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1. Introduction 
 

For decades, extensive researches have been conducted 

to develop methods for finding the optimum solution of 

engineering problems. The gradient based classical methods 

are not capable of solving new problems, especially when 

the derivatives of the corresponding fitness function do not 

exist. Therefore, the meta-heuristic methods which use 

natural concepts have been introduced as the new efficient 

solutions. These methods are inspired by certain laws from 

nature. Similar to the radar, which has been invented based 

on the behavior of a bat, new optimization methods are 

defined using such natural events (Yang 2010). Dorigo et al. 

(1996) used ant colony behavior, and Eberhart and Kennedy 

(1995) utilized birds' immigration to find the best solution 

in the search domain for mathematical problems.  

The modeling of natural phenomenon in conjunction 

with stochastic laws is a common approach in developing 

the meta-heuristic algorithms (Lee and Geem 2005). These 

methods use a natural phenomenon as an idea to provide a 

new optimization algorithm. For example, Goldberg (1989) 

proposed Genetic Algorithm (GA), which is based on 

evolutionary biological process. Kennedy and Eberhart 

(1995) introduced Particle Swarm Optimization (PSO) 

according to the birds’ migration. Kaveh and Khayatazad 

(2012) introduced Ray Optimization based on the Snell’s 

light refraction law. In this method, agents are considered as 

rays of light and when light travels from a lighter medium  

                                           

Corresponding author, Assistant Professor 

E-mail: asil@kntu.ac.ir 

 

 

to a darker medium, it refracts and its direction changes. 

Sadollah et al. (2012) proposed an optimization method 

derived from the explosion of mine bombs which is called 

mine blast algorithm (MBA). 

Additionally, Kaveh and Mahdavi (2014) proposed a 

novel meta-heuristic algorithm called Colliding Bodies 

Optimization (CBO) which works based on one-

dimensional collisions between bodies, and Mirjalili (2015) 

worked on a nature-inspired algorithm called Ant Lion 

Optimizer (ALO) which mimics the hunting mechanism of 

ant lions in nature. Also, a new technique of optimal 

analysis for applying in optimal design of cyclically 

repeated space trusses with frequency constraints is 

introduced by Kaveh and Zolghadr (2016).  

Some new studies have been carried out to apply the 

graph theory in engineering optimization. Sharafi et al. 

(2014a,b) presented an intuitive procedure for the shape and 

sizing optimizations of open and closed thin-walled steel 

sections using graph theory. A bi-objective approach has 

been utilized in this article and the algorithm is going to 

find the shapes of optimum mass and strength. Wang (2015) 

studied a topology optimization problem by leveraging a 

regular network topology-circulant graph. Also, Liu and 

Kozan (2016) introduced two new algorithms based on 

network flow graph and conjunctive graph theory. 

Recently, Kaveh and Ghafari (2016) worked on the 

optimum design of steel floor systems, also, Kaveh and 

Moradveisi (2016) studied the nonlinear analysis based 

optimal design of double-layer grids. Additionally, Kaveh 

and Shokohi (2016) introduced a new optimum design of 

laterally-supported castellated beams based on tug of war 

optimization algorithm. Recently, some meta-heuristic 
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methods have been applied to different types of structural 

engineering problems by Saka (2014), Akin and Saka 

(2015), and Saka et al. (2016).  

The present article introduces a meta-heuristic algorithm 

based on an efficient dynamic neighboring pattern which is 

called Star Graph to find the global minimum of 

engineering problems. In each iteration of the algorithm,  

agents of the search space regenerate a new star graph and 

transmit information, based on this pattern, to provide a 

new feasible solution. This communication pattern has 

different manifestations in social and natural phenomenon. 

Communication pattern of individuals in an election 

competition and the pattern of co-operation in consulting 

groups are good examples of this approach.  

In the following section, first the concept of Star Graph 

is introduced. Then, the flowchart and components of the 

algorithm are illustrated. At the end, some constrained and 

unconstrained benchmarks are optimized and the results of 

the algorithm are compared with those of some other meta-

heuristics. 

  

1.1 Definition of Star Graph 
 

A graph is defined as a set of nodes and a set of edges 

together with a relation of incidence which associate a pair 

of nodes with an edge. The pattern of connections and the 

weight or the direction of the edges describes the 

characteristics of a graph. The edges of a graph can have 

directions or weights. There are different types of graphs, 

including Trees, Stars, Paths, and Cycle Graphs. A Star 

Graph is defined as a sub-graph (tree) with k+1 nodes with 

one node having vertex degree k and the other nodes having 

vertex degree 1 (Fig. 1). The degree of a node is the number 

of edge connected to that node.  

In this article, the star graph is a weighted and directed 

graph, which describes the details of relation between 

neighbors and central node. Fig. 1 shows a graph, consisting 

of 19 nodes and their connections. The star graph of node 1 

which consists of nodes 2, 3, 4, 5 and the incident edges to 

node 1 is shown in bold in the figure. This sub-graph can be 

called “k-star graph of node 1”. The parameter k in this 

indicates the number of edges which are connected to the 

central node. Hence, in this case, the bolded sub-graph can 

be called “4-star graph of node 1”. In this figure, it can be 

seen that each node has its own star graph. In fact, k is the 

number of neighbors which is connected to central agent.  

 

 
Fig. 1 The k-star graph of the node 1 

 

 
Fig. 2 Topology of a star graph 

 

 

In an optimization problem, each node can be 

considered as a search agent and the edges describe the 

relations between these agents. In Star Graph approach, the 

central node is the i
th

 agent who is going to find the new 

solution. The other agents in the star graph are called 

Neighbors and are going to help the i
th

 agent in the search 

process.  

The topology of the Star Graph method is such a tree 

(Fig. 2) which the i
th

 agent works as a root and the branches 

of the tree are the connections of the neighbors. In this 

method, the information is transmitted between neighbors 

and the central agent according to the pattern of Star Graph. 

In fact this group of agents can be considered as a 

consulting group to find a new solution for the optimization 

problem. The details of the process including selecting 

neighbors, gathering information and making a new 

decision are described in the next section.  

 In Fig. 2, nodes which are entitled “N” are the 

neighbors of the node which is called “Root”. Similarly, 

each neighbor has its own n-star graph.  

The star graph may be considered as a communication 

pattern among intellectual individuals. For example, the 

pattern of communication among the members of a society, 

during an election competition, introduces a model of 

effective collaboration between individuals who want to 

vote for candidates or parties in order to make a better 

future. Herein, this model is utilized to provide an efficient 

optimization algorithm.  

In star graph method, each node has some direct 

connections with its neighbors and has indirect connection 

with other nodes. Therefore, if these nodes can transfer 

some information to others, each node will be able to be 

informed of all conditions of the search space provided by 

its neighbors. This concept will decrease the data 

transmission of the algorithm. Since, the neighbors have 

most similarity and compatibility with their central node, 

the convergence of the method will be improved.  

After an agent receives data provided by some 

neighbors, the information should be analyzed providing a 

new result. If the new result is acceptable, the agent will 

send this information to agents who are associated with its 

star graph.  

In optimization problems, the criterion of improvement 

can be considered as a decrease of the fitness function. The 

process of neighbors’ selection, analysis and providing 

feasible solution should be repeated for all the agents in 
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each iteration. In this algorithm, each agent may affect the 

convergence path of others even if they are not connected 

directly.  

In the next sections, the components of the algorithm are 

illustrated and then some numerical examples are examined 

to show the efficiency and performance of the algorithm.  

 

 
2. Star Graph algorithm 

  
In the Star Graph algorithm, the agents are considered as 

nodes and relations among the agents are taken as the edges 

of the star graph. The concept of star graph is inspired as a 

decision making process in some social and natural 

populations.  

At the first stage of the algorithm, search agents are 

randomly distributed in a valid search space. Next, the 

fitness function value of all agents is determined. The new 

solution can be considered as the i
th

 agent in the next 

iteration. Therefore, finding a new feasible location of the 

i
th

 agent for the next iteration is the purpose of this method. 

In each iteration of the algorithm, if the star graph method 

finds the new feasible solution, the algorithm may converge 

to the global minimum.  

In the algorithm, each agent informs the neighbors about 

its location and its fitness function value for the guidance of 

the agents. The interaction between each agent and the 

population can only be transmitted by the neighbors. This 

interaction is in accordance with the following procedure:  

 The neighbors send their information, including 

the location and the fitness function value, to the i
th

 agent.  

 If the fitness function value of the j
th

 neighbor is 

less than its counterpart of the i
th

 agent, the i
th

 agent will 

tend to approach the j
th

 neighbor.  

 Conversely, if the fitness function value of the j
th

 

neighbor is greater than the i
th

 agent's, the i
th

 agent will tend 

to get away from the j
th

 neighbor.  

In this way, the i
th

 agent moves from a location with a 

higher fitness function value to a location with a lower one. 

It indicates that the star graph is directed and the direction 

of the edges tends to decrease the fitness function value.  

If the fitness function value of the j
th

 neighbor is 

considerably less than the other neighbors, the i
th

 agent 

should tend towards it with the corresponding magnitude. 

Therefore, the method is capable of moving the agent to the 

better location using the weighted function. This indicates 

that the edges of the star graph are weighted based on the 

fitness function value of neighbors. As a result, the j
th

 

neighbor moves the i
th

 agent to a weighted path. The 

normalized resultant vector of weighted paths (the bold 

black arrow in Fig. 3) shows the new suggested path for the 

i
th

 agent.  

In this method, the new location of an agent in each 

iteration depends on the history of process. It means the 

data of the current iteration participates in determining the 

new location of the agent in the next iteration. It decreases 

the sensitivity of the method to the variation of neighbors. 

Hence, the information of each iteration should be saved for 

the next iteration.  

 
Fig. 3 Star graph of the 1st agent 

 

 

 
Fig. 4 Flowchart of the star graph algorithm 

 

 

The star graph method is regenerated in each iteration of 

the algorithm and the new star graph of each agent is 

reselected in each iteration. The current version of the 

algorithm uses a weighted random function to select the 

new neighbors. In fact, the random selection approach 

decreases the probability of getting trapped in local minima. 

In other words, if the i
th

 agent is going to be trapped in local 

minima, selecting new neighbors and getting new 

information help to change the path and converge to the 

global minimum.  

In Fig. 3, the star graph of 1
st
 agent and direction and 

weight of edges are shown. The direction of edges is 

intended to decrease the fitness function value. So, the 

resultant vector (R) indicates the appropriate direction of 1
st
 

agent to decrease the fitness function value. 

More precisely, in the first step of each iteration, the 

new neighbors of the ith agent are randomly selected. Then, 

the new location of the ith agent is obtained using fitness 

function value of the neighbors as aforementioned. 

Consequently, if the new location is better than the previous 

one, it will be considered as the new location of the ith 

agent in the next iteration. The flowchart of star graph 

algorithm is presented in Fig. 4. 

In the next section, the components of the SG algorithm 

and its procedure are illustrated step by step. In brief, the 

presented algorithm consists of four subroutines or 

functions, which create an adaptive structure to conduct the 

agents to the global minimum efficiently. 
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2.1 Details of Star Graph algorithm 
  
The procedure of the SG algorithm, in accordance with 

the flowchart of Fig. 4, can be presented as follows. 

Step 1. Initial Population Generation 

The number of agent population and neighbors could be 

changed in each step of the algorithm. A dynamic number 

of the population is required in the algorithm process. 

Actually, in some first iterations SG needs the maximum 

number of population; however, the number of population 

begins to decrease when the iteration number increases, or 

when the algorithm begins to converge to the final result. 

The dynamic size of population decreases the cost of 

calculation while the effects on the convergence of the 

algorithm are negligible. At its simplest form, a linear 

function is utilized to determine the number of population 

(Nn) and neighbors (Nb), based on the number of iterations. 

The first generation is distributed using the following 

equation 

1
( )X a b a rand     (1) 

Where, a  and b  are vectors containing boundaries 

of variables, and rand is a uniform random number 

generator, which generate real numbers in the range of [0, 

1]. The vector 1
X is the location of the agent in the first 

iteration of the algorithm. The superscript shows the 

iteration number.  

After first population generation, its corresponding 

fitness function should be saved in F.  

Step 2. Guidance Group Function 

The aim of this step is to utilize the pattern of those 

agents with the best results. This set of agents is called 

guidance group.  

During the process of the algorithm, some agents have 

no acceptable results and could not converge to a better 

solution. They increase the cost of computation while have 

no positive effect on the convergence. A new function is 

introduced herein, which moves these agents to some 

suitable locations. This process improves the performance 

of the algorithm.  

New locations are determined using the mean and 

standard deviation of the location of the guidance group. 

Although in the first step of the algorithm agents were 

randomly distributed using the uniform random distribution, 

in the second step the agents distribute according to the 

normal distribution data, which is based on the guidance 

group data. The guidance group (im) consists of m agents 

with the best results. The parameter m can be between 3 and 

10. The new locations are used in order to relocate the 

agents with the worst results (ima) in the next iteration. 

In simple words, in each iteration, the algorithm 

estimates the location of the agents with the best results to 

move the agents with the worst results to some better 

locations. The applied functions are shown in Eq. (2). 

1

[ ( )]

[ ( )]

( ) (2 1)

n

m

n

m

n

ma

Mean X I

SD X I

X i a rand





 






     





 
(2) 

Where, ( )
n

m
X I shows the location (solution) of the 

guidance group. The Mean and SD are the mean and 

standard deviation functions respectively. Also, ima indicates 

the set of agents with the worst results. The results of the 

present study have shown that it is better to choose ima so 

that ima < 0.05Nn. The coefficient a1 controls the distribution 

range of the new agents. In the present version of the 

algorithm, a1 can be in the range of [1, 3].  

Step 3. Neighbors Selection 

In the third step, the neighbors of the i
th

 agent are 

selected using a random selector with cumulative weighted 

function (G). The neighbors are selected from all the agent 

population (R) except the agent with the best result (im), the 

agents provided by guidance group (ima) and i
th

 agent. The 

neighbors’ selection is done using Eqs. (3) and (4). Besides, 

the weight of j
th

 agent is as 

max

max min

1

,

, { , , }

j j

j j Nn

t

t

m ma

F F w
w

F F
w

for j t R i i i






 



  

  (3) 

Where, Fmax and Fmin are the maximum and minimum of 

the fitness function of the agents respectively.  

The cumulative weighted function G is an array. Each 

element of this array contains the summation of the weight 

of j
th

 agent and all its previous agents in the global 

numbering of agents. The array can be produced using Eq. 

(4) 

1 1
G 

 

1j j j
G G 


 

 

2,3,... { , , }
m ma

for j R i i i    

(4) 

For selecting each neighbor of the i
th

 agent, the 

minimum value of j should be determined in such a way 

that rand ≤ Gj. Here, 1, 2,3,... { , , }
m ma

j R i i i    

and rand is a uniform random number generator in the 

range of [0, 1]. Indeed, for obtaining the neighbors of the i
th

 

agent (Ib), this procedure should be repeated Nb times.  

The random selection of the neighbors decreases the 

probability of being trapped in local minima. In fact, when 

the i
th

 agent is going to be trapped in local minima, 

changing the neighbors and getting new data help the agent 

to escape from the situation.  

Step 4. New Agent Generation 

In the fourth step, a new solution is proposed for the i
th

 

agent using the star graph method as aforementioned. If the 

fitness function value of the result is less than the previous 

one, this solution will be the new location of the i
th

 agent in 

the next iteration. 

This step consists of two subroutines or functions. The 

weighting function H increases the efficacy of the agents 

with better fitness function value to enhance the 

convergence of the algorithm. This function guides the local 

search of the algorithm to find the global minimum.  
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Moreover, the vector X c  is provided using the 

location of neighbors in the previous iteration. It helps to 

increase the search capability of the method. Thus, this 

vector plays the role of the global search of the algorithm.  

The weighting function H is obtained by 

max

1

,

,

b

j

j j N

j

t

t

b

WF
W H

F
W

for j t I



 

 

  (5) 

The attraction or repulsion caused by neighbors is 

applied along the line between each neighbor and the i
th

 

agent. This direction can be represented by the unit vector 

U in accordance with the following 

( )

n n

i j

j j i
n n

i j

b

X X
U Sign F F

X X

for j I


  



 

 (6) 

Where, Sign(x) indicates the sign of x. 
n

i
X  shows the 

location of the i
th

 agent in the n
th

 iteration and n

i
X  is the 

norm of the vector
n

i
X . Ib shows the neighbors of the i

th
 

agent. The vector 
c

X  which represents the effects of 

pervious iteration is defined as Eq. (7). 

1 1

1

. .
b

N

n n

c j i j j

j

b

X H X X U

j I

 



 

 


 (7) 

Here, 
1n

i
X


is the location of the i

th
 agent in the n-1

th
 

iteration and n shows the iteration number of the method. 

Nb indicates the number of the neighbors of the i
th

 agent.   

The direction vector 
1

T  and step length T2 are defined 

according to Eqs. (8) and (9). 

1 1 2

1

.
b

N

c

j j

j
c

b

X
T C H U C

X

for j I



   




 (8) 

 

2 1 2

1

.
b

N

n n

j i j c

j

b

T C H X X C X

for j I



    




 (9) 

The coefficients C1 and C2 are suggested as Eq. (10). 

3

1 2
i

a n

N
C a




 

(10) 

4

2 2
i

a n

N
C a

 

  

Where, Ni is the maximum number of iterations. a2 is 

the base of the exponential function and a3 and a4 are some 

constant coefficients. All of these parameters can be 

assumed to be in the range of [1, 3]. For first estimation, it 

is suggested that 4

2 3

2

a
a a  . 

In these equations, 
1

T  represents the direction vector 

and T2 is the step length of the i
th

 agent. It is obtained using 

the neighbors of the i
th

 agent in the n
th

 and n-1
th

 iterations. 

The coefficients C1 and C2 help to convert the global search 

of the method to a local search. Hence, these values have a 

profound impact on the convergence of the algorithm. More 

accurately, C1 is an incremental factor that amplifies the 

local search of the algorithm. On the other hand, C2 is a 

decreasing factor and inspires the global search. In the 

algorithm procedure, the global search is gradually 

converted to the local search. Consequently, a new 

exponential function is suggested in order to improve the 

process.  

Finally, the new suggested location of the i
th

 agent for 

the next iteration is obtained as Eq. (11). 

11

2

1

n n

i i

T
X X rand T

T


     (11) 

Where, 
1n

i
X


 and 

n

i
X  are the suggested and present 

location of the agent, respectively.  

Notably, the location 
1n

i
X


 will be the new location of 

the i
th

 agent only if its fitness function value is less than the 

value of the present location
n

i
X . In each iteration, the 

process of neighbors’ selection and finding the new location 

of each agent should be repeated.  

Additionally, the process of the algorithm starts with the 

global search and tends to a local search. The global search 

needs the larger number of agents than the local one. Hence, 

the number of population is dynamic and may change 

during the algorithm. Therefore, the cost of calculation 

decreases without noticeable reduction in the convergence 

capability.  

Step 5. Random Agent Generator 

To prevent an agent from being trapped in local minima, 

a stochastic function is utilized to generate new random 

agents. This is what exactly happens in the fifth step of the 

SG algorithm. This function replaces the agents with the 

worst fitness function (Ix) with the new random agents 

according to 

( ) ( )
n

x
X I a b a rand     (12) 

Here, a  and b  are vectors containing boundaries of 

variables in the search space.  

In this way, the method utilizes a set of functions based 

on the star graph to converge into the global minimum.  
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Table 1 The specifications of benchmark problems (Kaveh and Talatahari 2010a) 

Name F(x) Domain Fmin 

Aluffi-Pentiny 

(AP) 
4 2 2

1 1 1 2

1 1 1 1

4 2 10 2
x x x x    [-10,10]2 -0.352386 

Bohachevsky-1 

(Bf1) 
2 2

1 2 1 2

3 4 7
2 cos(3 ) cos(4 )

10 10 10
x x x x      [-100,100]2 0.000000 

Bohachevsky-2 

(Bf2) 
2 2

1 2 1 2

3 3
2 cos(3 ) cos(4 )

10 10
x x x x     [-50,50]2 0.000000 

Becker and  

Lago 
2 2

1 2
( 5) ( 5)x x    [-10,10]2 0.000000 

Branin 
2 2

2 1 1 12

5.1 5 1
( 6) 10(1 ) cos( ) 10

4 8
x x x x

  
       1

2

[ 5,10]

[0,15]

x

x

 


 0.397887 

Camel 2 4 6 2 4

1 1 1 1 2 2 2

1
4 2.1 4 4

3
x x x x x x x      [-5,5]2 -1.031600 

Cosine Mixture

 (CM) 
2

1 1

1
cos(5 )

10

n n

i i

i i

x x
 

   [-1,1]4 -0.400000 

DeJoung 
2 2 2

1 2 3
x x x   [-5.12,5.12]3 0.000000 

Exponential  

(EXP2, EXP4,  

EXP8) 

2

1

exp( 0.5 )

n

i

i

x


    [-1,1] 
n= 2, 4, 8 

-1.000000 

Goldstein and 

price 

2 2 2

1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

[1 ( 1) (19 14 3 14 6 3 )]

[30 (2 3 ) (18 32 12 48 36 27 )]

x x x x x x x x

x x x x x x x x

        

      

 [-2,2]2 3.000000 

Griewank-2 

22

2

1 1

cos( )1
1

200

i

i

i i

x
x

i 

    [-100,100]2 0.000000 

Hartman-3 

4 3

2

1 1

exp ( )
i ij j ij

i j

c a x p
 

  
 
 
 

 
 

3 10 30 1 0.3689 0.117 0.2673

0.1 10 35 1.2 0.4699 0.4387 0.747
; ;

3 10 30 3 0.1091 0.8732 0.5547

0.1 10 35 33.2 0.03815 0.5743 0.8828

a c p  

     
     
     
     
     
     

 
[0,1]3 -3.862782 

Hartman-6 

4 6

2

1 1

exp ( )
i ij j ij

i j

c a x p
 

  
 
 
 

 
 

10 3 17 3.5 1.7 8 1

0.05 10 17 0.1 8 14 1.2
;

3 3.5 1.7 10 17 8 3

17 8 0.05 10 0.1 14 3.2

a c 

   
   
   
   
   
     

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

p 

 
 
 
 
 
 

 

[0,1]6 -3.322368 

Rastrigin 
2 2

1 2 1 2
cos(18 ) cos(18 )x x x x    [-1,1]2 -2.000000 

Rosenbrock  
1

2 2 2

1

1

100( ) ( 1)

n

i i i

i

x x x







    [-30,30]2 0.000000 

Zakharov  

(Z10, Z50) 

2 2 4

1 1 1

( 0.5 ) ( 0.5 )
n n n

j j j

j j j

x jx jx
  

     
[-5,10]10,50 0.000000 

Levy  
1

2 2 2 2

1 1

1

10 sin ( ) ( 1) [1 10 sin ( )] ( 1)
n

i i n

i

y y y y
n


 







      [-10,10]20 0.000000 

Brown 
2 2

1

1
( 1) ( 1)2 2

1

1

[( ) ( ) ]i i

n
x x

i i

i

x x


 





  [-1,4]20 0.000000 
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N/A: Not available 
 

Finally, the algorithm continues until one of the 

following termination criteria is true 

 The current iteration number of the algorithm 

exceeds the maximum number of iterations. 

 The sequence of the best fitness function values 

converges so that the difference between the best values of 

two immediate iterations falls into a predefined tolerance 

value.  

 

 

3. Engineering benchmark problems 
 

In this section, the efficiency of the star graph algorithm 

is evaluated and the results of some different methods are 

compared with the present method.  

 

3.1 Unconstrained problems 
 

For unconstrained optimization problems, the algorithm 

is compared with different versions of known meta-

heuristic methods (Kaveh and Talatahari 2010a). The 

benchmark problems are introduced in Table 1 and the 

compared results are shown in Tables 2 and 3.  

It is valuable to note that Tsoulos (2008) studied some 

different versions of Genetic Algorithm which are 

introduced as GEN, GEN-S, GEN-S-M and GEN-S-M-LS. 

The method CSS (Kaveh and Talatahari 2010a) utilized the 

charged system principles to find global minimum. 

Similarly, the method RO (Kaveh and Khayatazad 2012) 

introduced a new meta-heuristic algorithm using the Snell’s  

 

 

 

 

light refraction law.  

Georgieva and Jordanov (2010) introduced a hybrid 

meta-heuristic technique for bound-constrained global 

optimization which combines the two techniques LPτO and 

NM. This approach provides a powerful hybrid 

optimization technique entitled LPτNM. Chelouah and 

Siarry (2003) worked on a hybrid method, called 

continuous hybrid algorithm (CHA), performing the 

exploration with a GA and the exploitation with a Nelder–

Mead SS. Also, Chelouah and Siarry (2000) defined an 

adaptation of combinatorial Tabu Search (ECTS) which 

aims to follow Glover's basic approach. Additionally, Zheng 

et al. (2005) and Price et al. (2005) worked on a staged 

continuous tabu search (SCTS) and a differential evolution 

based algorithm (DE), respectively.  

The perspective view and related contour lines of some 

benchmark functions are shown in Fig. 5.  

The values in Tables 2 and 3 indicate the average 

numbers of function evaluation in 50 independent runs. The 

number in parenthesis represents the ratio of successful runs 

in which the method has found the global minimum. The 

predefined accuracy of the method is taken as
4

min
10

final
f f


   . The absence of the parentheses 

shows that the algorithm has been successful in all 

independent runs. In Table 2, it can be seen that only CSS 

and SG algorithms have been unconditionally successful in 

all fifty runs of all benchmark problems. Also, in 

benchmarks with higher number of variables, SG shows an 

efficient performance to find the global minimum point 

(Table 3). 

Table 2 The average numbers of function evaluation for the benchmark problems 

Function GEN GEN-S GEN-S-M 
GEN-S-M-

LS 
CSS RO 

SG 

Present 

Work 

AP 1360 (0.99) 1360 1277 1253 804 331 304 

Bf1 3992 3356 1640 1615 1187 677 394 

Bf2 20234 3373 1676 1636 742 582 353 

BL 19596 2412 2439 1436 423 303 314 

Branin 1442 1418 1404 1257 852 463 355 

Camel 1358 1358 1336 1300 575 332 250 

CM 2105 2105 1743 1539 1563 802 678 

Dejoung 9900 3040 1462 1281 630 452 236 

Exp2 938 936 817 807 132 136 75 

Exp4 3237 3237 2054 1496 867 382 252 

Exp8 3237 3237 2054 1496 1426 1287 820 

Goldstein 

and Price 
1478 1478 1408 1325 682 451 272 

Griewank 18838 (0.91) 3111 (0.91) 1764 1652 (0.99) 1551 1091 (0.98) 1078 

Hartman3 1350 1350 1332 1274 860 N/A 472 

Hartman6 2562 (0.54) 2562 (0.54) 2530 (0.67) 1865 (0.68) 1783 N/A 1459 

Rastrigin 1533 (0.97) 1523 (0.97) 1392 1381 1402 1013 (0.98) 1289 

Rosenbrock 9380 3739 1675 1462 1452 N/A 1132 
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Table 3 The average numbers of function evaluation for the 

benchmark problems  

Function  LPτNM ECTS SCTS CHA DE 

SG 

Present 

Work 

Z50 N/A 63970 N/A 75520 N/A 56597 

Z10 6826 4630 N/A 4291 34532 3776 

Levy 10987 N/A 17443 N/A 29268 8180 

Brown 11425 N/A 15142 N/A 28032 8914 

N/A: Not available 
 

 

 

 

 

 
Fig. 5 A perspective view and related contour lines for 

some of functions in two-dimensional forms. (a) Aluffi-

Pentiny, (b) Bohachevsky-1, (c) Bohachevsky-2 and (d) 

Becker and Lago 

 

 

3.1.1 Comparison of the results 
The method GEN-S-M-LS has better results than the 

other methods, which are based on GA. This method 

utilizes some auxiliary mechanisms such as an improved 

stopping law, the new mutation mechanism and an iterative 

approach in the local search. On the other hand, the 

methods CSS and RO improve the results more effectively 

than GA-based methods. As it can be seen, the Star Graph 

algorithm (SG) converges to the global minimum faster 

than RO, CSS and GA-based methods.  

 

3.2 Constrained problems 
 
3.2.1 A pressure vessel design problem 
In this section, the optimal design of the cylindrical 

vessel, displayed in Fig. 6, is considered as a constrained 

optimization problem. The objective is to minimize the total 

cost including the cost of material, forming and welding 

(Sandgren 1988). This function is shown in Eq. (13). 

2

cost 1 3 4 2 3

2 2

1 4 1 3

( ) 0.6224 1.7781

3.1661 19.84

f X x x x x x

x x x x

 

 
 (13) 

Where, x1 is the thickness of the shell (Ts), x2 is the 

thickness of the head (Th), x3 the inner radius (R) and x4 is 

the length of cylindrical section of the vessel (L). Ts and Th 

are integer multiples of 0.0625 inches and R and L are real 

numbers.  

The constraints and the design space can be stated as Eq. 

(14). 

1 1 3

2 2 3

2 3

3 3 4 3

4 4

( ) 0.0193 0

( ) 0.00954 0

4
( ) 1296000 0

3

( ) 240 0

g X x x

g X x x

g X x x x

g X x

 

   

   

    

  
 

1

2

3

4

0 99

0 99

10 200

10 200

x

x

x

x

 

 

 

 

 

(14) 

The constraints are applied to the algorithm using the 

penalty function method. The best results of various 

developed methods and corresponding statistical simulation 

results are shown in Tables 4 and 5, respectively. The results 

are obtained from ten independent runs of the methods. 

Although some methods such as Montes and Coello (2008) 

and Kaveh and Talatahari (2010a) have better results than 

the others, Star Graph method (SG) provides the best 

results. The standard deviation value of the SG algorithm is 

not the best, for instance in comparison to Coello (2000). 

However, the mean value of the SG algorithm has an error 

of about 0.6%, according to the minimum value of cost 

function, while Coello (2000) estimates the cost function 

with 3.9% of error. Besides, the values of mean and 

standard deviation of the SG algorithm are comparable to 

the other methods. 

 

 
Fig. 6 Schematic shape of the pressure vessel 
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3.2.2 A 10-bar planar truss 
The optimal design of the 10-bar truss, shown in Fig. 7, 

is considered as another example of constrained 

optimization problem. More accurately, the weight of the 

truss is considered as the objective function. In this problem, 

the stress limit of the members is σ0= ±172.37 MPa (25 ksi). 

The nodal displacements in the vertical direction are limited 

to ±5.08 cm (2.0 in) and the density of the material is ρ= 

2767.99 kg/m
3
 (0.1 lb/in

3
). The minimum cross section and 

the modulus of elasticity are A0= 0.6451 cm
2
 (0.1 in

2
) and 

E= 6.89×10
4
 MPa (10

4
 ksi), respectively.  

Two different load cases are considered herein. In the 

first case, P1= 444.82 KN (100 kips) and P2= 0. Additionally, 

in the second case, P1= 667.233 KN (150 kips) and P2= 

222.411 KN (50 kips). The constraints are applied to the 

algorithm using the penalty function method and search 

variables are considered as the cross-section areas of the 

truss members.  

In Tables 6 and 7, the results of the suggested method 

are compared with various methods and the improvement of 

the results is shown. The results are obtained from twenty 

independent runs of the methods. Although, some methods 

such as Lamberti and Pappalettere (2003) and Sedaghati 

(2005), in Case 1, and Rizzi (1976) and John et al. (1987), 

in Case 2, approached the minimum weight of the truss, the  

 

 

 

 

 

present study provides the best value among the other 

methods.  

 

3.2.3 A 25-bar spatial truss 
The topology and nodal numbers of a 25-bar spatial 

truss structure are shown in Fig. 8. It is a very well-known 

test problem. In this case, the material density is considered 

as 0.1 lb/in
3
 (2767.990 kg/m

3
) and modulus of elasticity is 

taken as 10
4
 ksi (68950 MPa). The range of cross-sectional 

areas varies from 0.01 to 3.4 in
2
 (0.6452- 21.94 cm

2
). 

 

 

 
Fig. 7 A 10-bar planar truss (Schmit and Farshi 1974) 

 

Table 4 Optimum results for the pressure vessel (Kaveh and Talatahari 2010a) 

Methods 
Optimal Design Variable 

fcost 
x1 (Ts) x2 (Th) x3 (R) x4 (L) 

Sandgren (1988)  1.125000 0.625000 47.700000 117.701000 8129.1036 

Kannan and Kramer (1994)  1.125000 0.625000 58.291000 43.690000 7198.0428 

Deb and Gene (1997)  0.937500 0.500000 48.329000 112.679000 6410.3811 

Coello (2000)  0.812500 0.437500 40.323900 200.000000 6288.7445 

Coello and Montes (2002)  0.812500 0.437500 42.097398 176.654050 6059.9463 

He and Wang (2007)  0.812500 0.437500 42.091266 176.746500 6061.0777 

Montes and Coello (2008)  0.812500 0.437500 42.098087 176.640518 6059.7456 

Kaveh and Talatahari (2010a)  0.812500 0.437500 42.098353 176.637751 6059.7258 

SG (the current study) 0.812500 0.437500 42.098446 176.636596 6059.1313 

Table 5 Statistical results of different methods for the pressure vessel (Kaveh and Talatahari 2010a) 

Methods Best Mean Worst Standard Deviation 

Sandgren (1988)  8129.1036 N/A N/A N/A 

Kannan and Kramer (1994)  7198.0428 N/A N/A N/A 

Deb and Gene (1997)  6410.3811 N/A N/A N/A 

Coello (2000)  6288.7445 6293.8432 6308.1497 7.4133 

Coello and Montes (2002)  6059.9463 6177.2533 6469.3220 130.9297 

He and Wang (2007)  6061.0777 6147.1332 6363.8041 86.4545 

Montes and Coello (2008)  6059.7456 6850.0049 7332.8798 426.0000 

Kaveh and Talatahari (2010a)  6059.7258 6081.7812 6150.1289 67.2418 

SG (the current study) 6059.1313 6093.2716 6203.7628 40.9574 
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*Not mentioned 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 Comparison of optimum designs of 10-bar truss (Case 1) 

Member 

Number 

Schmit, 

Farshi 

(1974) 

Schmit, 

Miura 

(1976) 

Venkayya 

(1971) 

Lamberti, 

Pappalettere 

(2003) 

Sedaghati 

(2005) 

Kaveh, 

Rahami 

(2006) 

Li et al. 

(2007) 

Farshi, 

Ziazi 

(2010) 

SG  

Present 

Work 

1 33.430 30.670 30.4200 

* 

30.5210 30.6670 30.5690 30.5200 30.5280 

2 0.1000 0.1000 0.1280 0.1000 0.1000 0.1000 0.1000 0.1000 

3 24.2600 23.7600 23.4100 23.1990 22.8720 22.9740 23.2040 23.2050 

4 14.2600 14.5900 14.9100 15.2220 15.3440 15.1480 15.2230 15.2180 

5 0.1000 0.1000 0.1010 0.1000 0.1000 0.1000 0.1000 0.1000 

6 0.1000 0.1000 0.1010 0.5510 0.4630 0.5470 0.5510 0.5510 

7 8.3880 8.5780 8.6960 7.4570 7.4790 7.4930 7.4660 7.4570 

8 20.7400 21.0700 21.0800 21.0360 20.9650 21.1590 21.0340 21.0360 

9 19.6900 20.9600 21.0800 21.5280 21.7020 21.5560 21.5290 21.5220 

10 0.1000 0.1000 0.1860 0.1000 0.1000 0.1000 0.1000 0.1000 

Weight (lb) 5089.00 5076.85 5084.90 5060.88 5060.85 5061.90 5061.03 5061.40 5060.85 

Table 7 Comparison of optimum designs of 10-bar truss (Case 2) 

Member 

Number 

Schmit and 

Farshi 

(1974) 

Schmit and 

Miura 

(1976) 

Venkayya 

(1971) 

Rizzi 

(1976) 

John et al. 

(1987) 

Li et al. 

(2007) 

Farshi, 

Ziazi 

(2010) 

SG  

Present 

Work 

1 24.2900 23.5500 25.1900 23.5300 23.5900 23.7430 23.5270 23.5300 

2 0.1000 0.1000 0.3630 0.1000 0.1000 0.1010 0.1000 0.1000 

3 23.3500 25.2900 25.4200 25.2900 25.2500 25.2870 25.2940 25.2900 

4 13.6600 14.3600 14.3300 14.3700 14.3700 14.4130 14.3760 14.3680 

5 0.1000 0.1000 0.4170 0.1000 0.1000 0.1000 0.1000 0.1000 

6 1.9690 1.9700 3.1440 1.9700 1.9700 1.9690 1.9690 1.9690 

7 12.6700 12.3900 12.0800 12.3900 12.3900 12.3620 12.4040 12.3980 

8 12.5400 12.8100 14.6100 12.8300 12.8000 12.6940 12.8240 12.8520 

9 21.9700 20.3400 20.2600 20.3300 20.3700 20.3230 20.3300 20.2960 

10 0.1000 0.1000 0.5130 0.1000 0.1000 0.1030 0.1000 0.1000 

Weight (lb) 4691.84 4676.96 4895.60 4676.92 4676.93 4677.70 4677.80 4676.89 

Table 8 Loading conditions for the 25-bar spatial truss (Kaveh et al. 2014) 

Node 

Case 1 Case 2 

Px Py Pz Px Py Pz 

kips (kN) kips (kN) kips (kN) kips (kN) kips (kN) kips (kN) 

1 0.0 20.0 (89) -5.0 (22.25) 1.0 (4.45) 10.0 (44.5) -5.0 (22.25) 

2 0.0 -20 (89) -5.0 (22.25) 0.0 10.0 (44.5) -5.0 (22.25) 

3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0 

6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0 
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N/A: Not available 
 

 

Twenty five members are categorized into eight groups 

and also, the spatial truss is subjected to two loading 

conditions shown in Table 8. Maximum displacement 

limitations of ? .35in (8.89 mm)  are imposed on every 

node in every direction and the axial stress constraints vary 

for each group as shown in Table 9. The constraints are 

applied to the algorithm using the penalty function method 

and search variables are considered as the cross- sectional 

areas of truss members.  

Table 10 indicates the results of optimal design of the 

frame using SG and results are compared with HPSSO 

(Kaveh et al. 2014), PSO (Talatahari et al. 2013), MPSO 

(Talatahari et al. 2013), PSOPC (Li et al. 2007) and HPSO  

(Li et al. 2007). Herein, statistical results and the average 

number of analysis are obtained using 20 independent runs 

of algorithm. The table shows the best, worst and average 

weight of the structure are improved than the other 

methods, although the number of analysis is similar. Also, 

standard deviation of SG shows better results than other 

methods. 

 

 

 
 
 

 
Fig. 8 Schematic of the spatial 25-bar tower (Kaveh et al. 

2014) 

 

Table 9 Member stress limitation for the 25-bar spatial truss (Kaveh et al. 2014) 

Element group Compressive stress limitations ksi (Mpa) Tensile stress limitations ksi (Mpa) 

1 A1 35.092 (241.96) 40.0 (275.80) 

2 A2-A5 11.590 (79.913) 40.0 (275.80) 

3 A6-A9 17.305 (119.31) 40.0 (275.80) 

4 A10-A11 35.092 (241.96) 40.0 (275.80) 

5 A12-A13 35.092 (241.96) 40.0 (275.80) 

6 A14-A17 6.759 (46.603) 40.0 (275.80) 

7 A18-A21 6.959 (47.982) 40.0 (275.80) 

8 A22-A25 11.082 (76.410) 40.0 (275.80) 

Table 10 Comparison of optimization results in the 25-bar tower problem 

Element group   HPSSO  
 

PSO  MSPSO  PSOPC HPSO 
SG  

Present Work 

1 A1 0.0100  0.0100 0.0100 0.0100 0.0100 0.0100 

2 A2-A5 1.9907  1.9503 1.9848 1.9790 1.9700 1.9960 

3 A6-A9 2.9881  3.0408 2.9956 3.0110 3.0160 2.9793 

4 A10-A11 0.0100  0.0100 0.0100 0.1000 0.0100 0.0100 

5 A12-A13 0.0100  0.0100 0.0100 0.1000 0.0100 0.0100 

6 A14-A17 0.6824  0.6929 0.6852 0.6570 0.6940 0.6860 

7 A18-A21 1.6764  1.6866 1.6778 1.6570 1.6810 1.6756 

8 A22-A25 2.6656  2.6362 2.6599 2.6930 2.6430 2.6635 

Best weight (lb) 
 

545.164  545.220 545.160 545.270 545.190 545.150 

Average weight (lb) 
 

545.556  549.960 546.030 N/A N/A 545.177 

Worst weight (lb) 
 

546.990  594.530 548.780 N/A N/A 545.222 

Standard deviation 
 

0.432  9.910 0.800 N/A N/A 0.0002 

No. of analysis   13326  18400 10800 50000 50000 13000 
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3.2.4 A 3-bay 15-story frame problem 
The optimal weight of 3-bay 15-story frame, shown in 

Fig. 9, is considered. In this figure, external loads and 

groups of elements are indicated. Assumptions for analysis 

and design of structure are considered as follows:  

The modulus of elasticity and yielding stress of steel are 

considered 29 Msi (200 GPa) and 36 ksi (248.2MPa), 

respectively. The effective length factor of members in out-

of-plane behavior is equal to 1.0
y

k   and in in-plane 

behavior 0
x

k  can be obtained using following equation 

(Dumonteil 1992) 

1.6 4.0 ( ) 7.5

7.5

A B A B

A B

G G G G
k

G G

  


 
 (15) 

Where, GA and GB are ratio of the bending stiffness of 

column to connected beams in two end joints, A and B, in 

each column. Unbraced length of column is equal to whole 

of column length and for beam is equal to one fifth of beam 

length. 

Displacement and resistance constraints of problem 

accordance with AISC (2001) are as follows:  

a) Maximum lateral displacement 

0T R
H


   (16) 

Where, 
T is the maximum lateral displacement, H is 

the total height of frame, R is the maximum drift of 

structure equal to 1/300.  

b) In-story maximum displacement 

0 1, 2, ...,i

I

i

d
R i ns

h
    (17) 

Where, di is the difference between displacements of 

two stories, hi is the height of i
th

 story, ns is the total number 

of stories and RI is the maximum drift between stories equal 

to 1/300.  

c) Resistance constraints 

1 0, 0.2
2

8
1 0, 0.2

9
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



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 (18) 

Where, Pu is the required resistance (tensile and 

compressive), Pn is the nominal axial resistance (tensile and 

compressive), 
c  is the resistance reduction factor 

( 0.9c   for tension and 0.85c   for compression), Mu 

is the required flexural resistance, Mn is the nominal 

flexural resistance and 
b  is the flexural resistance 

reduction factor equal to 0.9
b
  . 

The nominal tensile resistance for yielding of member 

.
n g y

P A F  (19) 

 
Fig. 9 Schematic of the 3-bay 15-story frame 

 
 

Also, the nominal compressive resistance of member 

.
n g cr

P A F  (20) 

Where 

2
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Where, Ag is the cross section of member and k is the 

effective length factor of member. The constraints are 

applied to the algorithm using the penalty function method 

and search variables are considered as the cross-sectional 

areas of frame members. 

In Table 11, the optimal result of the method is 

compared with some new method of literature. The 

optimum weight of SG is equal to 84747 lb with 15560 as 

the average number of analysis. The best result of other 

methods is obtained by ECBO (Kaveh and Ilchi Ghazaan 

2015), which is equal to 86986 lb with 9000 analysis of 

structure.  

In the table, the optimum weight 95850 lb is obtain by 

HPSACO (Kaveh and Talatahari 2009), 97689 lb by HBB-

BC (Kaveh and Talatahari 2010b), 93846 lb by ICA (Kaveh 

and Talatahari 2010c), 92723 lb by CSS (Kaveh and 

Talatahari 2012), 86986 lb by ECBO (Kaveh and Ilchi 

Ghazaan 2015), 93315 lb by ES-DE (Talatahari et al. 2015) 

and 91248 lb by DSOS (Talatahari 2016). Although the 

number of analysis is increased in this method, the best and 

average of optimal weights and standard deviation of the 

method are improved than other methods. 
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N/A: Not available 
 
 

3.2.5 A 3-bay 24-story frame problem 
The Optimum weight of 3-bay 24-story frame, shown in 

Fig. 10, is considered. As shown, the members are 

categorized into 20 groups, including 16 column and 4 

beam members. The section of beams is selected form 

267W-shapes, while columns are selected from W14 

sections. The modulus of elasticity and yielding stress of 

steel are equal to 29.732 Msi (205 GPa)E  and 

33.4 ksi (230.3 MPa)
y

f  , respectively.  

The effective length factor of members for out-of-plane 

behavior is 1.0yk  and for in-plane behavior of the frame 

0
x

k  . For all members, the unbraced length is equal to the 

total length of element. Herein, the resistance and 

displacement constraints are similar to the previous problem 

and specifications of AISC-LRFD are considered (AISC 

2001).  

This problem is optimized by GA (Saka and Kameshki 

1998), ACO (Camp et al. 2005), HS (Degertekin 2008), 

CSS (Kaveh and Talatahari 2012), ECBO (Kaveh and Ilchi 

Ghazaan 2015), ES-DE (Talatahari et al. 2015) and DSOS 

(Talatahari 2016) and corresponding results are shown in 

Table 12. The optimal weight of frame in the present 

method is equal to 201489 lb and the average number of 

analysis is 18330. The best result of the other methods 

belongs to ECBO (Kaveh and Ilchi Ghazaan 2015) with 

201618 lb and 15360 analysis of structure. The comparison 

of results shows, the best and average and the standard 

deviation of optimal weight are improved in the present 

method, although the number of analysis is briefly 

increased. 
 

 

 
 
 
4. Conclusions 

 

A new meta-heuristic algorithm is introduced in this article 

based on Star Graph. This method represents a special pattern 

of communication among the agents to find an appropriate 

solution. Herein, some efficient weighting functions are 

presented to improve the capability and performance of the 

algorithm in local and global search, which are based on the 

fitness function values of the neighbors. 

 
 

 
Fig. 10 Schematic of the 3-bay 24-story frame 

 

Table 11 Optimization results obtained for the 3-bay 15 story frame 

Element group HPSACO HBB-BC ICA CSS ECBO ES-DE DSOS 
SG 

Present Work 

1 W21 1́11 W24x117 W24x117 W21x147 W14x99 W18x106 W16x100 W27X102 

2 W18 1́58 W21x132 W21x147 W18x143 W27x161 W36x150 W32x152 W30X124 

3 W10x88 W12x95 W27x84 W12x87 W27x84 W12x79 W12x79 W14X82 

4 W30x116 W18x119 W27x114 W30x108 W24x104 W27x114 W27x114 W24X104 

5 W21x83 W21x93 W14x74 W18x76 W14x61 W30x90 W21x93 W21X62 

6 W24x103 W18x97 W18x86 W24x103 W30x90 W10x88 W12x79 W18X71 

7 W21x55 W18x76 W12x96 W21x68 W14x48 W18x71 W21x55 W14X61 

8 W27x114 W18x65 W24x68 W14x61 W14x61 W18x65 W14x61 W12X53 

9 W10x33 W18x60 W10x39 W18x35 W14x30 W8x28 W14x22 W14X43 

10 W18x46 W10x39 W12x40 W10x33 W12x40 W12x40 W14x43 W14X43 

11 W21x44 W21x48 W21x44 W21x44 W21x44 W21x48 W21x48 W21X44 

Best Weight (lb) 95850 97689 93846 92723 86986 93315 91248 84747 

Average Weight (lb) N/A N/A N/A N/A 88410 98531 N/A 88236 

Standard Deviation N/A N/A N/A N/A N/A 3294 N/A 2312 

No. of analyses 6800 9900 6000 5000 9000 10000 N/A 15560 
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N/A: Not available 
 
 
Also, the normal distribution is utilized for the guidance 

group to replace the existing infeasible solutions. 

Additionally, the dynamic regeneration of neighboring 

network in each iteration of the algorithm reduces the 

probability of being trapped in local minima. Moreover, the 

small size of neighboring groups decreases the 

computational cost. This algorithm is examined for various 

constrained and unconstrained benchmark functions, and 

the results of the method are compared with those of the 

other meta-heuristic counterparts. In constrained benchmark 

problems, it is shown that SG is unconditionally successful 

for fifty independent runs while some other methods failed 

in specific benchmark problems. Furthermore, in 

constrained problems, it is shown that the SG algorithm not 

only is capable of finding the global minimum but its 

standard deviation, in a statistical analysis, is better than 

some other existing methods. 
 
 

 

 
 
 
References 
 
Akin, A. and Saka, M.P. (2015), “Harmony search algorithm based 

optimum detailed design of reinforced concrete plane frames 

subject to ACI 318-05 provisions”, Comput. Struct., 147, 79-95.  

American Institute of Steel Construction (AISC), (2001), Manual 

of steel construction: load and resistance factor design.  

Camp, C.V., Bichon, B.J. and Stovall, S. (2005), “Design of steel 

frames using ant colony optimization“, 131(3), J. Struct. Eng. – 

ASCE, 369-379.  

Chelouah, R. and Siarry, P. (2000), “Tabu search applied to global 

optimization”, Eur. J. Oper. Res., 123(2), 256-270.  

Chelouah, R. and Siarry, P. (2003), “Genetic and Nelder–Mead 

algorithms hybridised for a more accurate global optimisation of 

continuous multidimensional functions”, Eur. J. Oper. Res., 

148(2), 335-348.  

Coello, C.A.C. (2000), “Use of a self-adaptive penalty approach 

for engineering optimization problems”, Comput. Indust., 41(2), 

113-127.  

Coello, C.A.C. and Montes, E.M. (2002), “Constraint-handling in 

genetic algorithms through the use of dominance-based 

Table 12 Optimization results for the 3-bay 24-story frame 

Element Group GA ACO HS CSS ECBO ES-DE DSOS 
SG 

Present Work 

1 838x292x194UB W30x90 W30x90 W30x90 W30x90 W30x90 W30x90 W30X90 

2 305x102x25UB W8x18 W10x22 W21x50 W6x15 W21x55 W21x62 W8X13 

3 457x191x82UB W24x55 W18x40 W21x48 W24x55 W21x48 W21x48 W24X55 

4 305x102x25UB W8x21 W12x16 W12x19 W6x8.5 W10x45 W21x55 W6X8.5 

5 305x102x25UC W14x145 W14x176 W14x176 W14x145 W14x145 W14x176 W14X145 

6 305x368x129UC W14x132 W14x176 W14x145 W14x132 W14x109 W14x109 W14X132 

7 305x305x97UC W14x132 W14x132 W14x109 W14x99 W14x99 W14x120 W14X99 

8 356x368x129UC W14x132 W14x109 W14x90 W14x90 W14x145 W14x82 W14X90 

9 305x305x97UC W14x68 W14x82 W14x74 W14x74 W14x109 W14x61 W14X74 

10 203x203x71UC W14x53 W14x74 W14x61 W14x38 W14x48 W14x99 W14X38 

11 305x305x118UC W14x43 W14x34 W14x34 W14x38 W14x38 W14x34 W14X38 

12 152x152x23UC W14x43 W14x22 W14x34 W14x22 W14x30 W14x38 W14X22 

13 305x305x137UC W14x145 W14x145 W14x145 W14x99 W14x99 W14x120 W14X99 

14 305x305x198Uc W14x145 W14x132 W14x132 W14x99 W14x132 W14x109 W14X99 

15 356x368x202UC W14x120 W14x109 W14x109 W14x99 W14x109 W14x90 W14X99 

16 356x368x129UC W14x90 W14x82 W14x82 W14x82 W14x68 W14x90 W14X82 

17 356x368x129UC W14x90 W14x61 W14x68 W14x68 W14x68 W14x82 W14X68 

18 356x368x153UC W14x61 W14x48 W14x43 W14x61 W14x68 W14x38 W14X61 

19 203x203x60UC W14x30 W14x30 W14x34 W14x30 W14x61 W14x38 W14X30 

20 254x254x89UC W14x26 W14x22 W14x22 W14x22 W14x22 W14x22 W14X22 

The Best Weight (lb) 251547 220465 214860 212364 201618 212492 209795 201489 

The Average Weight (lb) N/A 229555 222620 215226 209644 N/A N/A 208212 

The Standard Deviation N/A 4561 N/A 2448 N/A N/A N/A 2201 

No. of analyses 30000 15500 13924 5500 15360 12500 7500 18330 

112



 

A new meta-heuristic optimization algorithm using star graph 

tournament selection”, Adv. Eng. Inf., 16(3), 193-203.  

Deb, K. and Gene, A.S. (1997), “A robust optimal design 

technique for mechanical component design”, (Eds., Dasgupta, 

D. and Michalewicz, Z.), Evolutionary Algorithms in 

Engineering Applications, Springer, Berlin, 497-514.  

Degertekin, S.O. (2008), “Optimum design of steel frames using 

harmony search algorithm“, Struct. Multidiscip. O., 36(4), 393-

401.  

Dorigo, M., Maniezzo, V. and Colorni, A. (1996), “The ant system: 

optimization by a colony of cooperating agents”, IEEE T. Syst. 

Man Cy. B, 41, 26-29.  

Dumonteil, P. (1992), “Simple equations for effective length 

factors”, Eng. J. AISC, 29(3), 111-115.  

Eberhart, R.C. and Kennedy, J. (1995), “A new optimizer using 

particle swarm theory”, Proceedings of the 6th international 

symposium on micro machine and human science, Nagoya, 

Japan.  

Farshi, B. and Ziazi, A.A. (2010), “Sizing optimization of truss 

structures by method of centers and force formulation”, Int. J. 

Solids Struct., 47(18-19), 2508-2524.  

Georgieva, A. and Jordanov, I. (2010), “A hybrid meta-heuristic 

for global optimization using low-discrepancy sequences of 

points”, Comput. Oper. Res., 37(3), 456-469.  

Goldberg, D. (1989), Genetic algorithms in search, optimization 

and machine learning, Addison-Wesley, Reading, MA.  

He, Q. and Wang, L. (2007), “An effective co-evolutionary 

particle swarm optimization for constrained engineering design 

problems”, Eng. Appl. Artif. Intel., 20(1), 89-99.  

John, K.V., Ramakrishnan, C.V. and Sharma, K.G. (1987), 

“Minimum weight design of trusses using improved move limit 

method of sequential linear programming”, Comput. Struct., 

27(5), 583-591.  

Kannan, B.K. and Kramer, S.N. (1994), “An augmented Lagrange 

multiplier based method for mixed integer discrete continuous 

optimization and its applications to mechanical design”, J. Mech. 

Des.- ASME DC, 116(2), 318-320.  

Kaveh, A. and Talatahari, S. (2009), “Hybrid algorithm of 

harmony search, particle swarm and ant colony for structural 

design optimization”, Studies Comput. Intell., 239, 159-198.  

Kaveh, A. and Ghafari, M.H. (2016), “Optimum design of steel 

floor system: effect of floor division number, deck thickness and 

castellated beams”, Struct. Eng. Mech., 59(5), 933-950.  

Kaveh, A. and Ilchi Ghazaan, M. (2015), “A comparative study of 

CBO and ECBO for optimal design of skeletal structures”, 

Comput. Struct., 153, 137-147.  

Kaveh, A. and Khayatazad, M. (2012), “A new meta-heuristic 

method: Ray Optimization”, Comput. Struct., 112-113, 283-294.  

Kaveh, A. and Mahdavi, V.R. (2014), “Colliding bodies 

optimization: A novel meta-heuristic method”, Comput. Struct., 

139, 18-27.  

Kaveh, A. and Moradveisi, M. (2016), “Nonlinear analysis based 

optimal design of double-layer grids using enhanced colliding 

bodies optimization method”, Struct. Eng. Mech., 58(3), 555-

576.  

Kaveh, A. and Rahami, H. (2006), “Analysis, design and 

optimization of structures using force method and genetic 

algorithm”, Int. J. Numer. Meth. Eng., 65(10), 1570-1584.  

Kaveh, A. and Shokohi, F. (2016), “Optimum design of laterally-

supported castellated beams using tug of war optimization 

algorithm”, Struct. Eng. Mech., 58(3), 533-553. 

Kaveh, A. and Talatahari, S. (2010a), “A novel heuristic 

optimization method: charged system search”, Acta Mech., 289, 

213-267.  

Kaveh, A. and Talatahari, S. (2010b), “A discrete Big Bang–Big 

Crunch algorithm for optimal design of skeletal structures”, 

Asian J. Civil Eng., 11(1), 103-122.  

Kaveh, A. and Talatahari, S. (2010c), “Optimum design of skeletal 

structure using imperialist competitive algorithm”, Comput. 

Struct., 88(21-22), 1220-1229.  

Kaveh, A. and Talatahari, S. (2012), “Charged system search for 

optimal design of frame structures”, Appl. Soft. Comput., 12(1), 

382–393.  

Kaveh, A. and Zolghadr, A. (2016), “Optimal analysis for optimal 

design of cyclically repeated space trusses with frequency 

constraints, Smart Structures and Systems”, Smart Struct. Syst., 

18(4), 733-754.  

Kaveh, A., Bakhshpoori, T. and Afshari, E. (2014), “An efficient 

hybrid particle swarm and swallow swarm optimization 

algorithm”, Comput. Struct., 143, 40-59.  

Kennedy, J. and Eberhart, R. (1995), “Particle swarm 

optimization”, Proceedings of the IEEE International 

Conference on Neural Networks, Perth, Australia.  

Lamberti, L. and Pappalettere, C. (2003), “Move limits definition 

in structural optimization with sequential linear programming, 

Parts I & II”, Comput. Struct., 81(4), 197-238.  

Lee, K.S. and Geem, Z.W. (2005), “A new meta-heuristic 

algorithm for continuous engineering optimization: harmony 

search theory and practice”, Comput. Method. Appl. M., 194(36-

38), 3902-3933.  

Li, L.J., Huang, Z.B., Liu, F. and Wu, Q.H. (2007), “A heuristic 

particle swarm optimizer for optimization of pin connected 

structures”, Comput. Struct., 85(7-8), 340-349.  

Liu, S.Q. and Kozan, E. (2016), “New graph-based algorithms to 

efficiently solve large scale open pit mining optimization 

problems”, Exp. Syst. Appl., 43, 59-65.  

Mirjalili, S. (2015), “The ant lion optimizer”, Adv. Eng. Softw., 83, 

80-98.  

Montes, E.M. and Coello, C.A.C. (2008), “An empirical study 

about the usefulness of evolution strategies to solve constrained 

optimization problems”, Int. J. Gen. Sys., 37(4), 443-473.  

Price, K., Storn, R. and Lampinen, J. (2005), Differential 

evolution–a practical approach to global optimization, Berlin, 

Springer.  

Rizzi, P. (1976), “Optimization of multi-constrained structures 

based on optimality criteria”, Proceedings of the 

AIAA/ASME/SAE 17th Structures, Structural Dynamics, and 

Materials Conference, King of Prussia, PA.  

Sadollah, A., Bahreininejad, A., Eskandar, H. and Hamdi, M. 

(2012), “Mine blast algorithm for optimization of truss 

structures with discrete variables”, Comput. Struct., 102-103, 

49–63.  

Saka, M.P. (2014), “Shape and topology optimization design of 

skeletal structures using metaheuristic algorithms: A review”, 

Comput. Technol. Rev., 9, 31-68.  

Saka, M.P. and Kameshki, E.S. (1998), “Optimum design of multi-

story sway steel frames to BS 5950 using a genetic algorithm”, 

Proceedings of the 4th International Conference on 

Computational Structures Technology, Edinburgh, Scotland, UK.  

Saka, M.P., Hasançebi, O. and Geem, Z.W. (2016), 

“Metaheuristics in structural optimization and discussions on 

harmony search algorithm”, Swarm Evol. Comput., 28, 88-97. 

Sandgren, E. (1988), “Nonlinear integer and discrete programming 

in mechanical design”, Proceedings of the ASME design 

technology conference, Kissimine, F.L. 

Schmit, L.A. and Farshi, B. (1974), “Some approximation 

concepts for structural synthesis”, AIAA J., 12(5), 692-699.  

Schmit, L.A. and Miura, H. (1976), Approximation concepts for 

efficient structural synthesis, NASA-CR-2552, NASA, 

Washington, DC.  

Sedaghati, R. (2005), “Benchmark case studies in structural design 

optimization using the force method”, Int. J. Solids Struct., 

42(21-22), 5848-5871.  

Sharafi, P., The, L.H. and Hadi, M.N.S., (2014a), “Shape 

optimization of thin-walled steel sections using graph theory 

113



 

Saeed Asil Gharebaghi, Ali Kaveh and Mohammad Ardalan Asl 

and ACO algorithm”, J. Constr. Steel Res., 101, 331-341. 

Sharafi, P., Teh, L.H. and Hadi, M.N.S. (2014b), “Conceptual 

design optimization of rectilinear building frames: a knapsack 

problem approach”, Eng. Optim., 47(10), 1303-1323. 

Talatahari, S. (2016), “Symbiotic organisms search for optimum 

design of and grillage system”, Asian J. Civil Eng., 17(3), 299-

313.  

Talatahari, S., Gandomi, A.H., Yang, X.S. and Deb, S. (2015), 

“Optimum design of frame structures using the eagle strategy 

with differential evolution”, Eng. Struct., 91, 16-25.  

Talatahari, S., Kheirollahi, M., Farahmandpour, C. and Gandomi, 

A.H. (2013), “A multi-stage particle swarm for optimum design 

of truss structures”, Neural Comput. Appl., 23(5), 1297-1309.  

Tsoulos, I.G. (2008), “Modifications of real code genetic 

algorithm for global optimization”, Appl. Math. Comput., 

203(2), 598-607.  

Venkayya, V.B. (1971), “Design of optimum structures”, Comput. 

Struct., 1(1-2), 265-309.  

Wang, D. (2015), “Bandwidth-efficiency-oriented topology 

optimization for integrated switching systems based on circulant 

graphs”, Comput. Netw., 83, 199-216.  

Yang, X.S. (2010), “A new metaheuristic bat-inspired algorithm”, 

Nature Inspired Cooperative Strategies for Optimization 

(NISCO, 2010) (Eds., Gonzalez, J.R. et al.), Studies in 

Computational Intelligence, Springer, Berlin: Springer.  

Zheng, R., Ngo, N., Shum, P. and Tjin, S. (2005), “A staged 

continuous tabu search algorithm for the global optimisation 

and its applications to the design of fibre Bragg gratings”, 

Comput. Optim. Appl., 30(3), 319-335. 

 

 

CC 
 

 

114




