al. 2010, Gindy and Nassif 2006, 

James 2003). However, temperature variation is a 

continuous process with strong regularity. An obvious 

correlation is found between the sampled data of strain due 

to temperature. Therefore, the conventional methods are not 

suitable anymore. According to the conditional probability 

theory, the average conditional exceedance rate (ACER) 

approach is proposed (Karpa and Naess 2013). It has been 
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used to predict the extreme wind speed of different return 

periods based on a large number of dependent samples. 

Then in order to verify the effectiveness of the ACER 

approach in estimating the extreme strains due to vehicle 

load and temperature, Monte Carlo (MC) simulations are 

conducted. 

An in-service bridge is adopted to investigate the long-

term effect of temperature as a real example. One year data 

of bridge strain are acquired from the structural health 

monitoring system installed on the Taiping Lake Bridge in 

China. The strain-time history is decomposed into two 

parts, i.e., the strain trend term and the fast varying part, 

using the analytical modal decomposition method (Wang 

and Chen 2013, Chen and Wang 2012). A linear regression 

model between the ambient temperature and the trend term 

of strain is set up. Then the EV distributions of strains due 

to vehicle load, temperature and the combination during the 

remaining service period are estimated by the ACER 

approach, respectively. Based on the estimation results, the 

temperature effect is analyzed. Finally, the reliability index 

and failure probability of the main girder of the bridge are 

calculated in two cases, with and without temperature 

effect. 

 

 

2. Theoretical background 
 

2.1 Analytical mode decomposition method 

 
Wang (2013) proposed the analytical mode 

decomposition method for signals separation. For original 

time series x(t) composed of n single components 
   d

i
x t

(i=1, 2, …, n) with frequencies ω1, ω2, …, ωn, (ωi > 0; i=1, 

2,…, n), if the frequencies of each component ω1, ω2, …, 

ωn (ωi > 0; i=1, 2,…, n), satisfy
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denote n-1 bisecting frequencies, then every single 

component can be obtained analytically as follows 
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whereH{[.] denotes Hilbert transform. 

The strain-time history x(t) of bridge is mainly due to 

the combination effect of ambient temperature and vehicle 

load, corresponding to low- and high-frequencies. Therefore, 

x(t) can be decomposed into two single components by a 

appropriate cut-off frequency ωb. Then the low frequency 

signal l(t) and the high frequency signal h(t) can be obtained 

analytically as follows (Kuang et al. 2016) 
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2.2 Conventional methods of extreme value 
estimation 

 

EV theory indicates that EV estimation is only related to 

the tail of probabilistic distribution. Many techniques and 

models have been developed to describe these tails, by 

which the probabilities of EVs can be estimated on the basis 

of historical data. Among them, two of tail fitting 

approaches are extensively used which are the block 

maxima approach and the POT approach (Obrien et al. 

2015). The block maxima approach divides the whole time 

history sample into equal size blocks and extracts maximum 

value for each block. These block maxima can be fitted to a 

Generalized Extreme Value (GEV) distribution 

(incorporating with Gumbel, Weibull and Fréchet 

distribution) (Xia and Ni 2016). The block of time (an hour, 

a day, a year, etc.) should be determined carefully to ensure 

that these block maxima are independent. A significant 

drawback of this approach is that the data information is 

wasted. Several independent data may be collected in one 

block but only the largest data point is used, even if the 

values of some data points in the block are larger than the 

maximum value of other blocks. In such a case, the POT 

approach can retain all those tail data. The POT approach 

extracts all independent peaks over a selected threshold. 

The distribution of these peaks is approximating a General 

Pareto Distribution (GPD) (Gu et al. 2014). The POT 

approach avoids the data information’s low utilization 

problem of the block maximum approach, while selecting 

an appropriate threshold is critical and challenging.  

The two conventional approaches have a prerequisite 

that data for EV estimation is required to be independent. 

However, in civil engineering, the collected data usually 

shows significant correlation between the adjacent data 

points. As shown in Fig. 1, taking the strain data obtained 

from a sensor installed on girder when a vehicle passes 

through the bridge as an example (the sampling frequency 

is 50 Hz), it can be found that many data points beyond the 

level of x, but only the strain peak should be selected for the 

EV estimation since the exceedances are not independent. 

In this case, the independent data are easy to be extracted. 

However, for complex time series such as the strain data 

due to temperature whose underlying variation period is 

unknown, the conventional methods are not suitable for its 

EV estimation any more. The reason is that choosing 

independent data points objectively will result in errors 

easily. 

 

 

 

Fig. 1 The strain time-history due to a vehicle 
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2.3 Average conditional exceedance rate approach 
 

Based on the conditional probability and Markov 

process, Naess and Gaidai (2009) proposed the ACER 

approach for EV estimation. This approach has similar 

aspects to the POT approach but it deals with exceedance 

rate instead of peaks. A significant advantage of the ACER 

approach is that it can eliminate the effect of data 

dependence on EV estimation through conditional 

exceedance rate. The issue of declustering of data to ensure 

independence can be avoided, which is a common problem 

for the two conventional methods. Therefore, the ACER 

approach is more appropriate to deal with the strain data 

due to temperature effect of which the underlying variation 

period is difficult to be determined. 

Let {X1, X2, …, XN} denote the observation samples of 

the stochastic process X(t) collected at the discrete times {t1, 

t2,…, tN} in (0, Tm). Assuming that each random variable 

{Xj|k≤j≤N} is depend on previous k-1(2≤k≤j) random 

variables, the cumulative probability function (CDF) of the 

EV of X(t) during the prediction period Tp, which is 

supposed to be much longer than the measurement period 

Tm, can be obtained as follows(Ding and Chen 2014) 

 ( ) exp ( )M pF x vT x 
 

(4) 

where α(x) denotes the conditional exceedance rate, i.e., the 

exceedance probability conditional on k-1 previous non-

exceedances, 

1 1( ) ( ) { | , }kj j j j kx x P X x X x X x        
. The v 

parameter denotes the occurrence frequency of continuous 

k-1 non-exceedances. The empirical estimation of v can be 

obtained by v=NB/Tm, where NB denotes the number of 

occurrences of continuous k-1 non-exceedances during 

measurement period Tm. The conditional exceedance rate 

α(x) can be estimated by introducing ACER )(xα  (Naess 

and Gaidai 2009) 
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in which Akj represents the event that the jth random variable 

Xj exceeds the level of x while previous continuous k-1 

random variable don’t. I(Akj) denotes the function of event 

Akj. It is equal to 1 if the event occurs, otherwise it is equal 

to 0.  

Assuming that the appropriate asymptotic EV 

distribution for the observation samples under study is 

Gumble distribution, the upper tail of α(x) can be described 

as follows 

( )
( ) exp , , 0

x
x q x u




 


 
    

 
 (6) 

where q, μ, σ and ξ are suitable constants, and u is a large 

threshold. The parameters (q, μ, σ and ξ) can be optimized  

Parameters Initialization and  

annealing schedule formulation
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Fig. 2 Flowchart of parameters estimation of q, μ, σ and 

ξ 

 

 

by the fast simulated annealing algorithm (Inger 1989) and 

the least squares method. The steps are as follows 

(I) An annealing schedule is formulated as Ti=T0 exp[－

α1(i－1) 1/2], in which Ti, T0, α1, i denote the current 

temperature, initial temperature, attenuation 

coefficient and iteration number respectively. The final 

temperature Td and the initial values of μ and ξ are 

determined. 

(II) According to value ranges of μ and ξ, i.e., min(Xj | 

j=1, …, N)<μ≤u, 0<ξ<5, the perturbation models are 

given as μi= min(Xj)+rand ∙ [u－min(Xj)], ξi=5∙ rand, 

rand∈(0, 1). 

(III) Let yl = logα(xl), tl =(xl－μ)ξ, where xl (1≤l≤m) 

denotes the upcrossing level. Substituting yl and tl into 

Eq. (6), the estimators σ and q can be obtained by the 

least squares method as 

2
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represents weight factors putting more emphasis on 

the more reliable estimates. CI+(xl) and CI－(xl) denote 

the upper bound and lower bound of the 95% 

confidence interval of α(xl).  

(IV) According to the value range of σ (i.e., σ>0), check the 
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estimated value of σi. If σi≤0, return back to step (II), 

that is, μi and ξi need to be re-determined. 

The objective optimization function F(q, μ, σ, ξ) can be 

established by the squared residuals minimum standard as 

2

1

( , , , ) log ( ) log ( ) /
m

i l l l

l

F q w x q x      


    . 

Difference between the old objective function and the new 

one is calculated (i.e., ΔF=Fi－Fi-1). An acceptance criteria 

model of the parameters (q, μ, σ, ξ) is established according 

to Metropolis criterion as follows 

i. ΔF < 0, the new model will be accepted. 

ii. ΔF≥0, set r = min(exp(－ΔF/a0Ti), 1), and generate 

random number rand∈(0, 1), where a0>0 is a constant. 

Then if r > rand, the new model will be accepted, otherwise 

rejected.  

As shown in Fig. 2, iterative calculations should be 

implemented until Ti≤Td. Then the optimized parameters 

can be obtained. In addition, repeated trials show that 

different thresholds have little effect on the EV estimation 

when the threshold u is large enough (i.e., α(u)<0.05). 

 

 

3. Theoretical examples 
 

To validate the feasibility of the ACER approach in 

predicting EV of bridge strain due to load effect or 

temperature effect, MC simulations are conducted. 

 

3.1 Exteme strain prediction due to vehicle load 
based on Monte Carlo simulation 

 

The maximum strain of the measuring point induced by 

a vehicle passing through a bridge is defined as strain peak. 

According to the EV theory (Shi 2006), the EV estimation 

of vehicle load effect depends on large strain peaks. To 

ascertain the probability distribution of those data, several 

mixed distributions are chosen to fit the strains peaks over a 

moderate threshold (1.8×10
-5

) of a real bridge. Results show 

that a mixed distribution of one Weibull and two Normal 

distributions can described these data well as follows 

2 2
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(7) 

in which p1, p2 and p3 are weighting coefficients satisfying 

p1+ p2 +p3=1.σW, ξW , μW represent the scale parameter, 

shape parameter and location parameter of Weibull 

distribution, and μN1, μN2, σN1, σN2 parameters denote the 

mean values and standard deviations of Normal 

distributions. To simulate the tail distribution of vehicle 

load effect, Eq. (7) is assumed as the parent distribution of 

tail data of strain peaks. Parameters of the mixed 

distribution are listed in Table 1. 

The MC simulation is used to generate a 1000-day 

period of sampled data from the parent distribution, and 500 

strain peaks are produced in each day, i.e., 500000 data 

points in total. These sampled data is independent and 

identically distributed. Both the ACER approach and the 

conventional approaches are employed to estimate the EV 

distributions of yearly, 10-yearly, 20-yearly and 100-yearly. 

Table 1 Parameters of the parent distribution 

Component 
Weibull 

distribution 

Normal 

distribution  

Normal 

distribution 

Weighting 

coefficient 
0.65 0.2 0.15 

Parameter 
σW=5, ξW=1.0, 

μW=18 
μN=21, σN=0.8 μN=23, σN=2 

 

 

The average conditional exceedance rates versus 

upcrossing levels taking k=1, k=2, k=4 and k=8 are shown 

in Fig. 3(a). All average conditional exceedance rate 

functions (ACERFs) converge to the ACERF of k=1 when 

the upcrossing level is higher than 3×10
-5

. It verifies that 

the sampled data is independent. It can also be found that 

when the upcrossing level is low (x<30) and k is large (k=4, 

8), data below the threshold is limited in number, for which 

large error is easily brought in the calculation of ACER. 

Therefore, the threshold of the ACER approach should be 

large enough. The right tail of the ACERF of k=1 is fitted to 

Eq. (6). Its optimal fitting and 95% confidence interval are 

shown in Fig. 3(b). Substituting the fitting results and 

different prediction periods (1, 10, 20 and 100 years) into 

Eq. (4), the extreme strain distributions and its expectations 

can be obtained as shown in Fig. 4(a). 

The EV distributions are also estimated by the 

conventional approaches. Daily maxima, i.e., 1000 data 

points, are extracted to be fitted by a GEV distribution. Its 

parameters are estimated by the maximum likelihood 

estimation. The fitting shape parameter is close to zero and 

negative. Obviously it is not reasonable. So let the shape 

parameter be zero, that is, the parent distribution is in the 

Extreme Type I domain of attraction. The EV distributions 

of different prediction periods can be obtained by raising 

the fitting Gumble distribution to corresponding powers, as 

shown in Fig. 4(b). The expectations of these EV 

distributions are also shown in the figure. The POT 

approach is another method used to predict the EVs. Strain 

peaks over a high threshold (5×10
-5

) are selected to be 

fitted by a GPD. The fitting shape parameter of the GPD is 

similar with that of the GEV distribution, which is close to 

zero and negative. Likewise, let the shape parameter be zero. 

The EV distributions and its expectations are obtained by 

raising the GPD to different powers as shown in Fig. 4(c).  

Raising the parent distribution to the 180000th, 

1800000th, 3600000th and 18000000th power respectively, 

the theoretical distributions of EV and expectations can be 

obtained, as shown in Fig. 4(d). 

From Fig. 4, it can be found that the estimates by ACER 

approach are similar with that by POT approach. The reason 

is that the data used in both approaches is almost the same, 

only with little difference in the threshold. The estimates by 

the two approaches are smaller than the theoretical results, 

while the estimates by the block maxima approach are 

larger than the theoretical results generally. Overall, The 

EVs estimated by the ACER approach are closer to the 

theoretical value than that by conventional approaches, 

which means that the ACER approach is more accurate than 

those conventional methods. 

 

14



 

Temperature effect analysis of a long-span cable-stayed bridge based on extreme strain estimation 

 

 

 

 

3.2 Extreme strain prediction due to temperature 
effect based on Monte Carlo simulation 

 

Hourly maxima of strain due to temperature at the same 

hour every day are supposed to be independent and 

normally distributed. A 24-dimensional Gaussian 

distribution, the mean and covariance matrix of which are 

obtained by the measured strain data of a real bridge, is 

used as the parent distribution of strain due to temperature. 

Then 1000 days of strain data, i.e., 24000 data points are 

sampled by the MC simulation. These data is obviously 

dependent. Therefore, conventional methods cannot be used 

to estimate the EV, and only the ACER approach is used. 

The conditional exceedance rates versus upcrossing 

levels taking different k values are shown in Fig. 5(a). The  

 

 

 

 

ACERFs of k=4 and k=8 converge to the ACERF of k=2, 

which are different from that of k=1. It reveals that there is 

significant correlation among the sampled data and the 

effect is removed for the ACERF of k=2, then it can be used 

to estimate the EV. Fig. 5(b) shows the optimal fitting for 

α(x) of k=2 and its 95% confidence interval. The estimated 

EVs and the expectations are shown in Fig. 6(a), while 

corresponding theoretical results are shown in Fig. 6(b). 

These two figures show that the EVs estimated by the 

ACER approach are well consistent with the theoretical 

results, which verifies the effectiveness of the ACER 

approach in predicting the extreme strain induced by 

temperature effect. 

 

 

  
(a) the ACERFs of different k values (b) The optimized fit for ACERF of k=1 

Fig. 3 ACER of the strain due to vehicle load (MC simulation) 

 
Fig. 4 Estimated EV distributions and theoretical value (MC simulation) 
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4. Temperature effect analysis on strain of the 
Taiping Lake Bridge 

 

The Taiping Lake Bridge is a pre-stressed concrete 

cable-stayed bridge with single-tower and single cable 

plane, located on the G205 nation highway over the Taiping 

Lake in Huangshan scenic spot, Anhui Province, China 

(Yan and Ren 2016). The bridge has a length of 380 m 

(span combination: 190m+190m), as shown in Fig. 7. The 

bridge carries four lanes with a width of 14 m. The main 

girder has a 3-cell single box pre-stressed concrete box-

girder with inclined webs. The tower is of reinforced 

concrete. The bridge has a total of 27×2=54 stay cables, 

showing sector symmetric arrangement. 

The health monitoring system was installed on the 

bridge in 2014 to obtain the service status in real time. 

Based on the finite element model of the bridge, 

measurement points were selected to be located in the 

middle of two adjacent cables. Strain gauges were installed 

at the upper surface of bottom plate of the box girder. The 

diagram of the elevation and the cross section installed with 

strain gauges are shown in Figs. 8(a) and 8(b). The scene of 

strain gauge and temperature compensation piece are shown  

 

 

 

 

 

in Fig. 9(a). Fig. 9(b) shows the hardware and software of 

NI data acquisition card. The sampling frequency of  

dynamic strain is 50 Hz, and the sampling frequency of 

temperature is 0.083 Hz. 

 

 

 
Fig. 7 The Taiping Lake Bridge 

 

 

 

 

  
(a) the ACERFs of different k values (b) The optimized fit for ACERF of k=2 

Fig. 5 ACER of the strain due to temperature (MC simulation) 

 
Fig. 6 Estimated EV distributions and theoretical value (MC simulation) 
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4.1 Correlation characteristics between 

environmental temperature and strain 
 
4.1.1 Decomposition of measured strain-time history 

The measured ambient temperature and strain on 27
th

 

December, 2015 are shown in Figs. 10(a) and 10(b). Fig. 

10(b) reflects that the measured dynamic strain is mainly 

composed of two parts, i.e., the trend term of strain and the 

“jump”. It can be found that the strain trend term is  

significant correlated with the temperature. A magnified 

“jump”, as shown in the upper-left of Fig. 10(b), is 

obviously due to a vehicle passing through the bridge.  

 

 

 

 

Previous studies indicate that the measured strain-time 

history is mainly induced by temperature variation and 

vehicle load (Wu et al. 2014). Same conclusion can be 

drawn from in this paper. 

The time of a vehicle passing through the bridge is 

about 30 seconds, while temperature variation period is 

approximately 24 hours, or even longer. Since the 

frequencies differ greatly, the measured strain-time history 

can be decomposed into two single components by the 

analytical mode decomposition method, as shown in Fig. 

11. The trend term of measured strain due to temperature is 

shown in Fig. 11(a), and the fast varying part due to vehicle 

load is shown in Fig. 11(b). 
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(b) Cross section 

Fig. 8 Arrangement of measuring points 
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Fig. 9 Monitoring site of the Taiping Lake Bridge 
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(a) Ambient temperature 

 
(b) Strain-time history 

Fig. 10 Measured data of the Taiping Lake Bridge on 27
th

 

December 2015 

 

 
(a) The trend term of strain 

 
(b) The fast varying part 

Fig. 11 The decomposition of measured strain-time 

history of 27
th

 December 2015 

4.1.2 Correlation analysis of the trend term of 
measured strain and ambient temperature 

As shown in Figs. 10(a) and 11(a), the highest 

temperature of the day (27
th
 December 2015) occurred at 

15:23, while the maximum value of the strain trend term 

occurred at 16:12. Apparently, the variation of strain lags 

behind the temperature for about one hour. Same 

conclusion can be drawn from the available data of 355 

days (from August 2015 to July 2016).  

The temperature is positively correlated with strain trend 

term as shown in Figs. 10(a) and 11(a), with a correlation 

coefficient of 0.983. The correlation between the strain 

trend term and the ambient temperature is also studied using 

the data of 355 days. The scatter plot for the daily mean 

temperature and daily mean trend term of strain is shown in 

Fig. 12, of which the correlation coefficient is 0.86. A linear 

regression line and 95% confidence interval are also shown 

in the figure, with gradient 4.3 and intercept -38.46. It 

means that for every 1°C increase in temperature, the stress of 

measuring point increase by 0.148MPa. 

 

4.2  The extreme strain distribution prediction of strain 
 

Based on the measured strain data of 355 days, the strain 

induced by vehicle load and temperature are separated by 

the analytical mode decomposition method. Then the EV 

distributions of the two parts and the measured strain data 

during the remaining service period are predicted by the 

ACER approach, respectively. 

 

4.2.1 The extreme strain prediction due to vehicle 
load 

As shown in Fig. 13, the maximum value of each 

“jump” is the strain peak. Since small values are irrelevant 

to the EV distribution, only those strain peaks larger than 5

×10
-6

 are extracted. The comparison chart of the ACERFs 

taking different k values is shown in Fig. 14(a). A rather 

strong statistical independence between the extracted data 

has been reflected in this figure, since all ACERFs converge 

in the far tail. 

 

 

 
Fig. 12 Scatter diagram of daily mean temperature and daily 

mean trend term of strain 
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That is, the strain peaks due to vehicle load are 

independent (Gong et al. 2014). Therefore, the ACERF of 

k=1 is used to estimate the EV. Fig. 14(b) shows its optimal 

fitting and 95% confidence interval. Substituting the fitting 

results into Eq. (4), the EV distribution of strain due to 

vehicle load during the remaining service period of the 

bridge can be obtained as shown in Fig. 15.   

 

 

 

Fig. 13 Strain peaks due to vehicle loads of 27
th

 December 

2015 

 

 

 
(a) the ACERFs of different k values 

 
(b) The optimized fit for ACERF of k=1 

Fig. 14 ACER of the strain due to vehicle load 

 

 

 

Fig. 15 Predicted EV distribution of strain due to vehicle 

load 

 
 

4.2.2 The extreme strain prediction due to 
temperature effect 

The hourly maxima of strain trend term shown in Fig. 

11(a) are extracted to estimate the extreme strain due to 

temperature effect. Since the trend term of strain is closely 

related to temperature time series, there should be 

correlation among those extracted data. The comparison 

chart of the ACERFs taking different k values is shown in 

Fig. 16(a). Like the Fig. 5(a), an obvious correlation can be 

found between the consecutive data, which are clearly 

reflected in effect of conditioning on the previous data. 

Therefore, ACERF of k=2 is adopted to estimate the EV. 

The optimal fitting for α(x) taking k=2 and its 95% 

confidence interval are shown in Fig. 16(b). Substituting the 

fitting results into Eq. (4), the EV distribution of strain due 

to temperature variation during the remaining service period 

of the bridge can be obtained and shown in Fig. 17. 

 

 
(a) the ACERFs of different k values 

 
(b) The optimized fit for ACERF of k=2 

Fig. 16 ACER of the strain due to temperature 
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Fig. 17 Predicted EV distribution of strain due to 

temperature variation 

 
 

4.2.3 The extreme strain prediction due to 
combination effect of temperature and vehicle load 

The hourly maxima of the original strain are selected to 

estimate the extreme strain due to the combination effect. 

These sampled data also should be dependent since the 

temperature effect is included. The comparison chart of the 

ACERFs taking different k values is plotted in Fig. 18(a). 

Being similar with Figs. 16(a) and 5(a), ACERF of k=2 is 

adopted to estimate the EV distribution. Its optimal fitting 

and 95% confidence interval are shown in Fig. 16(b). 

According to Eq. (4), the EV distribution of strain due to 

the combination effect during the remaining service period 

of the bridge are obtained as shown in Fig. 19. 

 

 
(a) the ACERFs of different k values 

 
(b) The optimized fit for ACERF of k=2 

Fig. 18 ACER of the strain due to combination effect 

 

 
Fig. 19 Predicted EV distribution of strain due to the 

combination effect 

 
 

4.3 Prediction results analysis of extreme strain  
 

The prediction results of the extreme strain due to 

vehicle load, temperature, and the combination effect are 

listed in Table 2. It shows that the EV due to the 

combination effect of temperature and vehicle load is larger 

than that due to either of them alone, and smaller than the 

summation. This observation can be illustrated by the fact 

that the daily maximum strain induced by temperature and 

vehicle load appears at different times. As shown in Fig. 11, 

the maximum strain due to temperature appears at about 

16:00, while that due to vehicle load appears at about 04:00. 

The table also reveals that the 95% quantile of extreme 

strain distribution due to temperature is 2.38 times larger 

than that due to vehicle load. Located on national highway, 

the Taiping Lake Bridge has small traffic volume. There are 

rarely two or more heavy vehicles on the bridge at the same 

time, so the extreme strain due to vehicle load is relatively 

small. 

 
4.4 Reliability estimation based on extreme strain 

distributions 
 

Reliability index has played fundamental roles in 

structural health monitoring and risk analysis, which can be 

calculated using various efficient simulation approaches 

(Wang et al. 2016). In this study, reliability indexes and 

failure probabilities of the main girder of Taiping Lake 

Bridge are obtained using Monte Carlo Simulation 

approaches, whose results are listed in Table 3. 

By assuming that the measuring point was designed to 

bear 7×10
-5

 (i.e., 2.42MPa) due to live loads (i.e., vehicle 

load and temperature), the failure probability is 8×10
-7

 and 

reliability index is 8.3 if vehicle load is taken into account 

only, but the failure probability rises to 1 and the reliability 

index falls to below zero when the temperature effect is 

included. Similarly, if the ultimate stress due to live loads of 

the measuring point is designed to be 1.7×10
-4

 (i.e., 

5.87MPa ), the failure probability rises from almost zero to 

2×10
-7

 and the reliability index falls from 72 to 7.5 when 

the temperature effect is considered. 
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Table 2 Prediction results of the EV distribution of strain 

Load type Vehicle load Ambient temperature Combination effect 

Expectation of the EV 

distribution 

Strain (×10-6) 60.5 143.6 156.8 

Stress/MPa 2.09 4.95 5.41 

95% quantile of the EV 

distribution 
Strain (×10-6) 62.5 148.8 160.1 

Stress/MPa 2.16 5.13 5.52 

 
 
Table 3 Reliability estimation of the main girder of Taiping 

Lake Bridge 

Ultimate strain 

(×10-6) 

Ultimate stress 

/MPa 

Vehicle load alone 
Temperature effect being 

included 

Reliability index 
Failure 

Probability 
Reliability index 

Failure 

Probability 

70 2.42 8.3 8×10-7 < 0 1 

170 5.87 72 --* 7.5 2×10-7 

*--: The failure probability is too small to calculate, and is 

much lower than (1×10
-16

). 

 
 
The table reflects that reliability index drops rapidly 

when temperature effect is considered. It can also be found 

that under the condition that the failure probability and 

reliability index are almost identical, the carrying capacity 

of measuring point should be increased from 7×10-5 to 1.7

×10-4 when temperature effect is included. 

 
 
5. Conclusions 
 

This study developed the EV of bridge strain to 

investigate the long-term effect of temperature. The ACER 

approach is verified and adopted to estimate the extreme 

strain. Based on 355 days data of strain and temperature 

acquired from a long span cable-stayed bridge in Anhui 

Province of China, the strains due to vehicle load and 

temperature are obtained by decomposing the measured 

strain-time history into two parts. The linear regression 

equation and the correlation coefficient of environmental 

temperature and strain trend term are determined. The 

extreme strain distributions due to vehicle load, temperature 

and the combination during the remaining service period are 

estimated. Finally, the estimation results are applied in 

reliability analysis. According to the numerical simulation 

and example application, the conclusions can be drawn as 

follows: 

 The MC simulations reveal that the extreme strain 

due to vehicle load estimated by the ACER approach is 

much closer to the theoretical results than the 

conventional approaches. The ACER approach can 

eliminate the effect caused by relativity between 

sampled data, and the extreme strain due to temperature 

effect can be obtained. 

 Linear correlation can be found between the 

temperature and trend term of strain with a correlation 

coefficient of 0.86. The regression equation shows that 

for every 1°C increase in temperature, the stress is 

increased by 0.148 MPa. Moreover, the variation of 

strain lags behind the ambient temperature for about one 

hour. 

 The EV estimation results show that the 95% 

quantile of extreme strain distribution induced by 

temperature is up to 1.488×10
-4

 (5.13 MPa) which is 

2.38 times larger than that induced by vehicle load. 

 Taking into account of the temperature effect, the 

carrying capacity of the measuring point should be 

increased from 7×10
-5

 to 1.7×10
-4

 with nearly the same 

failure probability and reliability index. 
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