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1. Introduction 
 

Nafion-based IPMC is the best-known and investigated 

IPMC which consists of a thin polymer membrane with 

metal electrodes plated on both faces. Researchers consider 

IPMC as promising candidate for creating artificial muscles, 

miniature robots and biomedical devices Shahinpoor 

(1999), Yun (2006). This material belongs to wide group of 

smart materials. The alternative is for instance piezo smart 

structures Gupta et al. (2011), Alamir (2015). The IPMC 

exhibits large bending in response to applied voltage, 

nevertheless electrical control is very difficult due to its 

strongly nonlinear nature resulting from physical, chemical 

and environmental variables Bernat and Kolota (2016). 

When the membrane is hydrated, the state is stimulated with 

an applied small step potential, both fixed anions and 

mobile counter-ions are subjected to an electric field, and 

the counter-ions being able to diffuse towards one of the 

electrodes. As a result, the composite undergoes an initial 

fast bending deformation, followed by a slow relaxation. 

Several models for the mechanism of IPMC actuation 

have been described Chen (2009), Newbury and Leo 

(2002), Bonomo et al. (2007), Yun (2006). In this paper, we 

present a detailed description of the phenomenon of 

actuation under a 1 to 3V DC signal applied. Following this, 

we present a summary of the Chen model for IPMC sensing 

and actuation Chen et al. (2009). This approach is based on 

nonlinear Partial Differential Equations (PDE), which 

includes ion diffusion, ion migration and electrostatic  
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interactions in the IPMC. A nonlinear circuit model was 

employed to capture the electrical dynamics. This model 

covers nonlinear capacitance of IPMC, pseudocapacitance 

due to adsorption, ion diffusion resistance and nonlinear DC 

resistance of the polymer. Mechanical properties of IPMC 

were studied by Farinholt (2005), Newbury (2002). In our 

study the mechanical part was based on viscoelastic 

behavior. In addition the relationship between curvature 

output and bending moment was defined. This approach is 

suited for small deformations, which are considered in this 

paper. However, the mechanical modelling was extended to 

consider large deformation domain measurements. 

In this study we formulated a new model connecting 

features proposed in papers Chen et al. (2009), Farinholt 

(2005), Newbury (2002), and determined the base for a 

control system design. We also considered optimal control 

approach, which is a common technique in control system 

theory Mracek and Cloutier (1998), Lee (2012), Lin (2015). 

Currently, one of the most advanced methods in this area is 

State Dependent Riccati Equation SDRE which is a 

systematic approach to designing nonlinear feedback 

controllers that approximate the solution of the innite time 

horizon optimal control problem and can be implemented in 

real-time for a wide range of applications Banks et al. 

(2007), Mracek and Cloutier (1998).  

This paper is the first attempt to solve the SDRE control 

problem for Ionic Polymer Metal Composite. The primary 

challenge was to solve Riccati equations taking into account 

the model nonlinearity. Then, we analyzed the stability of a 

set point control problem which has not been published till 

now. The SDRE method requires full state feedback, 

unfortunately only position and current are available from 

experimental measurement. Thus, to obtain other state 

variables, the observer had to be designed. 

Currently, one of the most effective observer methods 
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for nonlinear systems is High Gain Observer (HGO) 

Besancon (2007), Wang (2001), Bernat and Stepien (2015), 

Khalil (2000). In this study, we applied Multi HGO 

Observer which accurately estimated the position of the 

IPMC strip and ensured high performance. The SDRE and 

Multi HGO Observer were coupled to create a closed-loop 

system, and the effectiveness of the proposed method was 

confirmed by the measurements. 

The IPMC strips were derived by Environmental Robots 

Incorporated (ERI), which is the world leader in 

manufacturing ionic polymer metal composites. 

 

 

2. Model 
 

This study investigated a nonlinear IPMC model 

developed in Chen et al. (2009), Newbury and Leo (2002). 

The model schema is shown in Fig. 1. Its equivalent state 

space equations are as follows Chen et al. (2009) 
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where )(tU  is input voltage, )(tV  is electric potential. 

Relying on physical phenomena, the model accurately 

defines nonlinear capacitance ))(( tVC , virtual capacitance 

))(( tVCa which describes the electrochemical adsorption 

process at the polymer-metal interface, ion diffusion 

resistance cR , electrode resistance aR  and nonlinear DC 

resistance of polymer expressed as current-voltage 

relationship ))(( tVY . For the sake of simplicity, these 

terms are defined in the appendix. The bending moment 

produced by IPMC is given by 
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where e is dielectric constant, h is thickness and 0  is 

coupling constant. The motion is defined by curvature 

output )(ty . It is related to the bending moment by 
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where 
3

3

2
WhI   is the moment of area inertia and eY  is 

the equivalent of Young's modulus of IPMC. Coefficients  

  and   define the character of relationship between 

curvature output and bending moment. It is different from 

work Chen et al. (2009) because it includes viscoelastic 

behavior described for instance in Newbury and Leo 

(2002). 

Based on circuit model (1), output current sI  is 

defined as 
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Fig. 1 Circuit model of IPMC, Smart Materials and 

Structures by IOP Publishing. Reproduced with 

permission of IOP Publishing in the format Journal via 

Copyright Clearance Center 

 

 

3. SDRE control problem  
 

This section presents the proposed nonlinear quadratic 

optimal control approach for the IPMC actuator based on 

State-Dependent Riccati Equation. To formulate the optimal 

control problem, we considered the cost functional with 

constant weighting matrices given by integral 
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
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1
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where 3Rx  is a state vector, Ru  is a scalar control 

variable, 3x3RQ  is symmetric positive definite matrix 

and RP  is a positive factor. 

The equations presented in the section 2 provide state 

space representation 
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where state )(tx is represented by  TVyy  . 

In the case of linear systems control the set point control 
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is very simple. However, it requires a mathematical 

transformation of the state equations for nonlinear systems 

like it is described by Erdem and Alleyne (2004). We 

present the set point control methodology of IPMC model 

below. 

Consider the system Eq. (6), where 

,
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The equilibrium point for reference rx  satisfies 
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Let us consider error coordinates as 

rr VVeyeyye  321
  (11) 

and control input is split into optr uuu   where ru  is 

reference part and optu  is optimal control which will be 

determined by SDRE algorithm. Taking into account (6), 

(10) and (11), we obtain 
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The matrix form of the system (12) is following 

optueBeeAe )()(   (14) 

To design a control system and define a control law, 

firstly we had to determine whether the control of the 

complete state of the dynamical system was possible Ç imen 

(2010), Lam et al. (2012). This information can be obtained 

by checking controllability of the dynamical system. 

Essentially, controllability informs about control possibility 

of a dynamical system from an arbitrary initial state to an 

arbitrary final state by means of a set of admissible controls. 

However, the trajectory of the dynamical system, Eq. (6) 

between initial and final state was not specified. 

Furthermore, there were no constraints imposed on the 

control u and the state vector e. 

In order to formulate easily computable algebraic 

controllability criteria let us introduce the state-dependent 

controllability matrix W(e) Banks et al. (2007), Ç imen 

(2012) 

 )()()()()()( 2 eBeAeBeAeBeW   (15) 

If )(eW  (a state-dependent in this case) has full rank 

then the system is controllable for all e. Parametrized IPMC 

model in form of Eq. (7) has state-dependent controllability 

matrix, Eq. (15), given by 
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which has full rank for all e . Therefore, the system in eq. 

(6) is controllable with the parametrization in Eq. (7). In Lin 

et al. (2015) the authors modified the assumption for the 

solvability of the SDRE algorithm. The newly-summarized 

lemma has replaced difficult-to-test conditions and 

accordingly a feasible State-Dependent Coefficient (SDC) 

matrix can be easily constructed. In this paper we adopt this 

attempt and compare it with classical SDRE Banks et al. 

(2007). To solve algorithm 1 presented in Lin et al. (2015) 

we take into account IPMC system described as 
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where )()()( 3313 xCxCxC a , yx 1 , yx 2 and 

Vx 3 . Firstly we check whether the pair of vectors  fx,  

is linearly independent for 0x . Due to nonlinearity of 

functions this condition is verified numerically in the 

feasible set of x . Next, the auxiliary coefficients k , 

3,2,1kx  are chosen. This enables us to find vector 

)(1 xq  which is orthonormal to vectors x  and f . The 

vectors )(2 xq  and )(3 xq  are found from relations: 

0))((  fxxq i
T
i for 3,2i . The auxiliary vector )(xqi  

defines matrix  TxqxqxqxM )()()()( 321 . Now, it is 

possible to calculate the matrix )()()( 1 xDMxMxA 

where  321  diagD . The described procedure 

has been implemented numerically and solved pointwise for 

every x . The transformation to error coordinates is 

performed the same as for classical SDRE. Furthermore, in 

the experimental section both algorithms are compared. 

Relying on works Banks et al. (2007), Huang and Lu 

(1996), the Hamiltonian for the optimal control problem in 

Eqs. (5) and (6) is given by 
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The necessary conditions for the optimal control were 

found to be 
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Assuming that eeKp )(  and using Eq. (21), we 

obtained a state - dependent feedback control 
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Substituting the control law into Eq. (20) and 

differentiating eeKp )( , we have 
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Equating Eqs. (19) and (23), we found a nonlinear 

differential equation with unknown matrix function )(eK  
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To obtain the state-dependent Riccati equation, Eq. (24) 

should be divided by e  and separated into two parts as 
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Eq. (25) is the form of the State Dependent Riccati 

Equation (SDRE). The nonlinear feedback gain function 

K(e) can be obtained by solving Eq. (25) and neglecting Eq. 

(26), which is so - called SDRE necessary condition for 

optimality Mracek and Cloutier (1998). This is a promising 

and rapidly emerging methodology to design nonlinear 

controllers in the context of the nonlinear quadratic 

regulator problem. To find the solution of Eq. (25), the 

authors use Frozen Riccati Equation Methods (FRE) of 

solving SDRE, where the Eq. (25) is treated as typical 

Algebraic Riccati Equation (ARE) solved for different 

states Huang and Lu (1996), Banks et al. (2007), Ç imen 

(2008). In the recent results of SDRE approach Banks et al. 

(2007), it is indicated that pointwise stabilizability of )(xA  

and )(xB  does not assure controllability of nonlinear 

system. The problem of global stability was also studied by 

Hammett et al. (1998). Furthermore, the recent results of 

work Heydari and Balakrishnan (2015), gives possibility to 

obtain global asymptotic stability in case of finite time 

SDRE method. Another issue related with SDRE approach 

is a recovery of the optimal control. Currently, there are 

known different techniques which allows to obtain the 

optimal control, for instance Heydari and Balakrishnan 

(2013), Lin et al. (2015), Huang and Lu (1996). 

 

 

4. Multi HGO observer 
 

In recent years an interesting technique to estimate plant 

state is High Gain Observer. Its extension, which causes 

elimination of peak phenomenon and improves transients, is 

Multi High Gain Observer. In the case of IPMC it is 

required to estimate speed y  based on position y , input 

voltage U  and output current sI . It is worth noting that 

potential V  is directly available by calculating (4) which 

requires signals U  and sI  and knowledge of resistance 

ca RR  .  

The Multi HGO Observer approach provides estimation 

of the state by M  independent observers. This results in 

the estimated state described by M  weighted states 
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where m  is weight coefficient, and mx̂  is m  observer 

state. As the result, the estimation is performed in two 

layers. 

The first layer is related to High Gain Observer, which 

calculates the estimated state mx̂ . Its design process is to 

find gains 
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The idea of High Gain Observer is to set up such a small 

  that the gain is sufficiently high to eliminate nonlinear 

terms and thus ensure stability. 

The second layer is built by multi observer, which finds 

the values of m  weights. This requires additional 

observation law which is created by introduction auxiliary 

signal m . This signal is expressed in terms of measurable 

signal mm yy ˆ  as 
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Hence we have a possibility to calculate m  in real 

time. This signal may be also found as function of 
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which is invertible. Thus, by solving identity 
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we obtain 0ˆ  xxe . Due to noise and other 

disturbances the above equation cannot be solved directly, 

that is why Recursive Least Square method is applied. 

 

 

5. Experiments  

 
The previous section details the theoretical 

developments of optimal controller relying on the SDRE 

methodology. Now, the results are examined by 

experiments. Fig. 2 illustrates the experimental setup. To 

avoid dehydration of the sample during the experiments, all 

tests were performed with IPMC immersed in deionized 

water and clamped at one end. After each experiment, the 

clamping was polished with alcohol to remove and prevent 

oxidation. The polymer was subject to voltage excitation 

generated from the computer through realtime data 

acquisition board (RTDAC Inteco). A laser displacement 

sensor (micro-epsilon optoNCDT 1302) was used to 

measure the bending displacement. We added another small 

resistor 1sR , which was serially connected with 

IPMC. By measuring the voltage sV , one can calculate 

current 
s

s
s

R

V
I  . The IPMC samples dimensions have an 

accuracy of ±0,5 [mm] in the length and width, and ±0,5 

[mm] in the thickness. Most parameters of the IPMC model 

can be directly measured, but some of them must be 

identified by a fitting process. Table 1 shows all the 

parameters. 

 

 
Fig. 2 Experimental setup and its schematic diagram, 

Smart Materials and Structures by IOP Publishing. 

Reproduced with permission of IOP Publishing in the 

format Journal via Copyright Clearance Center 

 

 

Table 1 Parameters in the model 

F R T Ra 

96487 mol

C

 8.3143 Kmol

J

*  
300 K 0 Ω 

Rc L W H 

130 Ω 5 mm 37 mm 100 µm 

C- e  
CH+ K1 

1091
3m

mol
 3.35*10-6

m

F
 1*10-6

3m

mol
 4*105 

0  Ye 1q    

0.0258
C

J
 0.62 GPa 0.105

2cm

C
 15 

Y1 Y2 Y3   

0.1*10-3

V

A
 0.6*10-3

2V

A
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5.1 Multi HGO Observer 
 

Firstly, we would like to show the results of state 

estimation. To obtain IPMC speed, the Multi Observer 

described in section 4 is applied. The first layer contains 

3M  observers. Its gains are equal to 












 2

5.11 L where 05.0 . The second layer 

is applied to estimate weights m . Relying on (32), the 

following linear regressor is constructed 

       pLSpp
T

p nennny  ˆ

 

(33) 

where 
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   Tppnppp TnTnn )(ˆ)(ˆˆ
11  

 

(34) 

is the 1nR  vector with estimated parameters 

 


























)()(

)()(

1

11

ppnppn

ppnpp

p

TnTn

TnTn

n 
 

(35) 

 

 

 

 

is the nnR   regressor and   )(1 ppnp Tnny   is the 

11R  output. The regressor parameters are estimated by 

Recursive Least Square algorithm with gain equal to 0.5. 

The estimation algorithm was calculated in real time 

with probe time Tp = 0.01[s]. In Fig. 3(a), the comparison of 

estimated position error between Multi HGO Observer and 

High Gain Observer is visible. Multi HGO Observer 

provides faster convergence rates than HGO observer.  

 

 

 

Fig. 3 Output position error (a) and estimated speed error (b) for Multi HGO Observer and High Gain Observer 

 

Fig. 4 Estimated position (a) and estimated velocity (b) of Multi HGO Observer under different initial conditions 

 

Fig. 5 Multi HGO Observer coefficients m for a long time (a) and for a short time (b) 
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Fig. 3(b) shows the transients of estimated speed error 

of IPMC by Multi HGO Observer and High Gain Observer. 

It should be noted that the first one provided overshoot four 

times lower than the second one. 

In order to demonstrate the behavior of Multi HGO 

Observer, Figs. 4(a) and 4(b) present the estimated position 

and velocity. In both figures position and speed are 

represented by three independent observers. The estimated 

state is calculated by applying weights shown in Fig. 5. 

It is worth noting that Multi HGO Observer reduced the 

initial overshoot in the position error and was capable to 

recover speed at the start of the process. The main 

advantage of Multi HGO Observer technique is the transient 

improvement due to double layer state estimation. One is in 

the first layer with HGO observers and the second layer 

consists time varying coefficient, see details in Bernat and 

Stepien (2015). 

 

5.2 SDRE controller 
 
In the second part we aimed to verify the behavior of 

SDRE controller for classical approach Banks et al. (2007) 

and new approach Lin et al. (2015). To calculate the 

optimal control law, the following weight factors were 

chosen 

 


















100

010

001

1 QP

 
(36) 

Next, gain K  is found by taking into account the 

following operating range 

][1][1

]/[5.0]/[5.0

][5.1[[5.1

mmymm

smmysmm

VVV









 

(37) 

 

 

 

 

 

 

The calculated gain is applied to find feedback voltage 

from Eq. (22). The calculated voltage is demonstrated in 

Fig. 6(a). In the case of SDRE parametrization presented by  

Lin et al. (2015), we solved SDRE problem relying on 

function (17). The coefficients 3,2,1,  ii are as follows -

0.5, -1.0 and -1.5.  

The example voltage feedback is presented in Fig. 6(b). 

The square waveform function was taken as the reference 

distance. Its period is equal to 15[s] and amplitude 

0.15[mm]. Relying on Eq. (10), the reference electric 

potential is found taking into account the reference distance 

and current state. 

The controller is run online with probe time Tp = 0.01[s]. 

The feedback voltage signals are visible in Figs. 7(a) and 

7(b). The IPMC distance was measured by laser sensor. It is 

clear in Figs. 8(a) and 8(b) that IPMC converges to the 

reference position in both cases (classical SDRE and SDRE 

by Lin et al. (2015)). These figures also demonstrate that 

IPMC control system is noisy and highly disturbed, which 

results from the IPMC nature, as it has been reported in 

several papers previously Chen et al. (2009), Farinholt 

(2005). 

The overall control process quality is good taking into 

account small steady state error. In Figs. 8(c) and 8(d) the 

control errors are presented for classic SDRE and new 

approach proposed by Lin et al. (2015). Figs. 9(c) and 9(d) 

show the control errors calculated for electric potential 

signals. In all presented cases the errors are not higher than 

5[%] in the steady state. This figures also show that electric 

potential follows its reference value. Additionally, the 

electric potential is much less noisy in comparison with 

distance signal.  

To ensure experiment clarity in Figs. 7(a) and 7(b) the 

IPMC current transient signals are compared for both SDRE 

algorithms. Their waveform contain high level peaks which 

are caused by voltage peaks generated by controller.  

 

 

 

 

 

Fig. 6 Voltage as a function of displacement error and electric potential error for classical SDRE (a) and SDRE by Lin et 

al. (b) 
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Fig. 7 Voltage transient calculated by classical SDRE controller (a) and SDRE by Lin et al. controller (b). The transient of 

IPMC current under classical SDRE control (c) and SDRE by Lin et al. control (d) 

 
Fig. 8 Comparison of measured distance and its reference value for classical SDRE (a) and SDRE by Lin et al. (b). The 

transient of distance error acquired in the experiment for classical SDRE (c) and SDRE by Lin et al. (d) 
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6. Conclusions 

 
Accurate information about the properties and control 

methods of EAP materials is critical to designers, who are 

considering the construction of mechanisms or devices 

using these materials. While some of the EAPs are well 

known, the IPMCs still require new control methods 

because have complex, nonlinear behavior associated with 

the mobility of the cations on the microscopic level. 

In this study, the nonlinear model proposed by Chen et 

al. (2009) has been extended to the equations of mechanics 

and described in the state space, which was a starting point 

for nonlinear quadratic optimal control design based on 

State Dependent Riccati Equation. We compare two 

methods of construction of feasible SDC matrix. 

Additionally, Multi HGO Observer were used to estimate 

velocity of IPMC strip based on position, input voltage 

andoutput current. Both cases were compared and the 

estimated velocity, position and error signals were 

demonstrated graphically.  

The proposed nonlinear model was validated 

experimentally and this approach can be used in various 

applications that require precise control. Future work will 

be focused on the application to IPMC-actuated biomedical 

devices and biomimetic robots, which require large 

deformation of the IPMC. 
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A. IPMC model details 
 

Nonlinear capacitance is defined by the following 

formula 

 
 

 V

V
S

dV

dQ
VC e






2

'

1 

 
(38) 

where Q  is the total charge as a function of V and 

 V'  is defined as follows 
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eRT

VCCF
b






 12

 
(41) 

where F is Faraday constant, C  is anion concentrations, 

R  is gas constant, T  is temperature. Pseudocapacitance 

aC  to define adsorption process is as follows 

 
2

1
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RT
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 (42) 

where: 1q  is physical constant (for H on  

polycrystalline Pt ), 1K  is the chemical rate constant 

for electrochemical surface process and Hc  is the 

concentration of H . 

The DC current can be approximated by a series of 

polynomial function  VY , and the coefficients 1Y , 2Y , 3Y  

can be identified Chen et al. (2009). 
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