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Abstract.

In this work, free vibration analysis of size-dependent functionally graded (FG) nanoplates resting on two-parameter

elastic foundation is investigated based on a novel nonlocal refined trigonometric shear deformation theory for the first time.
This theory includes undetermined integral variables and contains only four unknowns, with is even less than the conventional
first shear deformation theory (FSDT). Mori—Tanaka model is employed to describe gradually distribution of material properties
along the plate thickness. Size-dependency of nanosize FG plate is captured via the nonlocal elasticity theory of Eringen. By
implementing Hamilton’s principle the equations of motion are obtained for a refined four-variable shear deformation plate
theory and then solved analytically. To show the accuracy of the present theory, our research results in specific cases are
compared with available results in the literature and a good agreement will be demonstrated. Finally, the influence of various
parameters such as nonlocal parameter, power law indexes, elastic foundation parameters, aspect ratio, and the thickness ratio on
the non-dimensional frequency of rectangular FG nanoscale plates are presented and discussed in detail.
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1. Introduction

Nanostructures are widely employed in micro- and
nano-scale devices and systems such as biosensors, atomic
force, microscopes, micro-electro-mechanical systems
(MEMS) and nanoelectro-mechanical systems (NEMS)
because of their superior mechanical, chemical, and
electronic characteristics. In such applications, small scale
influences are often demonstrated. These influences can be
captured via size-dependent continuum mechanics such as
strain gradient theory (Nix and Gao 1998, Lam et al. 2003,
Aifantis 1999), modified couple stress theories (Koiter
1969, Mindlin and Tiersten 1962, Toupin 1962), and
nonlocal elasticity theory (Eringen 1972). Among these
theories, the nonlocal elasticity theory is introduced by
Eringen is the most commonly employed theory. Contrary
to the local theories, which consider that the stress at a point
is a function of strain at that point, the nonlocal elasticity
theory considers that the stress at a point is a function of
strains at all points in the continuum (Eltaher et al. 20164,
b). Functionally graded materials (FGMs) are the novel
generation of new advanced composite materials, whose
mechanical characteristics are varied smoothly in the spatial
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direction microscopically to improve the overall structural
performance (Bouderba et al. 2013, Tounsi et al. 2013, Zidi
et al. 2014, Ait Amar Meziane et al. 2014, Bousahla et al.
2014, Sallai et al. 2015, Meksi et al. 2015, Ait Atmane et al.
2015, Bouchafa et al. 2015, Tebboune et al. 2015, Bellifa et
al. 2016, Bouderba et al. 2016, Beldjelili et al. 2016, El-
Hassar et al. 2016, Bousahla et al. 2016). Nanotechnology
is also interested with fabrication of functionally graded
(FG) materials and engineering structures at a nanoscale,
which enables a novel generation of materials with
revolutionary characteristics and devices with enhanced
functionality. Recently, the use of FG materials has broadly
been spread in micro- and nano-structures such as micro-
and nano-electromechanical systems (MEMS and NEMS)
(Witvrouw and Mehta 2005, Lee et al. 2006, Hasanyan et
al. 2008, Mohammadi-Alasti et al. 2011, Zhang and Fu
2012), thin films in the form of shape memory alloys (Fu et
al. 2003, Lu et al. 2011), and atomic force microscopes
(AFMs) to achieve high sensitivity and desired performance
(Rahaeifard et al. 2009). In such applications, size
influences have been experimentally seen (Fleck et al.
1994, Stolken and Evans 1998, Chong et al. 2001, Lam et
al. 2003). Since the dimension of these structural devices
typically falls below micron- or nano-scale in at least one
direction, an essential feature triggered in these devices is
that their mechanical characteristics such as Young’s
modulus, flexural rigidity, and so on are size-dependent.
Referring to the mechanical investigation of size-
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dependent plate structures, linear free flexural vibration
behavior of size dependent FG nanoplates is analyzed by
Natarajan et al. (2012) by employing the isogeometric
based finite element method. In this research, they used the
nonlocal constitutive relation based on Eringen’s
differential form of nonlocal elasticity theory. The dynamic
properties of FG beam with power law material graduation
in the axial or the transversal directions were investigated
by Alshorbagy et al. (2011). Eltaher et al. (2012) studied the
free vibration analysis of FG size-dependent nanobeams.
Eltaher et al. (2014a) investigated the vibration of nonlinear
graduation of nano-Timoshenko beam considering the
neutral axis position. By employing an exact analytical
formulation, dynamic analysis of thick circular/ annular FG
Mindlin nanoscale plates is studied by Hosseini-Hashemi et
al. (2013). Eltaher et al. (2014b) discussed mechanical
behavior of higher order gradient nanobeams. The
resonance responses of FG micro/nanoplates via Kirchhoff
plate model is investigated by Nami and Janghorban (2014).
In this work, they adopted the nonlocal elasticity theory and
strain gradient theory with one gradient parameter to
include the small scale influences. Eltaher et al. (2014c)
presented static and buckling analysis of FG Timoshenko
nanobeams. Daneshmehr and Rajabpoor (2014) used a
nonlocal higher order plate theory for buckling analysis of
FG nano-plates under biaxial in-plane loadings using
generalized differential quadrature (GDQ). Based on a
modified couple stress theory, a model for sigmoid
functionally graded material (S-FGM) nanoscale plates
resting on elastic medium is proposed by Jung et al. (2014).
Al-Basyouni et al. (2015) studied the size dependent
bending and vibration behavior of FG micro beams based
on modified couple stress theory and neutral surface
position. Rahmani and Pedram (2014) investigated the size
effects on the vibration of FG nanobeams based on nonlocal
Timoshenko beam theory. Bedroud et al. (2015) studied the
axisymmetric/asymmetric stability of moderately thick
circular and annular FG nanoplates under uniform
compressive in-plane loads. Zare et al. (2015) examined the
natural frequencies of a FG nanoplate for different
combinations of boundary conditions. Belkorissat et al.
(2015) discussed the vibration properties of FG nano-plate
using a new nonlocal refined four variable model. Larbi
Chaht et al. (2015) presented both bending and buckling
analyses of FG size-dependent nanoscale beams including
the thickness stretching effect. Zemri et al. (2015) studied
the mechanical response of FG nanoscale beam using a
refined nonlocal shear deformation theory beam theory.
Ahouel et al. (2016) analyzed the size-dependent
mechanical behavior of FG trigonometric shear deformable
nanobeams including neutral surface position concept.
Bounouara et al. (2016) presented a nonlocal zeroth-order
shear deformation theory for free vibration of FG nanoscale
plates resting on elastic foundation. Hamed et al. (2016)
analyzed the free vibration of symmetric and sigmoid
functionally graded nanobeams.

In this work, a new nonlocal trigonometric shear
deformation theory is proposed for the free vibration
analysis of simply supported size-dependent FG nanoplates
on elastic foundation. The use of the integral term in the

displacement field led to a reduction in the number of
unknowns and equations of motion. Implementing
Hamilton’s principle, the nonlocal equations of motion are
obtained and they are solved via Navier solution method.
Comparisons with analytical solutions and the results from
the existing literature are provided for two-constituent
metal-ceramic nanoplates and the good agreement between
the results of this paper and those available in literature
validated the presented formulation. Numerical results are
presented to serve as benchmarks for the application and the
design of nanoelectronic and nano-drive devices,
nanooscillators, and nanosensors, in which nanobeams act
as basic elements. They can also be useful as valuable
sources for validating other approaches and approximate
methods.

2. Theoretical formulation
2.1 Mori-Tanaka FGM plate model

According to Mori-Tanaka homogenization technique
the local effective material properties of the FG nanoplate
(Fig. 1) such as effective local bulk modulus ( K) and shear
modulus (G ) can be computed (Belabed et al. 2014,
Valizadeh et al. 2013, Houari et al. 2016):

K-K, V,

K, - K, 1+(1—Vc)3(K° -K,) (1a)
3K, +4G,,

G-G, V,

G, -G, 1+(1_Vc)w (1b)
G, +f
where
G, (9K _+8G

fl — m( m m) (2)

6(K, +2G,)

where, V, (i=c,m) is the volume fraction of the phase

material. The subscripts C and M represent the ceramic
and metal phases, respectively. The volume fractions of the
ceramic and metal phases are related by V_+V_=1, and

V, is written as

vc(z)z(z”hj . n>0 ®)

2h

with n in Eqg. (3) is the gradient index which determines
the material distribution through the thickness of the plate
and z is the distance from the mid-plane of the FG
nanoplate. Fig. 2 plots the distribution of the volume
fraction of the ceramic phase within the thickness direction
z for the FG plate. The effective Young’s modulus E
and Poisson’s ratio vV can be computed from the following
equations
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Fig. 1 Schematic representation of a rectangular FG plate
resting on elastic foundation
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Fig. 2 Variation of ceramic phase through the thickness of
the plate

E =—9KG (4a)
3K +G

,_ 3K-2G "

2(3K +G) b

The effective mass density o is calculated from the

rule of mixtures as (Natarajan et al. 2011, Hebali et al.
2014, Bourada et al. 2015, Attia et al. 2015, Bennai et al.
2015, Tounsi et al. 2016)

P =pNe + pnVy (5)

2.2 Kinematic relations

In this article, further simplifying assumptions are made
to the conventional higher order shear deformation theories
(HSDTSs) so that the number of unknowns is reduced. The
kinematic of the conventional HSDTs is given by (Mahi et
al. 2015)

a\NO
u(x, y,z,t) =uy(x,y,t) - z§+ f(2)0,(x,y.1) (6a)

V(X Y, z,t)=v, (X, y,t) - ZaaV;I/O+ f (z)ey(x, y,t) (6b)

(6c)
W(x, Y, 2,) =Wy (X, y,1)

where U, ; Vo ; W,, 6,, 6, are five variables
displacements of the mid-plane of the plate, f(z) presents
shape function representing the variation of the transverse
shear strains and stresses across the thickness. In this paper
a novel displacement field with four unknowns is proposed
(Bourada et al. 2016, Hebali et al. 2016, Merdaci et al.
2016

u(x,y,z,t) =uy(x,y,t) — z%+ klf(z)fw(x, y,)dx (7a)

(7b)

0

VY, 2,0 =vo (X, ¥, 1) - Z%+ k(@) o(x y,t) dy
W(X, Y, 2,t) = Wo (X, Y,1) (7c)

The constants k; and k, depends on the geometry

and the proposed theory of present study has a cosines
function in the form

o z [n + 2cos(”hZD ©

(2+7)

Nonzero strains of the four variable plate model are
expressed as follows

&y &, ky ks
g, p=1¢6y r+ k) t+ F(2) Kk} b,
Vel 7% Ky Ky ©
0
7 7 7/ 7
XZ 7/)(2
where
auy BCAL:
& o ||
€y b= No ,aky p={ - 0 V\ZIO . (10a)
0 ax kb ay
Y xy 8u0 +% Xy ) 62W0
oy  oX oxdy
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kS k,0
kS = kze ]
ks 9 2

y klayjedmkz 8Xj@oly

7,32 _ kljedy
72 1k, j 0 dx
and
df (z
9(z) - T2 (10b)
Z

The integrals employed in the above equations shall be
resolved by a Navier solution and can be expressed by

2 2
ﬁjedx=A'69, I lody=p2Y
oy 8x6y OX oxoy 1)
J'de A' jed g
oy

In which the coefficients A" and B' are determined
according to the type of solution considered, in this case via
Navier. Thus, A" and B' are expressed by:

1 1
— B'z_?,klzazvkzzﬂz (12)

where o and £ are defined in Eq. (29).

2.3 Equations of motion

Through Hamilton’s principle, in which the motion of
an elastic structure in the time interval t; <t <t, is so

that the integral with respect to time of the total potential
energy is extremum (Benachour et al. 2011, Ait Yahia et al.
2015, Tagrara et al. 2015, Boukhari et al. 2016)

t
0=j(5up+5uf—5K)dt (13)
0

where U, and oU, are the variations of strain

energy of the plate and foundation, respectively; and o K
is the variation of kinetic energy.
The virtual strain energy can be computed as

ouU =J.[crx5ex +0, 08, +T 07y +T,07y, +rxzé'7u]dv
\
=[ING &l 4N, 52+ NG5 7% + MPSKE +MESKE + MESKE  (14)
A

FMISKS + MISKE + M5 SKS, +S50 75, + 556 12 JdA=0

where A is the top surface and the stress resultants N,
M ,and S are expressed by

(NivMibeiS): h_/[zlizvf)gidzl (i=xy,x)
e hi2 (15)
and (sz-s ) Ig(TXZ,Tyz)dZ
—h/2

The virtual strain energy of the elastic medium can be
calculated by

5U, = [| Kwow+K, owoowW OWOOW liydy  (16)
A OX oOX oy oy
where K, and K, are the transverse and shear stiffness

coefficients of the elastic medium, respectively.
The virtual kinetic energy of the plate can be calculated
by

5K :j[u&uwawwaw] p(z)dV

v

{Io[u Sl + VoSV + Vil SV |

ll(uo AW, 8W°5 0y + ,Oaawo +%6VOJ
4 280 050 00
+Jl[ 2 +—5u0] (sz)[VOW (56 D a7
N [a/vo a,swo , i oﬁWDJ [(k A)z[ca o5 9]+(k2 By (aa a5 9]}
ox & oy oy

-3,k A‘)%659+ﬁ05\"’o +k B.)%659+iéaawo i
ATl ax ax o oax ox PNy oy oy oy

where  dot-superscript ~ convention  indicates  the
differentiation with respect to the time variable t; and (
I, J,, K;)are mass inertias defined by
h/2
Il z,2° p(z)dz (18a)
~h/2
h/2
(18b)

(3,,3,.K,)= jf 2, 12)p(2)dz
~h/2

By substituting Egs. (13), (15) and (16) into Eq. (12)
and setting the coefficients of o U,, OV,, oW, and

0 6 to zero, the following Euler—Lagrange equation can
be obtained

oN
Su, Ny, 2= 4ty +k A, 0
x oy tox Yo
N, N
v M Ny o Doy gy 00
x oy Y Y
SME_PME a*M®
5wu:%+2° o LKW, + K V2w, = 1\,
x xoy oy (19)
) . "
+|[‘“°+a’—] |an+3[kA 9+k B—H]
ox oy oy?
S0~k M;—k,M? (kA+kB) (kA[u”+kB"—°]
W W ox oy
0 , 0°0 0%\, ,0°W,
—K,| (k, AY L1 (k, B +J
2((‘)6(}v]£ *y]

2 :(82/8x2)+(62/6y2)

where
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is the Laplacian operatorin2D Cartesian coordinate system.

2.4 The nonlocal elasticity model for FG nanoplate

According to Eringen’s nonlocal elasticity theory
(1972), the stress state at a point inside a body is regarded
to be a function of strains of all points in the neighbor
regions. For homogeneous elastic solids, the nonlocal

stress-tensor components ¢; at each point x in the solid

can be expressed as

73 () = [ allx—x, 7)t; (<)d(x) 0)

where t; (x") are the components available in local str

ess tensor at point x which are associated to the strain
tensor components &,, as:

ti = Cijéu (21)

The concept of Eq. (19) is that the nonlocal stress at any
point is a weighting average of the local stress of all near

points, and the nonlocal kernel aqx'—x|,r) considers the

influence of the strain at the point X' on the stress at the
point X in the elastic body. The parameter o« is an
internal characteristic length (e.g., lattice parameter,

granular distance, the length of C-C bonds). Also |X'—x|
is Euclidean distance and 7 is a constant value as follows

g,a
T= OT (22)
which presents the relation of a characteristic internal
length, and a characteristic external length, | (e.g., crack

length and wavelength) using a constant, €,, dependent on

each material. The value of €, is experimentally evaluated

by comparing the scattering curves of plane waves with
those of atomistic dynamics. In the nonlocal model of
elasticity, the points undergo translational motion as in the
classical case, but the stress at a point depends on the strain
in a region near that point. As for physical interpretation,
the nonlocal model introduces long range interactions
between points in a continuum model. Such long range
interactions occur between charged atoms or molecules in a
solid. Eringen (1972, 1983) numerically determined the
functional form of the kernel. By appropriate selection of
the kernel function, Eringen shown that the nonlocal
constitutive equation given in integral form (see Eg. (19))
can be represented in an equivalent differential form as
(Heireche et al. 2008, Berrabah et al. 2013, Benguediab et
al. 2014, Adda Bedia et al. 2015, Aissani et al. 2015,
Besseghier et al. 2015, Akbas 2016, Ebrahimi and
Shaghaghi 2016):

(1_ (e,2)V? )O'kl =1ty (23)

In which V? is the Laplacian operator. Hence, the

scale length e,a considers the effects of small size on the

behavior of nanostructures. Thus, the constitutive relations
of nonlocal theory for a FG nanoplate can be written as

oy C, C, O 0 0 || &,
o C, C,, O 0 0 |le

L-u?)ieyt=| 0 0 Cu 0 0 [yl (29
Ty, 0 O 0 Css 0 |7y,
Ty 0 0 0 0 C44 7 xa

In which = (e,a)* and the stiffness coefficients,

Cij , can be expressed as
E(z v E(z
C11:C22:—1 ()21 12:—( )21
—v(2) 1-v(z)
25
Cat=Cas =Cpo = =2 -
44 7 M55 T V66 !
2l +v(2)]

Integrating Eq. (23) over the plate’s cross-section area
yields the force-strain and the moment—strain of the
nonlocal refined FG plates as follows

Ny [ Ay A, 0O By B, 0 B B 0 | 53

0
N y AlZ AZZ 0 B12 BZZ 0 B152 BZSZ 0 Sy
N y 0 0 Ag O 0 Bg 0 0 Bgllry
M Z Bll BIZ 0 Dll DlZ 0 Dlsl Dlsz O k)‘(’

2 b

(1’ “ ) Myr=|B, B, 0 D D 0 D Dy 0 [k (263)
M 0 0 Bg 0O 0O Dy O
My By B, 0 Dj D 0 Hjy H) 0|k
My B, By 0 D3 D3 0 Hi Hj 0 |k
MyJ [0 0 By 0 0 Di 0 0 Hgllks

S 50 |[re
cl__/l‘72 ) s (T~ Peo s 0
Sy 0 Aull’y

Where the cross-sectional rigidities are defined as
follows

o
O
on
S
=~
Lo

(26b)

3

(A,.8,.0,8;. D} Hi )= [c,b22" f(2.2 1@ @z (.i=126) (27a)

-h/2

hi/2

A= [cilo@Fdz (ij=45)

-h/2

(27b)

The nonlocal equations of motion of FG nanoplates in
terms of the displacement can be derived by substituting
Egs. (25), into Egs. (18) as follows

0%u, 8%u, 0%, o°w,
Ay Y +Ags EY +(A, *Aee)axay’ Bu?’

+ (Bess (kA +k, B'))E'f

0w,
(B, + 2855)702

OX O

oo (28a

3
;2 + (Bf1k1 +By, kz)i*f: (1*#V2)[|ouc =1y +J; A'kldlé]v )
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0 Vo )( 0%u, B 2°w,

way 2

(Bzzkz + Bk )

-(B,+ 2566) 2wy

o ooy (28Db)

e = (- 19?19, — 1, dyi, +3, Bk, d,6)

A22

Aee

+(Baa (k, Ak, B)) 6‘)( N

2%y, 2%, 2%,
By o +(BIZ+ZBGS) (B12+ZBss).1Xz ,\/+ 22 B
0*w, 0*w, 0°w, 0%0
-D,;,—~-2(D,, + 2D, -D. D;, k, + D k
tpw (Dy, 66)6)( 7 2 6'y" ( 11 K+ Drp 2) 2

) (28¢)
+ 2( D¢, (k, A+k,B') )ﬁ +
(1’/‘V2)[|0Wu +15(dty +d, Vo)

(Dlzk1 + Dzzkz)éjif*'(l‘#VZX‘ Ky Wo + stzwo):

1, (dyyWlg +d oW )+ 3, (klAl .6 +k, B’ dzzé)]

(Bsa(k A+k B)) CA7

(Buk1 + 512k2)%’ (Baa (kA+k,B" )) cu \/ \/ (BJZk + Bzﬂ(?)a’

Y
+(Dik, Dk, )

+(Dik, + Dk, ) " +2(Dg (k, Ak ,8))-2

W > (28d)
“HAKE 0-HS, kze—Zlekjkze—((k]szB) Haa)% R (kB 7+A55 (tq A)za 4

(1- )3, (k, Ay + K, B'd,0y) +3, (K, Adiy +K, Bd gt )~ K, (kA dy0+ (k, B 220)]

3. Solution procedures

Here, on the basis of the Navier technique, an analytical
solution of the equations of motion for free vibration of a
simply supported FG nanoplate is presented. To satisfy
governing equations of motion and the simply supported
boundary condition, the displacement variables are adopted
to be of the form

Ug U,.e"" cos(a x)sin(By)
Vo | & Vi€ sin(a x)cos(B y)
- ZZ W._ e'”sin(a x)sin( S y)

X 8" sin(a x)sin( S y)

where @ is the frequency of free vibration of the plate,

(29)

mn

Ji=-1 the imaginary unit.
with
a=msx/a and ﬂ:nﬂ'/b (30)

Substituting Egs. (28) into Eqgs. (27) respectively, le
ads to

Su Sz Siz Sy my 0 my My ||{Um 0

Si2 Sz S; Su PP 0 Mg My My || Vi | _

Sis Sy Sy Sa Mz My Mgy My, ||| Wy, o (31)

Sy S Su Su My My Mgy My | [ Xy 0
where

Su=—(Aua? + Aef?) Sy =ap (AgtAy)
s =a(Bua® + B, B2 + 2B 5?) ,

S10 = allkyB;, +k, B, — (k, Ak, B)BS 52,

= (Awr® + Ay ,

/3( B,y /i? + By’ +2Bgeat?) ,

. = BKk,BS, + By, — (k,A+k,B)Ba? )

Sss =—(Dya* +2(Dy, +2Dgg)a’ B2 + D, 8 )+ A(K,, + K, (a2 + 7))

Sy = _kl(Dlslaz + szﬁz -2A Dgsazﬂz)_ kz(Dzszﬂz + Dlszaz -2B' Déeazﬂz)’

Su= klz(_ H - A?Ha®p? - A A5550(2)+ kzz(_ H;, —B?Ha’s* -B* A:Aﬁz)
—kk,(2H3, + 2B H 0% B?)

J.k
my =—lg, my=al;, m, ==%,
a
J k
My, ==lg, Mmy=p41,, m, = ,232 ] (32)

Mg =—lo = 1,(a” + %) m,, :_‘]2(kl+k2 )’

_ _KZ(klzaﬁz);jkzzaZ)’ /1:14_#(0(2 +ﬁ2)

a4

4. Numerical results and discussions

In this section, various numerical and illustrative results
are presented to study the size-dependent free vibration
response of embedded FG nanoplates modeled based on a
novel four-variable shear deformation theory. The material
properties of the FG nanoplate vary within the thickness
direction according to Mori-Tanaka homogenization
technique. The top surface of the plate is ceramic rich
(Si3Ny4) and the bottom surface is metal rich (SUS304). The

mass density p and the Young’s modulus E are: p, =
2370 kg/m®, E_ = 348.43¢° N/m’ for SizN,and p,, = 8166

kg/m3, Em: 201.04e° N/m? for SUS304. Poisson’s ratio

Vv is considered to be constant and taken as 0.3 for the
present work. For convenience, the following dimensionless
quantities are used in presenting the numerical results in
graphical and tabular forms:

4
a)a)h/'oC a)a)h/pm ,

E_h?

ks_ Dm  Dn = 1211—v )

The correctness of the presented dynamic results of
simply supported FG nanoplates is compared with those
presented by Belkorissat et al. (2015), Aghababaei and
Reddy (2009), Natarajan et al. (2012) as well as Bounouara
et al (2016) and the results are tabulated in Table 1 to 3.

In the first example, simply supported homogeneous
nanoplates with different values of nonlocal parameter, the
plate thickness and the plate aspect ratio are considered.
The results given in Table 1 are compared with those
provided by Belkorissat et al. (2015), Bounouara et al (2016)
and Aghababaei and Reddy (2009). It can be seen that the
present numerical results are in very good agreement with
the results available in the literature.

In the second example, FG nanoplates (N=5) with

different values of nonlocal parameter, aspect ratio (a/b)

(33)
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and side-to-thickness ratio (a/h) are investigated. The
natural frequencies calculated using the present nonlocal
refined trigonometric shear deformation theory, are
compared with those of Belkorissat et al. (2015) in Table 2.
Again, very good agreement is found between the results.
The dimensionless fundamental frequency of square FG
nanoplates are provided in Table 3 for different values of
nonlocal parameter, the plate thickness, the gradient index

(N) and foundation parameters (K, K). It can be seen

that the dimensionless fundamental frequency increases
when foundation parameters increase. Compared to the
Winkler parameter effect, it can be observed that the
vibration responses of FG nanoplates are more affected by
Pasternak foundation parameter than the Winkler parameter.
It is also remarked that with the introduction of elastic
foundations, the plate becomes stiffer, while, the nonlocal
parameter makes the plate softer. In addition, it can be seen
that the increase of the gradient index (N) leads to a
reduction of frequency. This is due to the fact that the
gradient index yields a decrease in the stiffness of the FG
nanoplate.

To demonstrate the effects of elastic foundation
parameters on the vibration behavior of FG nanoplate
individually, Figs. 3 and 4 present variations of the
frequency ratio with respect to Winkler and Pasternak
constants, respectively at a/h=10 and n=5. From
Fig. 3 it is observed that there is a significant influence of
the nonlocal parameter on the vibration response of FG
nanoplates supported by elastic foundation. The
fundamental frequency ratios including nonlocal model
are always smaller than the local model (4 =0). This

implies that the use of the local theory for investigating the
FG nanoplates would lead to an over-prediction of the
frequency. Further, with increasing the nonlocal parameter
() values, the frequencies computed by non-local theory

become smaller compared to local theory. Furthermore, it is
observed that the increase of the Winkler modulus
coefficient leads to an increase in the frequency ratio. This
increasing trend is related to the stiffness of the elastic
foundation. With important values of Winkler coefficient
the rate of increase of frequency ratio diminishes.

Frequency ratio
o
%
&
!

T T i
0 100 200 300 400
Winkler modulus parameter, (k )

Fig. 3 Effect of Winkler modulus parameter on the
frequency ratio of FG square nanoplate for various nonlocal

parameters (K, =0,a/h=10,n=5)
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. ——o0—9
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0,85 - //—:—/u;,,‘
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0,80 ~ —v—p=3
p=d
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Winkler modulus parameter, (ks)

Fig. 4 Effect of Pasternak shear modulus parameter on the
frequency ratio of FG square nano-plate for various

nonlocal parameters (K, =100,a/h=10,n=5)

This implies that nonlocal influence on vibration
response of FG nanoplates looses its importance as the
Winkler coefficient values increase. Thus, although the
nonlocal influence makes the nanoplates softer, the external
elastic foundation “grips” the nanoplates and forces it to be
stiffer. Hence, it can be concluded that the nonlocal
influence becomes more significant in the case of plates
without elastic foundation.

The variation of frequency ratio for first mode with
shear modulus parameter is presented in Fig. 4. The
frequency ratio increases with increasing the shear modulus
coefficient. However, the frequency ratios including the
nonlocal model are always smaller than the local model.
With higher nonlocal parameter ( £ ) values the frequencies

becomes comparatively less. Contrary to the variation of
frequency ratio with Winkler coefficient, which is nonlinear,
the variation of frequency ratio with Pasternak shear
coefficient is linear in nature.

The effect of nonlocal parameter on the dimensionless
frequency of nonlocal square FG plates with and without
elastic foundation is plotted in Fig. 5. It is seen that the
dimensionless frequency of FG nanoplate decreases due to
the fact that presence of nonlocality makes the plate
structure more flexible. Therefore, nonlocal plate model
provides lower frequency results compared to local plate
model.

The variation of the nonlocal frequency with the
Winkler modulus coefficient is plotted in Fig. 6 for different
values of a/h. It can be seen that with increasing the
Winkler modulus parameter the nonlocal frequency
increases in linear manner. Moreover, it is observed that the
change in nonlocal frequency of nanoscale plate is
significantly affected by the side-to-thickness ratio a/h.
For a thin plate (a/h=100) the influence of nonlocal
parameter on frequency is less compared to thick plate
(a/h=10). Hence side-to-thickness ratio of nanoscale
plate plays a considerable role in examining free vibration
response of nanoscale plates resting on elastic foundation.
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Table 1 Comparison of fundamental frequency (w = wh,/p/G ) of nano-plate (a =10, E =30 x108, p=1v=0.3)

a/b a/h u  Present Ref® Ref® TSDT® FSDT® CPTO
0 0.0930 0.0930 0.0930 0.0935 0.0930 0.0963

1 0.0850 0.0850 0.0850 0.0854 0.0850 0.0880

o 2 0.0788 0.0787 0.0787 0.0791 0.0788 0.0816

3 0.0737 0.0737 0.0737 0.0741 0.0737 0.0763

4 0.0696 0.0695 0.0695 0.0699 0.0696 0.0720

5 0.0660 0.0659 0.0659 0.0663 0.0660 0.0683

! 0 0.0239 0.0238 0.0238 0.0239 0.0239 0.0241
1 0.0218 0.0218 0.0218 0.0218 0.0218 0.0220

o 2 0.0202 0.0202 0.0202 0.0202 0.0202 0.0204

3 0.0189 0.0189 0.0189 0.0189 0.0189 0.0191

4 0.0178 0.0178 0.0178 0.0179 0.0178 0.0180

5 0.0169 0.0169 0.0169 0.0170 0.0169 0.0171

0 0.0588 0.0588 0.0588 0.0591 0.0589 0.0602

1 0.0556 0.0555 0.0555 0.0557 0.0556 0.0568

2 0.0527 0.0527 0.0527 0.0529 0.0527 0.0539

0, 0.0503 0.0503 0.0503 0.0505 0.0503 0.0514

4 0.0482 0.0481 0.0481 0.0483 0.0482 0.0493

) 5 0.0463 0.0463 0.0463 0.0464 0.0463 0.0473
0 0.0150 0.0149 0.0149 0.0150 0.0150 0.0150

1 0.0141 0.0141 0.0141 0.0141 0.0141 0.0142

o 2 0.0134 0.0134 0.0134 0.0134 0.0134 0.0135

3 0.0128 0.0127 0.0127 0.0128 0.0128 0.0129

4 0.0122 0.0122 0.0122 0.0123 0.0123 0.0123

5 0.0118 0.0117 0.0117 0.0118 0.0118 0.0118

@ Bounouara et al (2016)
®) Belkorissat et al. (2015)
© Aghababaei and Reddy (2009)
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square nano-plate with and without elastic foundation frequency of FG square nano-plate for various ratios a/h
(a/h=10,n=5) (kg=0,u=2 , n=5)
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Table 2 Comparison of natural frequency of FG nano-plate (a =10, n=5)

a/b a/h P Mode 1 Mode 2 Mode 3
Ref® Present Ref® Present Ref® Present
0 0.0432 0.0437 0.1029 0.1041 0.1915 0.1940
1 0.0395 0.0399 0.0842 0.0852 0.1358 0.1376
10 2 0.0366 0.0370 0.0730 0.0738 0.1110 0.1125
4 0.0323 0.0327 0.0596 0.0604 0.0861 0.0872
! 0 0.0111 0.0112 0.0274 0.0277 0.0536 0.0542
1 0.0101 0.0103 0.0224 0.0227 0.0380 0.0385
20 2 0.0094 0.0095 0.0194 0.0197 0.0310 0.0314
4 0.0083 0.0084 0.0158 0.0161 0.0241 0.0244
0 0.1029 0.1041 0.1574 0.1594 0.2397 0.2431
1 0.0842 0.0852 0.1177 0.1192 0.1587 0.1609
10 2 0.0730 0.0738 0.0980 0.0993 0.1269 0.1287
4 0.0596 0.0604 0.0772 0.0782 0.0968 0.0982
2 0 0.0274 0.0277 0.0432 0.0437 0.0688 0.0696
1 0.0224 0.0227 0.0323 0.0327 0.0455 0.0461
20 2 0.0194 0.0197 0.0269 0.0272 0.0364 0.0368
4 0.0158 0.0161 0.0212 0.0215 0.0277 0.0281

@ Belkorissat et al. (2015)

Fig. 7 presents the variation of nonlocal frequency
versus Pasternak modulus parameter with different values
of a/h. The consideration of the Pasternak foundation
provides results higher than those with the consideration of
Winkler foundation. The nonlocal frequency increases with
increasing the Pasternak modulus parameter. The variation
is found to be nonlinear in nature. However, it is observed
that the change in nonlocal frequency is more affected by
lower side-to-thickness ratios values (a/h =10) as shown
in the Fig. 7.

Fig. 8 shows the variation of nonlocal frequency versus
the aspect ratios a/b with and without the presence of

elastic foundations. It can be seen from this figure that oo | 0T —

increasing the aspect ratio a/b reduces the value of ooy T A0 ] /

nonlocal frequency. Furthermore, it is found that the 0.030 4 /

presence of elastic foundations increases the nonlocal 0.025 ]

frequency and hence makes the plate stiffer. 0020 ] —
In Fig. 9, the variation of nonlocal frequency versus —

Winkler modulus parameter is presented for different oo —

vibrational modes. It is found that the nonlocal frequency 00101 /

increases linearly with increasing the Winkler parameter 0005 5 - . v

and the computed frequencies become more important for Y ——

vibrational modes.

Fig. 10 shows the variation of nonlocal frequency versus
Pasternak modulus parameter for different vibrational
modes. It can be seen that the nonlocal frequency increases
in nonlinear manner with increasing the Pasternak
parameter. Again, the nonlocal frequencies are found to
more considerable for vibrational modes.

Fig. 11 illustrated the influence of the gradient index (n
) on the non-dimensional nonlocal frequency of the three

first modes of FG square nano-plat for various values of the
nonlocal parameter. It can be observed that the non-
dimensional frequency decreases with increasing the
gradient index. This is due to the fact that an increase in the
gradient index yields a decrease in the stiffness of the FG
nano-plate. There is an abrupt change in the responses when
the gradient index changes from O to 2.

0.045

T T
0 100 200 300 400
Shear modulus parameter, kS

Fig. 7 Effect of Shear modulus parameter on the nonlocal
frequency of FG square nano-plate for various ratios a/h

(k,=0,u=2 , n=5)
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Table 3 Dimensionless frequency (c?)) of FG square nanoplate
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k, K

Gradient index (n)

wo s a/ h 4 0
Ref® Present Ref® Present Ref® Present
0 0.1409 0.1410 0.0717 0.0733 0.0655 0.0663
1 0.1288 0.1289 0.0655 0.0670 0.0599 0.0606
10 2 0.1193 0.1194 0.0607 0.0621 0.0555 0.0561
3 0.1117 0.1117 0.0568 0.0581 0.0519 0.0525
4 0.1053 0.1054 0.0536 0.0548 0.0490 0.0496
0 0 0 0.0361 0.0362 0.0184 0.0188 0.0168 0.0170
1 0.0330 0.0331 0.0168 0.0172 0.0153 0.0156
20 2 0.0306 0.0307 0.0156 0.0159 0.0142 0.0144
3 0.0286 0.0287 0.0146 0.0149 0.0133 0.0135
4 0.0270 0.0270 0.0137 0.0141 0.0125 0.0127
0 0.1793 0.1793 0.0980 0.1002 0.0908 0.0919
1 0.1699 0.1699 0.0936 0.0957 0.0868 0.0878
10 2 0.1628 0.1629 0.0903 0.0923 0.0839 0.0848
3 0.1573 0.1574 0.0877 0.0897 0.0815 0.0825
0 20 4 0.1529 0.1529 0.0856 0.0876 0.0797 0.0806
0 0.0456 0.0456 0.0249 0.0255 0.0231 0.0234
1 0.0432 0.0432 0.0237 0.0243 0.0220 0.0223
20 2 0.0413 0.0414 0.0229 0.0234 0.0212 0.0215
3 0.0399 0.0400 0.0222 0.0228 0.0206 0.0209
4 0.0388 0.0388 0.0217 0.0222 0.0202 0.0204
0 0.1516 0.1516 0.0792 0.0810 0.0728 0.0736
1 0.1403 0.1404 0.0736 0.0753 0.0677 0.0685
10 2 0.1317 0.1318 0.0694 0.0710 0.0639 0.0646
3 0.1248 0.1249 0.0660 0.0675 0.0608 0.0615
100 0 4 0.1192 0.1192 0.0633 0.0647 0.0583 0.0590
0 0.0387 0.0388 0.0202 0.0207 0.0186 0.0188
1 0.0358 0.0359 0.0188 0.0193 0.0173 0.0175
20 2 0.0336 0.0336 0.0177 0.0181 0.0163 0.01651
3 0.0319 0.0319 0.0168 0.0172 0.0155 0.0157
4 0.0304 0.0305 0.0161 0.0165 0.0148 0.0151
0 0.1877 0.1878 0.1036 0.1059 0.0962 0.0973
1 0.1788 0.1789 0.0994 0.1017 0.0924 0.0935
10 2 0.1721 0.1722 0.0963 0.0985 0.0896 0.0907
3 0.1669 0.1670 0.0939 0.0960 0.0875 0.0885
100 20 4 0.1627 0.1628 0.0920 0.0941 0.0858 0.0867
0 0.0477 0.0477 0.0263 0.0269 0.0244 0.0247
1 0.0454 0.0454 0.0252 0.0258 0.0234 0.0237
20 2 0.0436 0.0437 0.0244 0.0250 0.0227 0.0230
3 0.0423 0.0423 0.0238 0.0243 0.0221 0.0224
4 0.0412 0.0412 0.0233 0.0238 0.0217 0.0220

@ Bounouara et al. (2016)

5. Conclusions

In this work, vibration behavior of the FG nanoplat
es resting on two-parameter elastic foundation is studie
d within the framework of a new nonlocal trigonometri
¢ shear deformation plate theory. Mechanical properties
of the FG nanoplates vary gradually according to Mori

—Tanaka model. Via Hamilton’s principle and nonlocal
constitutive relations of Eringen, the nonlocal differenti
al equations of motion are obtained. Then, these equati
ons are solved by employing Navier analytical method.
Finally, it is indicated that vibration responses of FG n
anoplates are affected by various parameters such as el
astic foundation constants, nonlocal parameter, gradient
index, aspect and side-to-thickness ratios. It is found th
at the presence of nonlocality diminishes the plate rigid
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ity and reduces the frequency of FG nanoplates. Contra
ry to the nonlocal parameter, Winkler and Pasternak el
astic foundation parameters enhance the plate structure
and increase the frequencies. The formulation lends itse
If particularly well to stretching effects (Fekrar et al.
2014, Hamidi et al. 2015, Meradjah et al. 2015, Draiche et
al. 2016, Bennoun et al. 2016), which will be considered
in the near future.
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