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1. Introduction  
 

Nanostructures are widely employed in micro- and 

nano-scale devices and systems such as biosensors, atomic 

force, microscopes, micro-electro-mechanical systems 

(MEMS) and nanoelectro-mechanical systems (NEMS) 

because of their superior mechanical, chemical, and 

electronic characteristics. In such applications, small scale 

influences are often demonstrated. These influences can be 

captured via size-dependent continuum mechanics such as 

strain gradient theory (Nix and Gao 1998, Lam et al. 2003, 

Aifantis 1999), modified couple stress theories (Koiter 

1969, Mindlin and Tiersten 1962, Toupin 1962), and 

nonlocal elasticity theory (Eringen 1972). Among these 

theories, the nonlocal elasticity theory is introduced by 

Eringen is the most commonly employed theory. Contrary 

to the local theories, which consider that the stress at a point 

is a function of strain at that point, the nonlocal elasticity 

theory considers that the stress at a point is a function of 

strains at all points in the continuum (Eltaher et al. 2016a, 

b). Functionally graded materials (FGMs) are the novel 

generation of new advanced composite materials, whose 

mechanical characteristics are varied smoothly in the spatial  
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direction microscopically to improve the overall structural 

performance (Bouderba et al. 2013, Tounsi et al. 2013, Zidi 

et al. 2014, Ait Amar Meziane et al. 2014, Bousahla et al. 

2014, Sallai et al. 2015, Meksi et al. 2015, Ait Atmane et al. 

2015, Bouchafa et al. 2015, Tebboune et al. 2015, Bellifa et 

al. 2016, Bouderba et al. 2016, Beldjelili et al. 2016, El-

Hassar et al. 2016, Bousahla et al. 2016). Nanotechnology 

is also interested with fabrication of functionally graded 

(FG) materials and engineering structures at a nanoscale, 

which enables a novel generation of materials with 

revolutionary characteristics and devices with enhanced 

functionality. Recently, the use of FG materials has broadly 

been spread in micro- and nano-structures such as micro- 

and nano-electromechanical systems (MEMS and NEMS) 

(Witvrouw and Mehta 2005, Lee et al. 2006, Hasanyan et 

al. 2008, Mohammadi-Alasti et al. 2011, Zhang and Fu 

2012), thin films in the form of shape memory alloys (Fu et 

al. 2003, Lu et al. 2011), and atomic force microscopes 

(AFMs) to achieve high sensitivity and desired performance 

(Rahaeifard et al. 2009). In such applications, size 

influences have been experimentally seen (Fleck et al. 

1994, Stolken and Evans 1998, Chong et al. 2001, Lam et 

al. 2003). Since the dimension of these structural devices 

typically falls below micron- or nano-scale in at least one 

direction, an essential feature triggered in these devices is 

that their mechanical characteristics such as Young’s 

modulus, flexural rigidity, and so on are size-dependent. 

Referring to the mechanical investigation of size-
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dependent plate structures, linear free flexural vibration 

behavior of size dependent FG nanoplates is analyzed by 

Natarajan et al. (2012) by employing the isogeometric 

based finite element method. In this research, they used the 

nonlocal constitutive relation based on Eringen’s 

differential form of nonlocal elasticity theory. The dynamic 

properties of FG beam with power law material graduation 

in the axial or the transversal directions were investigated 

by Alshorbagy et al. (2011). Eltaher et al. (2012) studied the 

free vibration analysis of FG size-dependent nanobeams. 

Eltaher et al. (2014a) investigated the vibration of nonlinear 

graduation of nano-Timoshenko beam considering the 

neutral axis position. By employing an exact analytical 

formulation, dynamic analysis of thick circular/ annular FG 

Mindlin nanoscale plates is studied by Hosseini-Hashemi et 

al. (2013). Eltaher et al. (2014b) discussed mechanical 

behavior of higher order gradient nanobeams. The 

resonance responses of FG micro/nanoplates via Kirchhoff 

plate model is investigated by Nami and Janghorban (2014). 

In this work, they adopted the nonlocal elasticity theory and 

strain gradient theory with one gradient parameter to 

include the small scale influences. Eltaher et al. (2014c) 

presented static and buckling analysis of FG Timoshenko 

nanobeams. Daneshmehr and Rajabpoor (2014) used a 

nonlocal higher order plate theory for buckling analysis of 

FG nano-plates under biaxial in-plane loadings using 

generalized differential quadrature (GDQ). Based on a 

modified couple stress theory, a model for sigmoid 

functionally graded material (S-FGM) nanoscale plates 

resting on elastic medium is proposed by Jung et al. (2014). 

Al-Basyouni et al. (2015) studied the size dependent 

bending and vibration behavior of FG micro beams based 

on modified couple stress theory and neutral surface 

position. Rahmani and Pedram (2014) investigated the size 

effects on the vibration of FG nanobeams based on nonlocal 

Timoshenko beam theory. Bedroud et al. (2015) studied the 

axisymmetric/asymmetric stability of moderately thick 

circular and annular FG nanoplates under uniform 

compressive in-plane loads. Zare et al. (2015) examined the 

natural frequencies of a FG nanoplate for different 

combinations of boundary conditions. Belkorissat et al. 

(2015) discussed the vibration properties of FG nano-plate 

using a new nonlocal refined four variable model. Larbi 

Chaht et al. (2015) presented both bending and buckling 

analyses of FG size-dependent nanoscale beams including 

the thickness stretching effect. Zemri et al. (2015) studied 

the mechanical response of FG nanoscale beam using a 

refined nonlocal shear deformation theory beam theory. 

Ahouel et al. (2016) analyzed the size-dependent 

mechanical behavior of FG trigonometric shear deformable 

nanobeams including neutral surface position concept. 

Bounouara et al. (2016) presented a nonlocal zeroth-order 

shear deformation theory for free vibration of FG nanoscale 

plates resting on elastic foundation. Hamed et al. (2016) 

analyzed the free vibration of symmetric and sigmoid 

functionally graded nanobeams. 

In this work, a new nonlocal trigonometric shear 

deformation theory is proposed for the free vibration 

analysis of simply supported size-dependent FG nanoplates 

on elastic foundation. The use of the integral term in the 

displacement field led to a reduction in the number of 

unknowns and equations of motion. Implementing 

Hamilton’s principle, the nonlocal equations of motion are 

obtained and they are solved via Navier solution method. 

Comparisons with analytical solutions and the results from 

the existing literature are provided for two-constituent 

metal–ceramic nanoplates and the good agreement between 

the results of this paper and those available in literature 

validated the presented formulation. Numerical results are 

presented to serve as benchmarks for the application and the 

design of nanoelectronic and nano-drive devices, 

nanooscillators, and nanosensors, in which nanobeams act 

as basic elements. They can also be useful as valuable 

sources for validating other approaches and approximate 

methods. 

 

 

2. Theoretical formulation 
 

2.1 Mori–Tanaka FGM plate model 
 

According to Mori–Tanaka homogenization technique 

the local effective material properties of the FG nanoplate 

(Fig. 1) such as effective local bulk modulus ( K ) and shear 

modulus ( G ) can be computed (Belabed et al. 2014, 

Valizadeh et al. 2013, Houari et al. 2016): 
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where 
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where, 
iV  ( mci , ) is the volume fraction of the phase 

material. The subscripts c  and m represent the ceramic 

and metal phases, respectively. The volume fractions of the 

ceramic and metal phases are related by 1 mc VV , and 

cV  is written as 

n

c
h

hz
zV 




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

 


2

2
)( ,  0n  (3) 

with n  in Eq. (3) is the gradient index which determines 

the material distribution through the thickness of the plate 

and z  is the distance from the mid-plane of the FG 

nanoplate. Fig. 2 plots the distribution of the volume 

fraction of the ceramic phase within the thickness direction 

z  for the FG plate. The effective Young’s modulus E  

and Poisson’s ratio   can be computed from the following 

equations 
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Fig. 1 Schematic representation of a rectangular FG plate 

resting on elastic foundation 
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Fig. 2 Variation of ceramic phase through the thickness of 

the plate 
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The effective mass density   is calculated from the 

rule of mixtures as (Natarajan et al. 2011, Hebali et al. 

2014, Bourada et al. 2015, Attia et al. 2015, Bennai et al. 

2015, Tounsi et al. 2016) 

mmcc VV    (5) 

 

2.2 Kinematic relations 
 

In this article, further simplifying assumptions are made 

to the conventional higher order shear deformation theories 

(HSDTs) so that the number of unknowns is reduced. The 

kinematic of the conventional HSDTs is given by (Mahi et 

al. 2015) 
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where 0u ; 0v ; 0w , x , y  are five variables 

displacements of the mid-plane of the plate, )(zf  presents 

shape function representing the variation of the transverse 

shear strains and stresses across the thickness. In this paper 

a novel displacement field with four unknowns is proposed 

(Bourada et al. 2016, Hebali et al. 2016, Merdaci et al. 

2016 
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The constants 1k  and 2k  depends on the geometry 

and the proposed theory of present study has a cosines 

function in the form 
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Nonzero strains of the four variable plate model are 

expressed as follows 
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The integrals employed in the above equations shall be 

resolved by a Navier solution and can be expressed by 
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In which the coefficients 'A  and 'B  are determined 

according to the type of solution considered, in this case via 

Navier. Thus, 'A  and 'B  are expressed by: 
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where   and   are defined in Eq. (29). 

 

2.3 Equations of motion 

Through Hamilton’s principle, in which the motion of 

an elastic structure in the time interval 21 ttt   is so 

that the integral with respect to time of the total potential 

energy is extremum (Benachour et al. 2011, Ait Yahia et al. 

2015, Tagrara et al. 2015, Boukhari et al. 2016) 

 

t

fp dtKUU
0

    )(0   (13) 

where pU   and fU   are the variations of strain 

energy of the plate and foundation, respectively; and K   

is the variation of kinetic energy. 

The virtual strain energy can be computed as 

 



 0                  

             

       

0

000











dASSkMkMkM

kMkMkMNNN

dVU

xz
s
xz

s
yz

s
yz

s
xy

s
xy

s
y

s
y

s
x

s
x

A

b
xy

b
xy

b
y

b
y

b
x

b
xxyxyyyxx

V

xzxzyzyzxyxyyyxx






 

(14) 

where A  is the top surface and the stress resultants N , 

M , and S  are expressed by 
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The virtual strain energy of the elastic medium can be 

calculated by 
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where wK  and sK  are the transverse and shear stiffness 

coefficients of the elastic medium, respectively. 

The virtual kinetic energy of the plate can be calculated 

by 
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where dot-superscript convention indicates the 

differentiation with respect to the time variable t ;  and (

iI , iJ , iK ) are mass inertias defined by 
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By substituting Eqs. (13), (15) and (16) into Eq. (12) 

and setting the coefficients of 0 u , 0 v , 0w   and

   to zero, the following Euler–Lagrange equation can 

be obtained 
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where )/()/( 22222 yx 
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 is the Laplacian operatorin2D Cartesian coordinate system. 

 

2.4 The nonlocal elasticity model for FG nanoplate 
 

According to Eringen’s nonlocal elasticity theory 

(1972), the stress state at a point inside a body is regarded 

to be a function of strains of all points in the neighbor 

regions. For homogeneous elastic solids, the nonlocal 

stress-tensor components ij  at each point x  in the solid 

can be expressed as 

 


 )'()'(  ,')( xdxtxxx ijij   (20) 

where )'(xtij  are the components available in local str

ess tensor at point x which are associated to the strain

 tensor components kl  as: 

klijklij Ct   (21) 

The concept of Eq. (19) is that the nonlocal stress at any 

point is a weighting average of the local stress of all near 

points, and the nonlocal kernel    ,' xx   considers the 

influence of the strain at the point 'x  on the stress at the 

point x  in the elastic body. The parameter   is an 

internal characteristic length (e.g., lattice parameter, 

granular distance, the length of C–C bonds). Also xx '  

is Euclidean distance and   is a constant value as follows 

l

ae0  (22) 

which presents the relation of a characteristic internal 

length, and a characteristic external length, l  (e.g., crack 

length and wavelength) using a constant, 0e , dependent on 

each material. The value of 0e  is experimentally evaluated 

by comparing the scattering curves of plane waves with 

those of atomistic dynamics. In the nonlocal model of 

elasticity, the points undergo translational motion as in the 

classical case, but the stress at a point depends on the strain 

in a region near that point. As for physical interpretation, 

the nonlocal model introduces long range interactions 

between points in a continuum model. Such long range 

interactions occur between charged atoms or molecules in a 

solid. Eringen (1972, 1983) numerically determined the 

functional form of the kernel. By appropriate selection of 

the kernel function, Eringen shown that the nonlocal 

constitutive equation given in integral form (see Eq. (19)) 

can be represented in an equivalent differential form as 

(Heireche et al. 2008, Berrabah et al. 2013, Benguediab et 

al. 2014, Adda Bedia et al. 2015, Aissani et al. 2015, 

Besseghier et al. 2015, Akbas 2016, Ebrahimi and 

Shaghaghi 2016): 

  klkl tae  2
0 )(1  (23) 

In which 
2  is the Laplacian operator. Hence, the 

scale length ae0  considers the effects of small size on the 

behavior of nanostructures. Thus, the constitutive relations 

of nonlocal theory for a FG nanoplate can be written as 
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In which 
2

0 )( ae  and the stiffness coefficients, 

ijC , can be expressed as 
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Integrating Eq. (23) over the plate’s cross-section area 

yields the force–strain and the moment–strain of the 

nonlocal refined FG plates as follows 
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Where the cross-sectional rigidities are defined as 

follows 
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The nonlocal equations of motion of FG nanoplates in 

terms of the displacement can be derived by substituting 

Eqs. (25), into Eqs. (18) as follows 
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3. Solution procedures 
 

Here, on the basis of the Navier technique, an analytical 

solution of the equations of motion for free vibration of a 

simply supported FG nanoplate is presented. To satisfy 

governing equations of motion and the simply supported 

boundary condition, the displacement variables are adopted 

to be of the form 
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where   is the frequency of free vibration of the plate, 

1i  the imaginary unit.  

with 

am /   and bn /   (30) 

Substituting Eqs. (28) into Eqs. (27) respectively, le

ads to 
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4. Numerical results and discussions 
 

In this section, various numerical and illustrative results 

are presented to study the size-dependent free vibration 

response of embedded FG nanoplates modeled based on a 

novel four-variable shear deformation theory. The material 

properties of the FG nanoplate vary within the thickness 

direction according to Mori–Tanaka homogenization 

technique. The top surface of the plate is ceramic rich 

(Si3N4) and the bottom surface is metal rich (SUS304). The 

mass density   and the Young’s modulus E  are: c = 

2370 kg/m
3
, cE = 348.43e

9
 N/m

2
 for Si3N4 and m = 8166 

kg/m
3
, mE = 201.04e

9
 N/m

2
 for SUS304. Poisson’s ratio 

  is considered to be constant and taken as 0.3 for the 

present work. For convenience, the following dimensionless 

quantities are used in presenting the numerical results in 

graphical and tabular forms: 

c

c

G
h


  , 

m

m

E
h


 ˆ ,  

m

w
w

D

aK
k

4

 , 

m

s

s
D

aK
k

2

 , 
 2

3

112 


hE
D m

m  

(33) 

The correctness of the presented dynamic results of 

simply supported FG nanoplates is compared with those 

presented by Belkorissat et al. (2015), Aghababaei and 

Reddy (2009), Natarajan et al. (2012) as well as Bounouara 

et al (2016) and the results are tabulated in Table 1 to 3.  

In the first example, simply supported homogeneous 

nanoplates with different values of nonlocal parameter, the 

plate thickness and the plate aspect ratio are considered. 

The results given in Table 1 are compared with those 

provided by Belkorissat et al. (2015), Bounouara et al (2016) 

and Aghababaei and Reddy (2009). It can be seen that the 

present numerical results are in very good agreement with 

the results available in the literature.  

In the second example, FG nanoplates ( 5n ) with 

different values of nonlocal parameter, aspect ratio ( ba / ) 
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and side-to-thickness ratio ( ha / ) are investigated. The 

natural frequencies calculated using the present nonlocal 

refined trigonometric shear deformation theory, are 

compared with those of Belkorissat et al. (2015) in Table 2. 

Again, very good agreement is found between the results.  

The dimensionless fundamental frequency of square FG 

nanoplates are provided in Table 3 for different values of 

nonlocal parameter, the plate thickness, the gradient index 

( n ) and foundation parameters ( wk , sk ). It can be seen 

that the dimensionless fundamental frequency increases 

when foundation parameters increase. Compared to the 

Winkler parameter effect, it can be observed that the 

vibration responses of FG nanoplates are more affected by 

Pasternak foundation parameter than the Winkler parameter. 

It is also remarked that with the introduction of elastic 

foundations, the plate becomes stiffer, while, the nonlocal 

parameter makes the plate softer. In addition, it can be seen 

that the increase of the gradient index ( n ) leads to a 

reduction of frequency. This is due to the fact that the 

gradient index yields a decrease in the stiffness of the FG 

nanoplate. 

To demonstrate the effects of elastic foundation 

parameters on the vibration behavior of FG nanoplate 

individually, Figs. 3 and 4 present variations of the 

frequency ratio with respect to Winkler and Pasternak 

constants, respectively at 10/ ha  and 5n . From 

Fig. 3 it is observed that there is a significant influence of 

the nonlocal parameter on the vibration response of FG 

nanoplates supported by elastic foundation. The 

fundamental  frequency ratios including nonlocal model 

are always smaller than the local model ( 0 ). This 

implies that the use of the local theory for investigating the 

FG nanoplates would lead to an over-prediction of the 

frequency. Further, with increasing the nonlocal parameter 

(  ) values, the frequencies computed by non-local theory 

become smaller compared to local theory. Furthermore, it is 

observed that the increase of the Winkler modulus 

coefficient leads  to an increase in the frequency ratio. This 

increasing trend is related to the stiffness of the elastic 

foundation. With important values of Winkler coefficient 

the rate of increase of frequency ratio diminishes.  
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Fig. 3 Effect of Winkler modulus parameter on the 

frequency ratio of FG square nanoplate for various nonlocal 

parameters ( 0sk , 10/ ha , 5n ) 
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Fig. 4 Effect of Pasternak shear modulus parameter on the 

frequency ratio of FG square nano-plate for various 

nonlocal parameters ( 100wk , 10/ ha , 5n ) 

 

 

This implies that nonlocal influence on vibration 

response of FG nanoplates looses its importance as the 

Winkler coefficient values increase. Thus, although the 

nonlocal influence makes the nanoplates softer, the external 

elastic foundation “grips” the nanoplates and forces it to be 

stiffer. Hence, it can be concluded that the nonlocal 

influence becomes more significant in the case of plates 

without elastic foundation.  

The variation of frequency ratio for first mode with 

shear modulus parameter is presented in Fig. 4. The 

frequency ratio increases with increasing the shear modulus 

coefficient. However, the frequency ratios including the 

nonlocal model are always smaller than the local model. 

With higher nonlocal parameter (  ) values the frequencies 

becomes comparatively less. Contrary to the variation of 

frequency ratio with Winkler coefficient, which is nonlinear, 

the variation of frequency ratio with Pasternak shear 

coefficient is linear in nature. 

The effect of nonlocal parameter on the dimensionless 

frequency of nonlocal square FG plates with and without 

elastic foundation is plotted in Fig. 5. It is seen that the 

dimensionless frequency of FG nanoplate decreases due to 

the fact that presence of nonlocality makes the plate 

structure more flexible. Therefore, nonlocal plate model 

provides lower frequency results compared to local plate 

model.  

The variation of the nonlocal frequency with the 

Winkler modulus coefficient is plotted in Fig. 6 for different 

values of ha / . It can be seen that with increasing the 

Winkler modulus parameter the nonlocal frequency 

increases in linear manner. Moreover, it is observed that the 

change in nonlocal frequency of nanoscale plate is 

significantly affected by the side-to-thickness ratio ha / . 

For a thin plate ( 100/ ha ) the influence of nonlocal 

parameter on frequency is less compared to thick plate 

( 10/ ha ). Hence side-to-thickness ratio of nanoscale 

plate plays a considerable role in examining free vibration 

response of nanoscale plates resting on elastic foundation. 
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Fig. 5 Effect of nonlocal parameter on the frequency of FG 

square nano-plate with and without elastic foundation 

( 10/ ha , 5n ) 
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Fig. 6 Effect of Winkler modulus parameter on the nonlocal 

frequency of FG square nano-plate for various ratios /a h   

( 0sk  , 2  , 5n ) 

Table 1 Comparison of fundamental frequency ( Gh /  ) of nano-plate ( 3.0 ,1 ,1030 ,10 6  Ea ) 

ba  ha    Present Ref
 (a)

 Ref
(b)

 TSDT
(c)

 FSDT
(c)

 CPT
(c)

 

1 

10 

0 0.0930 0.0930 0.0930 0.0935 0.0930 0.0963 

1 0.0850 0.0850 0.0850 0.0854  0.0850 0.0880 

2 0.0788 0.0787 0.0787 0.0791  0.0788  0.0816 

3 0.0737 0.0737 0.0737 0.0741  0.0737  0.0763 

4 0.0696 0.0695 0.0695 0.0699  0.0696  0.0720 

5 0.0660 0.0659 0.0659 0.0663  0.0660  0.0683 

20 

0 0.0239 0.0238 0.0238 0.0239  0.0239  0.0241 

1 0.0218 0.0218 0.0218 0.0218  0.0218  0.0220 

2 0.0202 0.0202 0.0202 0.0202  0.0202  0.0204 

3 0.0189 0.0189 0.0189 0.0189  0.0189  0.0191 

4 0.0178 0.0178 0.0178 0.0179  0.0178  0.0180 

5 0.0169 0.0169 0.0169 0.0170 0.0169  0.0171 

2 

10 

0 0.0588 0.0588 0.0588 0.0591  0.0589  0.0602 

1 0.0556 0.0555 0.0555 0.0557  0.0556  0.0568 

2 0.0527 0.0527 0.0527 0.0529  0.0527  0.0539 

3 0.0503 0.0503 0.0503 0.0505  0.0503  0.0514 

4 0.0482 0.0481 0.0481 0.0483  0.0482  0.0493 

5 0.0463 0.0463 0.0463 0.0464  0.0463  0.0473 

20 

0 0.0150 0.0149 0.0149 0.0150  0.0150  0.0150 

1 0.0141 0.0141 0.0141 0.0141  0.0141  0.0142 

2 0.0134 0.0134 0.0134 0.0134  0.0134  0.0135 

3 0.0128 0.0127 0.0127 0.0128  0.0128  0.0129 

4 0.0122 0.0122 0.0122 0.0123  0.0123  0.0123 

5 0.0118 0.0117 0.0117 0.0118 0.0118 0.0118 
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 (d)

 Belkorissat et al. (2015)  

 

 

Fig. 7 presents the variation of nonlocal frequency 

versus Pasternak modulus parameter with different values 

of ha / . The consideration of the Pasternak foundation 

provides results higher than those with the consideration of 

Winkler foundation. The nonlocal frequency increases with 

increasing the Pasternak modulus parameter. The variation 

is found to be nonlinear in nature. However, it is observed 

that the change in nonlocal frequency is more affected by 

lower side-to-thickness ratios values ( 10/ ha ) as shown 

in the Fig. 7. 

Fig. 8 shows the variation of nonlocal frequency versus 

the aspect ratios ba /  with and without the presence of 

elastic foundations. It can be seen from this figure that 

increasing the aspect ratio ba /  reduces the value of 

nonlocal frequency. Furthermore, it is found that the 

presence of elastic foundations increases the nonlocal 

frequency and hence makes the plate stiffer.   

In Fig. 9, the variation of nonlocal frequency versus 

Winkler modulus parameter is presented for different 

vibrational modes. It is found that the nonlocal frequency 

increases linearly with increasing the Winkler parameter 

and the computed frequencies become more important for 

vibrational modes.  

Fig. 10 shows the variation of nonlocal frequency versus 

Pasternak modulus parameter for different vibrational 

modes. It can be seen that the nonlocal frequency increases 

in nonlinear manner with increasing the Pasternak 

parameter. Again, the nonlocal frequencies are found to 

more considerable for vibrational modes. 

Fig. 11 illustrated the influence of the gradient index ( n

) on the non-dimensional nonlocal frequency of the three  

 

 

 

 

first modes of FG square nano-plat for various values of the 

nonlocal parameter. It can be observed that the non-

dimensional frequency decreases with increasing the 

gradient index. This is due to the fact that an increase in the 

gradient index yields a decrease in the stiffness of the FG 

nano-plate. There is an abrupt change in the responses when 

the gradient index changes from 0 to 2. 
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Fig. 7 Effect of Shear modulus parameter on the nonlocal 

frequency of FG square nano-plate for various ratios /a h  

( 0wk  , 2  , 5n ) 

 

 

 

Table 2 Comparison of natural frequency of FG nano-plate  5 ,10  na   

ba  ha    
Mode 1 Mode 2 Mode 3 

Ref
(a)

 Present Ref
(a)

 Present Ref
(a)

 Present 

1 

10 

0 0.0432 0.0437 0.1029 0.1041 0.1915 0.1940 

1 0.0395 0.0399 0.0842 0.0852 0.1358 0.1376 

2 0.0366 0.0370 0.0730 0.0738 0.1110 0.1125 

4 0.0323 0.0327 0.0596 0.0604 0.0861 0.0872 

20 

0 0.0111 0.0112 0.0274 0.0277 0.0536 0.0542 

1 0.0101 0.0103 0.0224 0.0227 0.0380 0.0385 

2 0.0094 0.0095 0.0194 0.0197 0.0310 0.0314 

4 0.0083 0.0084 0.0158 0.0161 0.0241 0.0244 

2 

10 

0 0.1029 0.1041 0.1574 0.1594 0.2397 0.2431 

1 0.0842 0.0852 0.1177 0.1192 0.1587 0.1609 

2 0.0730 0.0738 0.0980 0.0993 0.1269 0.1287 

4 0.0596 0.0604 0.0772 0.0782 0.0968 0.0982 

20 

0 0.0274 0.0277 0.0432 0.0437 0.0688 0.0696 

1 0.0224 0.0227 0.0323 0.0327 0.0455 0.0461 

2 0.0194 0.0197 0.0269 0.0272 0.0364 0.0368 

4 0.0158 0.0161 0.0212 0.0215 0.0277 0.0281 
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Fig. 8 Effect of aspect ratios /a b  on the nonlocal 

frequency of FG square nano-plate for different values of 

elastic foundation parameters ( / 10a h  , 2  , 5n ) 
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Fig. 9 Effect of Winkler modulus parameter on the nonlocal 

frequency of FG square nano-plate for the first three modes 

( / 10a h  , 0sk  , 2  , 5n ) 
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Fig. 10 Effect of Shear modulus parameter on the nonlocal 

frequency of FG square nano-plate for the first three modes 

( / 10a h  , 100wk  , 2  , 5n ) 
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Fig. 11 Effect of the gradient  n  and the nonlocal 

parameter    on dimensionless frequency for a simply 

supported square FG nano-plate with ( / 10a h  ,

100w sk k  ): (a) first mode,(b) second mode and (c) third 

mode 
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 (a)
 Bounouara et al. (2016) 

 
 
5. Conclusions 

 

In this work, vibration behavior of the FG nanoplat

es resting on two-parameter elastic foundation is studie

d within the framework of a new nonlocal trigonometri

c shear deformation plate theory. Mechanical properties 

of the FG nanoplates vary gradually according to Mori 

 

 

 

 

–Tanaka model. Via Hamilton’s principle and nonlocal 

constitutive relations of Eringen, the nonlocal differenti

al equations of motion are obtained. Then, these equati

ons are solved by employing Navier analytical method. 

Finally, it is indicated that vibration responses of FG n

anoplates are affected by various parameters such as el

astic foundation constants, nonlocal parameter, gradient 

index, aspect and side-to-thickness ratios. It is found th

at the presence of nonlocality diminishes the plate rigid

Table 3 Dimensionless frequency  ̂  of FG square nanoplate 

wk
 

sk
 

ha    

Gradient index  n  

0 2 5 

Ref(a) Present Ref(a) Present Ref(a) Present 

0 0 

10 

0 0.1409 0.1410 0.0717 0.0733 0.0655 0.0663 

1 0.1288 0.1289 0.0655 0.0670 0.0599 0.0606 

2 0.1193 0.1194 0.0607 0.0621 0.0555 0.0561 

3 0.1117 0.1117 0.0568 0.0581 0.0519 0.0525 

4 0.1053 0.1054 0.0536 0.0548 0.0490 0.0496 

20 

0 0.0361 0.0362 0.0184 0.0188 0.0168 0.0170 

1 0.0330 0.0331 0.0168 0.0172 0.0153 0.0156 

2 0.0306 0.0307 0.0156 0.0159 0.0142 0.0144 

3 0.0286 0.0287 0.0146 0.0149 0.0133 0.0135 

4 0.0270 0.0270 0.0137 0.0141 0.0125 0.0127 

0 20 

10 

0 0.1793 0.1793 0.0980 0.1002 0.0908 0.0919 

1 0.1699 0.1699 0.0936 0.0957 0.0868 0.0878 

2 0.1628 0.1629 0.0903 0.0923 0.0839 0.0848 

3 0.1573 0.1574 0.0877 0.0897 0.0815 0.0825 

4 0.1529 0.1529 0.0856 0.0876 0.0797 0.0806 

20 

0 0.0456 0.0456 0.0249 0.0255 0.0231 0.0234 

1 0.0432 0.0432 0.0237 0.0243 0.0220 0.0223 

2 0.0413 0.0414 0.0229 0.0234 0.0212 0.0215 

3 0.0399 0.0400 0.0222 0.0228 0.0206 0.0209 

4 0.0388 0.0388 0.0217 0.0222 0.0202 0.0204 

100 0 

10 

0 0.1516 0.1516 0.0792 0.0810 0.0728 0.0736 

1 0.1403 0.1404 0.0736 0.0753 0.0677 0.0685 

2 0.1317 0.1318 0.0694 0.0710 0.0639 0.0646 

3 0.1248 0.1249 0.0660 0.0675 0.0608 0.0615 

4 0.1192 0.1192 0.0633 0.0647 0.0583 0.0590 

20 

0 0.0387 0.0388 0.0202 0.0207 0.0186 0.0188 

1 0.0358 0.0359 0.0188 0.0193 0.0173 0.0175 

2 0.0336 0.0336 0.0177 0.0181 0.0163 0.01651 

3 0.0319 0.0319 0.0168 0.0172 0.0155 0.0157 

4 0.0304 0.0305 0.0161 0.0165 0.0148 0.0151 

100 20 

10 

0 0.1877 0.1878 0.1036 0.1059 0.0962 0.0973 

1 0.1788 0.1789 0.0994 0.1017 0.0924 0.0935 

2 0.1721 0.1722 0.0963 0.0985 0.0896 0.0907 

3 0.1669 0.1670 0.0939 0.0960 0.0875 0.0885 

4 0.1627 0.1628 0.0920 0.0941 0.0858 0.0867 

20 

0 0.0477 0.0477 0.0263 0.0269 0.0244 0.0247 

1 0.0454 0.0454 0.0252 0.0258 0.0234 0.0237 

2 0.0436 0.0437 0.0244 0.0250 0.0227 0.0230 

3 0.0423 0.0423 0.0238 0.0243 0.0221 0.0224 

4 0.0412 0.0412 0.0233 0.0238 0.0217 0.0220 
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ity and reduces the frequency of FG nanoplates. Contra

ry to the nonlocal parameter, Winkler and Pasternak el

astic foundation parameters enhance the plate structure 

and increase the frequencies. The formulation lends itse

lf particularly well to stretching effects (Fekrar et al. 

2014, Hamidi et al. 2015, Meradjah et al. 2015, Draiche et 

al. 2016, Bennoun et al. 2016), which will be considered 

in the near future. 
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