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1. Introduction  
 

Structures bonded with piezoelectric materials, called 

„smart structures‟, have a great potential in the application 

of shape control, vibration suppression, health monitoring 

(Konka et al. 2013) and energy harvesting (Song et al. 

2010), especially for plate and shell structures in aerospace 

engineering. In the past three decades a lot of research has 

been published concerning conventional piezoceramics or 

piezopolymers. It can be found that piezoceramics, like lead 

zirconium titanate (PZT), have relatively strong actuation 

forces, but the brittle nature of ceramics makes them being 

easily damaged during handling and bonding processes 

(Williams et al. 2002a). Piezoelectric polymers, like 

polyvinylidene fluoride (PVDF), are much more flexible, 

but with lower actuation forces compared to PZT. 

To overcome these limitations of piezoelectric materials,  
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piezo composite materials were developed and introduced 

to industries. The first type of piezo composite is referred to 

1-3 composites invented by Skinner et al. (1978), the 

second one is an active fiber composite (AFC) initially 

developed by MIT (Hagood et al. 1993, Bent and Hagood 

1997) and the third one is a macro-fiber composite (MFC) 

proposed by NASA Langley Research Center (Wilkie et al. 

2000). For more details of piezo composites, the paper 

refers to the references (Williams et al. 2002b, Lin et al. 

2013). The structural mechanism of AFC and MFC patches 

are quite similar. The major difference is that AFC patches 

include circular cross-section piezoelectric fibers, while 

MFC patches use rectangular cross-section fibers. Due to 

circular cross-section piezoelectric fibers in AFC, the 

contact area between the interdigitated electrodes and the 

fibers is so small that it needs high operating voltage (Park 

and Kim 2005). Therefore, among all these piezoelectric 

composite materials, the MFC is the leading low-profile 

actuator and sensor offering high performance, flexibility 

and reliability in a cost competitive device (Smart Material 

Corp. 2016). MFC is comprised of an active layer in the 

middle, electrode layers and kapton protection films. The 

active layer is constructed by piezoceramic fibrous phase 

embedded in epoxy matrix. This kind of structural 

arrangement makes MFC flexible that can conform to a 

curved surface. 

Due to the complexity of MFC materials, there are not 

many papers published dealing with modeling of MFC 

bonded smart structures for static and dynamic analysis. 

Nevertheless, some researchers simulated static response 

for MFC bonded smart structures using commercial 

software, e.g., ANSYS (Dano et al. 2008, Bowen et al. 
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2011), ABAQUS (Ren 2008, Binette et al. 2009), and 

obtained reasonable predictions compared with those from 

the experiments. Beyond using the commercial software, 

Park and Kim (2005), Bilgen et al. (2010) developed 

analytical models respectively for MFC bonded active twist 

rotor blades and benders. Zhang et al. (2015b) developed a 

finite element model for static analysis of MFC bonded 

structures with arbitrary piezo fiber orientation based on the 

first-order shear deformation hypothesis. Azzouz et al. 

(2001) developed linear finite element models for static 

analysis of MFC or AFC laminated structures. Concerning 

dynamic analysis, Bilgen et al. (2010) developed an 

analytical model for frequency response analysis of an MFC 

bonded clamped-free thin beam, and compared with 

experimental results. Padoin et al. (2015) optimized the 

placement of MFC patches on a plate for vibration 

suppression using linear quadratic regulator (LQR) 

approach. In addition, Gao and Shen (2003), Sodano et al. 

(2004), Kim et al. (2011) used MFC patches for the 

applications of active vibration suppression. Moreover, 

Azzouz and Hall (2010) developed a von Kármán nonlinear 

FE model based on the FOSD hypothesis for frequency 

response of a rotating MFC actuator. 

Apart from fiber based piezoelectric materials, many 

other conventional monolithic piezoelectric materials, such 

as piezoelectric ceramics and polymers, have been 

frequently used for shape and vibration control. A lot of 

publications can be found for shape and vibration control of 

monolithic piezoelectric bonded smart structures. An early 

literature review on static and dynamic control of 

piezoelectric structures was carried out by Irschik (2002). 

Many investigations have been carried out by Nader et al. 

(2003), Irschik et al. (2003), Schoeftner and Irschik (2011) 

for dynamic shape control of flexible beam-type structures 

using Bernoulli-Euler or Timoshenko beam hypothesis. 

Furthermore, Kioua and Mirza (2000) studied the bending 

and twisting behavior of piezoelectric laminated composite 

shallow shells. Wang et al. (2016) optimized the actuation 

locations using annealing algorithm for static shape control 

of smart reflector. Recently, Zhang and Schmidt (2014a, b), 

Zhang et al. (2015a) developed geometrically nonlinear 

models for shape and dynamic control of piezolaminated 

smart plates and shells. The literature survey reveals that 

most of the studies concerning shape and vibration control 

were focusing on conventional monolithic piezoelectric 

integrated smart structures. Due to many highlighted 

advantages of macro-fiber composites, some researchers 

started to investigate the modeling and analysis of MFC 

bonded structures. However, most of the available studies 

on simulation of MFC bonded structures was carried out 

using commercial software or simplified analytical 

solutions only for static analysis of beams and plates, and 

did not take the fiber angle variation into account, which 

certainly will influence significantly the structural response. 

On the other hand, very few papers presented and compared 

the two modes of MFC patches, namely MFC-d31and 

MFC-33. In order to simulate shape and vibration control of 

MFC bonded structures, this paper develops linear electro-

mechanically coupled static and dynamic FE models using 

2-dimensional finite elements based on the FOSD 

hypothesis Two different types of MFCs are compared and 

discussed, namely MFCd31 and MFC-d33, in which the 

former one is dominated by the d31 effect, while the latter 

one is by the d33 effect. The proposed model is firstly 

validated by a cantilevered plate bonded with MFC-d33, 

then applied to analyze a plate laminated with one of these 

two different MFCs for active shape and vibration control. 

 

 

2. MFC constitutive equations 
 

Macro-fiber composites are mainly comprised of 

piezoceramic fibers, epoxy matrix, electrode layers etc., see 

Li et al. (2016). Due to the difference of piezo-fiber 

polarization in MFC patches, there are two typical modes of 

MFCs, namely MFC-d31 and MFC-d33, with the principle 

descriptions shown in Fig. 1. The former one is dominated 

by the d31 effect, while the latter one mainly uses the d33 

effect. This is due to the fact that the polarization of 

piezoelectric fibers in MFC-d31 is along the thickness 

direction and that in MFC-d33 is along the in-plane fiber 

direction. 

In order to show clearly the process of modeling 

techniques for MFCs, three coordinate systems are 

employed, namely the curvilinear coordinate system 

denoted by Θi (i = 1, 2, 3), the fiber coordinate system 

presented by iΘ


, and the polarization coordinate system 

shown as iΘ
~

, as can be seen in Fig. 1, more details are 

referred to Zhang et al. (2015b). The polarization of both 

types of MFCs is along the 3Θ
~

 -line in the polarization 

coordinate system. The quantities referred to the curvilinear 

coordinate system and the fiber coordinate system are 

respectively denoted by without overhead symbol and with 

overhead. 

Using the assumption of 33σ = 0 for plate and shell 

structures, the constitutive equations in the fiber coordinate 

system can be arranged in matrix form as 

T , σ cε e E  (1) 

 

. D eε χE
 

(2) 

 

 

 (a) MFC-d31 mode 

 
(b) MFC-d33 mode 

Fig. 1 Two typical modes of MFC 
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Here σ ,  are the stress and strain vectors; c is the 

elasticity constant matrix; D , E , e and  denote the 

electric displacement vector, the electric field vector, the 

piezoelectric constant matrix and the dielectric constant 

matrix, respectively. 

Due to different polarization of MFC, the piezoelectric 

constant matrix has different forms for the two modes under 

consideration. For MFC-d31, the piezoelectric constant 

matrix is arranged as 

15

24

31 32

0 0 0 0

0 0 0 0 ,

0 0 0

e

e

e e

 
 


 
  

e

 

(3) 

while for MFC-d33, it becomes 

11 12

26

35

0 0 0

0 0 0 0 .

0 0 0 0

e e

e

e

 
 


 
  

e

 

(4) 

Every piece of MFC patch, either MFC-d31 or MFC-

d33, has only one direction in which the electric voltage is 

applied. Therefore, the constitutive equations for the direct 

piezoelectric effect of MFC material are reduced to 

1 2 0 0 0 .p p p pp pD e e E     
(5) 

The components in (5) can be obtained by 

1 1 11 2 12 ,p p pe d c d c 
 

(6) 

 

2 1 12 2 22 ,p p pe d c d c 
 

(7) 

 

1 1 2 2 ,pp pp p p p pє d e d e   
 

(8) 

 

E

,
p

pE
h


 

 

(9) 

where p = 3 for MFC-d31 and p = 1 for MFC-d33, ijd


refer 

to the piezoelectric constants, pp


represents the dielectric 

constants, p


 is the actuation voltage applied on two 

electrodes and hE denotes the distance between two 

neighboring electrodes. 

 

 

Fig. 2 Multi-layer composites with MFCs 

Considering multi-layered structures laminated with 

MFC patches and cross- or angle-ply laminae, as illustrated 

in Fig. 2, one has to transform the constitutive equations in 

the fiber coordinate system to the curvilinear coordinate 

system by a transformation matrix T, with the details 

presented in Zhang et al. (2015b). Consequently, the 

constitutive equations referred to the curvilinear coordinate 

system become 

T , σ cε e E  (10) 

 

. D χEeε
 (11) 

with 

T , .= , c T cT e eT χ χ
 (12) 

From the structural arrangement of MFC-d31 and MFC-d33 

patches, it can be known that the electric field applied on 

MFC is always along the thickness direction for MFC-d31 

patches and along the piezo fiber direction for MFC-d33 

patches. The electric field induced longitudinal strains 

( 11 22,  ) are respectively parallel to 1  and 2 , which 

are transformed to structural coordinates by the matrix T. 

 

 

3. Dynamic finite element formulations 
 

For laminated thin-walled structures, a 2-dimensional 

finite element with the FOSD hypothesis is adopted. Under 

the assumption of the FOSD hypothesis, the displacement 

through the thickness is regarded as linear distribution, 

more details are referred to Zhang et al. (2015b). 

In order to obtain dynamic equations of motion, the 

Hamilton‟s principle is applied with taking into account the 

linear stain-displacement relations, given as 

2

1

int ext( )d 0,
t

t
T W W t    

 
(13) 

with 

T d ,
V

T V   u u
 

(14) 

 

T T

int ( )d ,
V

W V    ε σ E D
 

(15) 

 

T T T

ext b s cd d .
V A

W V A      u f u f u f
 

(16) 

Here   represents the variational operator, d
A

A  is the 

area integral and d
V

V  denotes the volume integral; T, 

Wint, Wext denote respectively the kinetic energy, internal 

work and the external work; fb, fs and fc are the body, 

surface and concentrated force vectors, respectively, and u, 

u  are respectively the displacement and acceleration 

vectors. 
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Solving Eq. (13) one obtains the equations of motion 

and the sensor equations for MFC bonded composite 

structures as 

uu uu uu u a ue ,   M q C q K q K F
 

(17) 

 

u s .   0K q K 
 

(18) 

Here Muu, Cuu, Kuu, Kuϕ, Kϕu and Kϕϕ represent the mass 

matrix, the damping matrix, the stiffness matrix, the 

piezoelectric coupled stiffness matrix, the mechanically 

coupled capacity matrix and the piezoelectric capacity 

matrix, respectively. Furthermore, Fue, q, ϕa and ϕs are 

respectively the external force vector, the nodal 

displacement vector, the actuation voltage vector and the 

sensor voltage vector. For static analysis the first two terms 

( uu uu,M q C q ) in Eq. (17) are neglected. 

 

 

4. Optimized control 
 
To implement an optimal control strategy, a state space 

model should be constructed. Assuming the state vector x, 

the system input vector u and output vector y as 

a, , .
 

   
 

q
x u y q

q


 

(19) 

one obtains a standard form of the state space model as 

, x Ax Bu
 

(20) 

 

.y Cx
 (21) 

Here the system matrix A, the control matrix B and the 

system output matrix C are respectively expressed as 

1 1

uu uu uu uu

,
 

 
  

  

0 I
A

M K M C
 

(22) 

 

1

uu u

,




 
  

  

0
B

M K
 

(23) 

 

 , 0C I
 

(24) 

where I and 0 denote respectively the identity matrix and 

zero matrix. 

Linear quadratic regulator (LQR) is proposed for 

vibration suppression in the present paper. The control gain 

then can be obtained by optimizing the cost function 

T T

LQR
0

( )d ,J t


  y Qy u Ru
 

(25) 

where Q  and R  are the weighting matrices for the 

system output and the system input vectors. The optimized 

control input will be 

1 T .   u Kx R B Px  (26) 

Here 
1 TK R B P  is the control gain, and P can be 

solved by the algebraic Riccati equation, more details are 

referred to Zhang et al. (2015c). 

 

 

5. Numerical simulations 
 

5.1 Validation test 
 

In order to validate the present finite element model, a 

cantilevered composite laminated plate bonded with an 

MFC actuation is tested numerically, which was studied 

earlier by Dano et al. (2008) and Padoin et al. (2015). The 

schematic drawing of the MFC composite plate is shown in 

Fig. 3, in which the dimensions of the host composite plate 

is 250×100×0.33 mm3 and those of the active area of MFC 

patch is 85×28×0.3 mm3. In the simulation only the active 

area is considered of both cases of MFCs, because the non-

active area is made up of kapton material that is negligible 

soft (Zhang et al. 2016). The host composite structure is 

made up of two plies stacked as [0]s, with the thickness of 

0.165 mm for each substrate layer. The MFC patches 

simulated in the present paper is marked by M8528-P1/F1 

for MFC-d33 mode and by M8528-P2 for MFC-d31 mode 

(Smart Material Corp. 2016). The spacing of the 

interdigitated electrodes is hE=0.5 mm for M8528-P1/F1 

and hE = 0.18 mm for M8528-P2. The material properties of 

the composite layers and MFC patches are listed in Table 1. 

 

 

Fig. 3 Cantilevered composite laminated plate with a 

bonded MFC actuation active 

 

 

Fig. 4 Vertical displacements of the central line at the 

MFC plate with piezoelectric fiber angle 0° subjected 

to 1000 V actuation 
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Table 1 Material properties of MFCs and composites (Dano 

et al. 2008, Padoin et al. 2015, Smart Material Corp. 2016) 

Material constants MFC-d33 MFC-d31 Composite 

1Y  (GPa) 30.336 30.336 101.6 

2Y  (GPa) 15.857 15.857 7.91 

3Y  (GPa) 15.857 15.857 7.91 

12G  (GPa) 5.515 5.515 3.01 

13G  (GPa) 5.515 5.515 3.01 

23G  (GPa) 2.6 2.6 2.71 

12v  
0.312 0.312 0.318 

13v  
0.312 0.312 0.318 

23v  
0.327 0.327 0.458 

1pd  (10-12m/V)* 360 -129.6  

2pd  (10-12m/V)* -190 -68.4  

hE (mm) 0.5 0.18  

 

 

The MFC bonded structure is meshed by 10×6 eight-

node quadrilateral elements with five mechanical degrees of 

freedom at each node and one electrical degree of freedom 

on each MFC patch. Using the present finite element model, 

a static response of the central line at the cantilevered MFC 

plate subjected to 1000V actuation voltages is obtained and 

shown in Fig. 4. The results show that the present curve 

agrees quite well with those studied numerically by Padoin 

et al. (2015) and experimentally by Dano et al. (2008). 

However, a slight discrepancy exists when compared to the 

simulation result of Dano et al. (2008). 

 

5.2 Static analysis of MFC bonded plate 
 

In this subsection, the same MFC composite plate, 

shown in Fig. 3, is considered for static simulation. The 

plate is bonded with one MFC patch, either M8528-P1 

(MFC-d33) or M8528-P2 (MFC-d31), which is subjected to 

an electric voltage of 300 V for both types. Since the 

distance of any two neighboring electrodes of MFC-d31 is 

different from those of MFC-d33, the electric field along 

the thickness for MFC-d31 and that along the piezo fiber 

orientation for MFC-d33 are respectively 300/0.18 V/mm 

and 300/0.5 V/mm. The vertical displacements at the central 

line for both cases are presented in Fig. 5, where the piezo 

fiber angle is zero. The figure shows that the central line 

displacements of two different MFCs are quite similar with 

a slight discrepancy. This is because the absolute value of 

the electric field induced longitudinal strain in the 1

direction for MFC-d33 (ε11 = |d11E1| = 2.16×10−4) is equal to 

that for MFC-d31, as well as for the strain in the 2

direction ε22 = |d12E1| = 1.14×10−4 in both types of MFCs. 

The slight discrepancy of the central line displacement is 

due to the sign of the piezoelectric coefficients. 

 

 

 

 

Fig. 5 Vertical displacements of the central line at the 

MFC plate with piezoelectric fiber angle 0° subjected 

to 300 V actuation voltage 

 

 

 

 

 (a) MFC-d31 bonded plate 

 
(b) MFC-d33 bonded plate 

Fig. 6 Surface shapes of the composite plate with MFC 

piezoelectric fiber angle 0° 
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 (a) MFC-d31 bonded plate 

 
(b) MFC-d33 bonded plate 

Fig. 7 Surface shapes of the composite plate with MFC 

piezoelectric fiber angle 15° 

 
 
 
 

 

 (a) MFC-d31 bonded plate 

 
(b) MFC-d33 bonded plate 

Fig. 8 Surface shapes of the composite plate with MFC 

piezoelectric fiber angle 30° 

 
 
 

 
 
 
 

 

 (a) MFC-d31 bonded plate 

 
(b) MFC-d33 bonded plate 

Fig. 9 Surface shapes of the composite plate with MFC 

piezoelectric fiber angle 45° 

 
 
 
 
 

 

 (a) MFC-d31 bonded plate 

 
(b) MFC-d33 bonded plate 

Fig. 10 Surface shapes of the composite plate with  

MFC piezoelectric fiber angle 60° 
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 (a) MFC-d31 bonded plate 

 
(b) MFC-d33 bonded plate 

Fig. 11 Surface shapes of the composite plate with  

MFC piezoelectric fiber angle 75° 

 
 
 
 

 

 (a) MFC-d31 bonded plate 

 
(b) MFC-d33 bonded plate 

Fig. 12 Surface shapes of the composite plate with  

MFC piezoelectric fiber angle 90° 

 
 
 

 

Fig. 13 Vertical deflections and twists of the MFC  

bonded composite plate 

 

 

Considering the same boundary conditions, the 

deformed shapes of the laminated plate with various 

piezoelectric fiber orientations are presented in Figs. 6-12. 

From Fig. 6, it can be seen that the deformation is similar 

for either MFC-d31 or MFC-d33 bonded plates, in which 

the reason is explained in the previous paragraph. Since the 

piezoelectric constants of MFC-d31, 
31d and

32d , are in 

the same sign, MFC-d31 plate is always deformed in one 

direction, upwards or downwards. However, this will be 

changed in MFC-d33 plate. Because the piezoelectric 

constants of MFC-d33, 
11d and

12d , have opposite signs. 

The figures show that the MFC-d33 plate first deforms 

upwards, and then goes downwards with increasing of the 

piezoelectric fiber orientation form 0° to 90°. This can be 

explained by the fact that the deformation of the plate first 

is dominated by
11d constant (positive), and then dominated 

by
12d constant (negative), which has opposite sign. 

Furthermore, the plate bonded with MFC-d33 patch has 

much larger twists than that bonded with MFC-d31 patch, 

especially when the piezo fiber orientation placed at 30°, 45° 

and 60°. The vertical tip displacements wB of the composite 

plate with various piezo fiber angles are presented in Fig. 

13, as well as the twists defined as |wA – wC|. 

 
5.3 Dynamic analysis and active vibration control 
 

In this simulation, a step actuation voltage of 300 V is 

applied on the MFC patch, considering different types of 

MFC patches and various piezoelectric fiber orientations. 

The dynamic finite element model takes the consideration 

of damping effects, which are approximately obtained by 

the Rayleigh method with a damping ratio of 0.8% for the 

first six modes. The dynamic step response of the plate is 

presented in Fig. 14, from which we can observe that the 

dynamic response of MFC-d33 and MFC-d31 bonded plate 

with piezo fiber angle of 0° is almost identical. The 

amplitudes of dynamic response of the MFC bonded plate 

decreases dramatically with the piezo fiber angle increases, 

especially for the d33 mode. This trend can be concluded 

from static analysis in the previous subsection. 
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Fig. 14 Tip displacement of the MFC structures with 

various piezoelectric fiber orientation subjected to a  

step actuation voltage of 300 V 

 
 

 

 (a) Tip displacement 

 
(b) Actuation voltage 

Fig. 15 Active vibration control for the plate with MFC 

piezoelectric fiber angle 0° using LQR 

 
 

Next, an LQR controller is adopted to suppress the free 

vibration of the MFC-d33 bonded composite plate with 

piezo fiber angle 0°. The plate is initially subjected to a 

concentrating tip force of 0.05 N, and the plate starts free 

vibration after the tip force is released. The weighting 

coefficients for the output and input are respectively Q

=1/25 and R =10-4. The controlled/uncontrolled free 

vibration and the actuation voltage are presented in Fig. 15, 

which shows that the free vibration is damped significantly 

by LQR controller. With the same structure and parameters, 

the frequency response of uncontrolled and controlled by 

LQR is obtained, shown in Fig. 16. From the frequency-

magnitude plot, it can be seen that the first resonance 

frequency is well suppressed by the LQR controller. 

 

Fig. 16 Bode plot of the MFC-d33 structure with and 

without control 

 
 
6. Conclusions 
 

The paper has developed an electro-mechanically 

coupled dynamic FE model of MFC laminated structures 

for active shape and vibration control. The FE model is 

obtained by a 2-dimensional FE method based on the first-

order shear deformation hypothesis. Two different types of 

MFCs (MFC-d31 and MFC-d33) have been considered in 

the present mathematical model. A composite plate bonded 

with either MFC-d31 or MFC-d33 has been studied for 

active shape and vibration control. The static results show 

that the piezoelectric fiber orientation has a significant 

influence on tip displacements and the twists both for MFC-

d31 and MFC-d33 cases. With the equivalent piezoelectric 

constants (generating equal longitudinal strains), MFC-d33 

bonded composite plate produces larger twists than 

MFCd31. Furthermore, the piezoelectric fiber orientation 

influences much more significantly in the MFC-d33 bonded 

plate than in MFC-d31 bonded plate. 
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