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1. Introduction  
 

Over the recent years, the improvement in construction 

materials and construction technology, computing 

capability, and above all a better understanding of the 

physics of the complex phenomena which control the 

external loads acting on structures, have revolutionized the 

civil engineering community, enabling the construction of 

large and elegant civil infrastructures, making the dreams of 

architects true. The natural damping of large civil structures 

tend to be small, and the dissipation of the vibration energy 

generated by the dynamic loadings is a central issue in the 

design.  

Cable bridges are common civil structures exhibiting 

complex vibration problems and dynamic phenomena, such 

as wind and traffic induced vibration, flutter instabilities, 

and parametric excitations due to cable-structure 

interactions (Nayfeh and Mook 1979, Costa et al. 1996, 

Lilien and Costa 1994). As their size is continuously 

increasing, their resonance frequencies decrease and 

overlap with the frequency bandwidth of conventional  
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excitation loading such as pedestrians and joggers in 

footbridges. It is admitted that the over sensitivity to 

dynamic excitation of cable bridges is associated with the 

very low structural damping in the global bridge modes 

(often below 1%), and even less in the cable modes 

(Pacheco et al. 1993). A classical way to alleviate the 

vibrations in cable bridges is the use of damping systems, 

such as Tuned Mass Dampers TMD (Caetano et al. 2010, 

Tubino and Piccardo 2015, Bortoluzzi et al. 2015), viscous 

dampers for the cables (Tabatabai and Mehrabi, 2000), or 

active control using active tendons (Preumont, and Achkire 

1997). Indeed, application of active tendons to flutter 

control was considered numerically by Yang and 

Giannopoulos (1979a,b) and experimental studies were 

pioneered by Fujino and co-workers (Warnitchai et al. 

1993, Fujino et al. 1993, 1994). Since then, few studies 

considered this technique (Casciati et al. 2012). 

This paper is concerned with active control techniques. 

It completes a previous study on the potential and the 

feasibility of active vibration damping of suspension 

bridges (Preumont et al. 2016). The study considers a 

suspension bridge supplemented with four active stay 

cables; the tension in the active cables is controlled by 

means of active tendons collocated with force sensors, and 

connected through decentralized Integral Force Feedback 

loops (Preumont et al. 1992). The study showed that it is 

possible to control suspension bridges with thin cables (of 

the same size as the hangers or even less), which do not 

need to withstand the dead load of the deck. In this paper, 

we extend our study to explore two possible configurations 

of the active cables. One configuration consists of 

connecting the cables between the top of the pylons and the 

deck, and another counter-intuitive configuration, 

connecting the cables between the catenary and the base of 
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the pylons, as suggested in (Auperin and Dumoulin 2001). 

The potential of Configuration II has been demonstrated 

numerically, by (Bossens 2001), on the model of the Askoy 

bridge, in Norway. 

The present study is conducted numerically and 

experimentally on the suspension bridge mock-up, 

presented in (Preumont et al. 2016). The first part of the 

paper recalls the principles of the Integral Force Feedback 

strategy (IFF), as well as the design procedure for placing 

the active stay-cables. For the two configurations, we 

compare various possible locations of the active cables. 

Based on a simple formula, which predicts the maximum 

achievable damping with the IFF, we select the position 

providing the maximum damping for the targeted modes. In 

the second part of the paper, the two configurations are 

implemented on a laboratory suspension bridge mock-up. In 

this study, the cross section of the active cables is 4 times 

smaller than the bridge hangers. 

 

 

2. Numerical analysis 
 

The considered suspension bridge is represented in Fig.1. 

It has a span of 2.2 m and two articulated towers (pylons) of 

0.62 m, the main steel cables (catenary) have a diameter of 

1mm and the 2x10 hangers have a diameter of 0.5 mm; the 

deck is free to rotate at both ends and is attached to the 

catenary by the two rows of hangers.  

 

2.1 Modelling 
 

A linear model of the structure is used for the 

implementation of the various control configurations. The 

deck is modelled with finite elements of beams with 

bending stiffness and mass matching those of the 

experimental mockup, the main cables are modelled with 

bars (one element between two hangers) following a 

parabola (approximation of the catenary) and the hangers 

are also modelled with bars (a single element per hanger). 

The whole structure is analyzed in SAMCEF software and 

exported to Matlab for the implementation of the control 

system. The initial tensions in the hangers and the catenary 

are set to be symmetrical. Assuming a classical finite 

element formulation, the equation governing the dynamic 

response of the system is 

   ̈                     (1) 

 

 

 

Fig. 1 CAD view of the studied suspension bridge 

 

where   is the vector of global coordinates of the finite 

element model,   and   are respectively the mass and 

stiffness matrices of the passive structure (including a linear 

model of the passive cables, if any, but excluding the active 

cables). The geometric stiffness due to the prestress is 

included in the model by applying a thermal field to the 

cables (Zhou et al. 2015). Note that the nonlinear dynamics, 

due to the nonlinear geometric effects, is ignored. The 

structural damping is neglected to simplify the presentation. 

The right hand side represents the external forces applied to 

the system;   is the vector of external disturbances such as 

gravity and wind loads (expressed in global coordinates), 

  ( 1, … ,  4)
𝑇  is the vector of tensions in the active 

cables and   is the influence matrix of the cable forces, 

projecting the cable forces in the global coordinate system 

(the columns of   contain the direction cosines of the 

various active cables);   depends on the topology of the 

active cable network. 

 

2.2 Active control 
 
The active control system consists of four active stay 

cables, attached either: (i) between the pylon and the deck, 

referred to as “Configuration I”, Fig. 2(a); (ii) or between 

the main catenary and the pylon base, referred to as 

“Configuration II” Fig. 2(b). Each active tendon consists of 

a displacement actuator    (e.g., piezoelectric) co-linear 

with a force sensor   . The displacements    are 

controlled through decentralized Integral Force Feedback 

loops, such that 

   𝑔𝑠
−1𝑘 

−1   (2) 

where 𝑘  is the stiffness of the 𝑖𝑡ℎ active tendon, and 𝑠 
is the Laplace variable. The theory of vibration control 

using Integral Force Feedback has been well established 

many years ago (Preumont et al. 1992), and confirmed 

experimentally on several occasions. In this section, we 

limit ourselves to recall the interesting formula predicting 

the maximum modal damping obtained with an IFF control 

system 

𝜉 
𝑚𝑎𝑥  

Ω  𝜔 
2𝜔 

 (3) 

where 𝜔  are the resonance frequencies of the structure 

excluding the active cables (obtained by considering the 

stiffness matrix  ); and Ωi are the resonance frequencies 

of the structure including the active cables stiffness 

(obtained by considering the stiffness matrix     𝑐 
𝑇 , 

with 

 𝑐  diag(𝑘 ) (4) 

is the stiffness matrix of the cables); Eq.(3) was 

demonstrated in our previous paper (Preumont et al., 2016). 

Based on Eq.(3), one can predict the maximum damping 

achievable with an IFF control, by simply performing two 

modal analyses of the structure: with and without the active 

cables.  

Tables 1 and 2 show the maximum achievable damping 

for various possible positions of the active cables,  
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corresponding respectively, to Configuration I of Fig. 2(a) 

and Configuration II of Fig. 2(b). The predicted values of 

damping are obtained from Eq. (3). For both configurations, 

Position B is an optimal for the 1
st
 and the 3

rd
 bending and 

2
nd

 torsional modes (which are in bold in the tables). Next 

we will consider position B for both configurations, I and II. 

Referring to Tables 1 and 2, one observes that both 

configurations, I and II, provide similar performances, with  

 

 

 

 

a slight advantage for Configuration II. This advantage may  

be associated to the fact that configuration II relies on the 

absolute displacement of the catenary (as the second end of 

the active cables is clamped), while configuration I relies on 

the relative motion between the deck and the pylon. This 

advantage is also observed experimentally. 

 

 

Table 1 Configuration I: Active control cables attached between the top of the pylon and the deck. Natural frequencies with 

(  ) and without (𝜔 ) active cables and maximum achievable damping ratio 𝜉  for the various modes and the various 

positions of the active cables shown in Fig. 2(a). (B-bending mode, T-torsional mode). 

 Position A Position B Position C Position D Position E 

Mode # 
𝜔  

(Hz) 

   
(Hz) 

𝜉 
max  

(%) 

   
(Hz) 

𝜉 
max  

(%) 

   
(Hz) 

𝜉 
max  

(%) 

   
(Hz) 

𝜉 
max  

(%) 

   
(Hz) 

𝜉 
max  

(%) 

1st B 5 6.5 15 8.1 31 7.9 29 6.1 11 5 0.0 

2nd B 6.8 6.8 0.0 6.8 0.0 7 1.5 7.6 6 7.6 6 

1st  T 10.3 10.4 0.5 10.6 1.5 10.8 2.4 10.9 3 10.7 2 

3rd B 11.4 13 7 14.2 12.3 12.4 4.4 11.4 0.0 11.7 1.3 

2nd T 11.7 13.1 6 13.8 9 13.1 6 12.2 2.1 11.8 0.4 

4th B 17.8 19.8 5.6 19.3 4 17.6 0.6 18.2 1.1 17.7 0.3 

Table 2 Configuration II: Active control cables attached between the catenary and the pylon base. Natural frequenci

es with (  ) and without (𝜔 ) active cables and maximum achievable damping ratio 𝜉  for the various modes and 

the various positions of the active cables shown in Fig. 2(b) 

 Position A Position B Position C Position D Position E 

Mode # 
𝜔  

(Hz) 

   
(Hz) 

𝜉 
max  

(%) 

   
(Hz) 

𝜉 
max  

(%) 

   
(Hz) 

𝜉 
max  

(%) 

   
(Hz) 

𝜉 
max  

(%) 

   
(Hz) 

𝜉 
max  

(%) 

1st B 5 6.7 17 9.1 41 9.4 44 7.37 24 5.9 9 

2nd B 6.8 6.8 0.0 6.8 0.0 6.9 0.7 7.3 3.7 7.3 3.7 

1st  T 10.3 10.4 0.5 10.6 1.5 10.7 2 10.8 2.4 10.6 1.5 

3rd B 11.4 13.2 8 15.2 16.7 13 7 11.5 0.4 11.4 0 

2nd T 11.7 13.3 7 14.7 12.8 14.1 10 12.9 5 12.2 2 

4th B 17.8 20.2 6.7 20.5 7.6 17.6 0.6 17.9 0.3 17.6 0.6 

 

Fig. 2 Five possible positions for 4 symmetric active cables in two different configurations. (a) Configuration I: the active 

cables connect the pylons to the deck and (b) Configuration II: the active cables connect the base of the pylons to the 

catenary 
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3. Experimental Implementation 
 

3.1 Setup 
 
The experimental set-up is shown on Figs. 3 and 4. The 

catenary consists of a steel cable with a diameter of 1mm 

and the hangers are made of steel cables of 0.5 mm; the 

tension in the catenary and in the hangers can be adjusted 

with screws. The tension  0  in a hanger is measured 

indirectly from its natural frequency   according to the 

string formula 

  
1

2𝐿
√
𝑇0

𝜚𝐴
  (4) 

  being measured by a non contact custom made laser 

sensor (Achkire and Preumont 1998). In this way, it was 

possible to distribute the tension in the hangers uniformly. 

Two types of active cables have been tested, one steel cable 

similar to the hangers, with a diameter of 0.5 mm, and one 

made of dyneema with a diameter of 0.2 mm; only the  

 

 

 

results obtained with the dyneema cables are reported in 

this paper, since the results with steel cables have been 

already shown in our previous paper (Preumont et al. 2016).  

We compare the two configurations shown in Fig. 2, 

with the active cables located at position B, for both 

configurations. 
Fig. 4 shows a close view of the active tendon; it consists of 

a APA-50s piezoelectric actuator from CEDRAT with a 

stroke of 52 𝜇m collocated with a B&K 8200 force sensor 

connected with a Nexus charge amplifier (the charge 

amplifier acts as a second-order high-pass filter with a 

corner frequency adjustable between 0.1 and 1 Hz). A small 

magnet is attached to the deck and a voice coil is used to 

apply a disturbance to the structure (band-limited white 

noise). 

 

 

 

 

Table 3 Experimental results: comparison between Configuration I and II. Resonance frequencies, and corresponding 

mode shapes of the suspension bridge mock-up (only the deck is shown), without the active cables, and with the active 

cables mounted in position B (Configuration I and to Configuration II) 

Mode 
𝜔  

[Hz] 

Mode shape 

without active cables 

Conf. I 

   [Hz] 

Conf. II 

   [Hz] 

Mode shape 

with active cables 

1st B 5 

 

9.1 9.4 

 

2nd B 6 

 

6 6 

 

1st T 10.4 

 

11 11 

 

3rd B 11.5 

 

14.3 15 

 

2nd T 13.5 

 

16.1 16.1 

 

4th B 19.3 

 

19.8 21 
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3.2 Control 
 

The critical aspects related to the modelling and the control 

system have been extensively discussed in our previous article 

(Preumont et al. 2016); we recall these aspects in the Appendix. 

The effectiveness and the robustness of the IFF 

technique have been demonstrated on several occasions, 

and particularly on the suspension bridge mockup, 

numerically on a linear model, and experimentally on the 

laboratory mock-up. In our previous study, we considered 

active cables made of steel with 0.5 mm diameter (of the 

same size as the hangers). This has significant effect on the 

control performance, as the IFF technique relies on the 

amount of stiffness added by the active cables, as 

highlighted by Eq. (3). In this study, in order to demonstrate 

further the feasibility of the IFF control for real suspension 

bridges, we consider thinner Dyneema active cables of 0.2 

mm diameter, with Young modulus similar to that of the 

steel cables. Recall that the goal of the current study is to 

compare one classical configuration (Configuration I, Fig. 

2(a)), which is already used with passive stay cables and 

therefore more likely to be accepted by the civil engineering 

community, with a more exotic configuration 

(Configuration II, Fig. 2(b)), which has a slightly higher 

performance than the classical configuration 

 

 
 

 
 
3.3 Results 
 

Table 3 compares the resonance frequencies and their 

corresponding mode shapes of the suspension bridge 

without active cables, and with the active stay cables (no 

control) mounted according to Configuration I and to 

Configuration II (at position B, Fig. 2). Some changes in the 

order of the modes are observed: the first bending mode has 

the shape of the second mode of the bridge without active 

cables; the second mode has a shape similar to the first 

mode without active cables…etc. The mode shapes are 

almost unchanged for both configurations. 

The active cables have a stiffening effect on almost all 

the modes, except on the second bending mode, on which 

the control system is not effective. Indeed, according to Eq. 

(3), the control system is more effective on the modes 

whose resonance frequencies deviation is large. The table 

compares the two configurations, and one can observe that 

Configuration II has a higher stiffening effect on the 

structure, and thus, a better control authority compared to 

Configuration I. This fact confirms the numerical 

predictions, depicted in Table 1 and Table 2. 

 

 

 

 

 

Fig. 3 Laboratory mock-up equipped with 4 active cables connecting the pylon to the deck (only Configuration I is shown) 

 

Fig. 4 Detail of the active tendon 
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Fig. 5 Numerical results with Configuration I, for various values of the control gain 𝑔. (a) Numerical FRF 𝑧/  and (b) 

Corresponding cumulative RMS 𝜎(𝜔), normalized to its value when 𝑔  0 

 

Fig. 6 Experimental results with Configuration I, for various values of the control gain 𝑔. (a) Experimental FRF 𝑧/  and 

(b) Corresponding cumulative RMS 𝜎(𝜔), normalized to its value when 𝑔  0 
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Fig. 7  Numerical results with Configuration II, for various values of the control gain 𝑔. (a) Numerical FRF 𝑧/  and 

(b) Corresponding cumulative RMS 𝜎(𝜔), normalized to its value when 𝑔  0 

 

Fig. 8 Experimental results with Configuration II, for various values of the control gain 𝑔. (a) Experimental FRF 𝑧/  and 

(b) Corresponding cumulative RMS 𝜎(𝜔), normalized to its value when 𝑔  0 
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4. Conclusions 
 

This paper completes a previous study on the feasibility 

of active damping of suspensions bridges with the addition 

of stay cables controlled with active tendons. It extends the 

study to compare two configurations of the active stay 

cables: a classical configuration (Configuration I), where 

the active cables connect the top of the pylon to the deck, 

and a more exotic one (Configuration II), where the active 

cables connect the main catenary to the pylon base. The 

analysis and the numerical simulations show that both 

configurations prove effective, with a slight advantage to 

the second configuration, the experimental results confirm 

this fact. Moreover, the use of very thin Dyneema cables 

demonstrates, once again, the feasibility and the possibility 

of damping real suspension bridges, using a small number 

of thin cables, which do not need to withstand the weight of 

the deck. 

Finally, from a dynamical point of view, considering the 

added stay cables without any control, this study 

demonstrates the stiffening ability of the second 

configuration, which appears to be counter-intuitive, 

compared to Configuration I, which is a classical 

configuration extensively used in classical and modern 

suspension bridges, to stiffen the deck. 
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Append ix:  Decentralized active damping of a 
cable-structure 

 

Consider the cable-structure system similar to that of 

Fig. (A1), where a passive structure is connected to a set of 

active cables operated with active tendons. In the example 

shown, the passive structure consists of a vertical truss 

structure and there are 3 active cables and 3 active tendons. 

Each active tendon consists of a displacement actuator (e.g., 

piezoelectric) co-linear with a force sensor.    is the 

tension in the active cable  𝑖 , measured by the sensor 

integrated in the active tendon, and    is the free extension 

of the actuator, the variable used to control the system. 𝑘  is 

the axial stiffness of the cable and the active tendon, jointly. 

We assume that the dynamics of the active cables can be 

neglected and that their interaction with the structure is 

restricted to the tension   . Assuming a classical finite 

element formulation, the equation governing the dynamic 

response of the system is: 

   ̈                      (A.1) 

where   is the vector of global coordinates of the finite 

element model,   and   are respectively the mass and 

stiffness matrices of the passive structure (including a linear 

model of the passive cables, if any, but excluding the active 

cables); the structural damping is neglected to simplify the 

presentation. The right hand side represents the external 

forces applied to the system;   is the vector of external 

disturbances such as gravity and wind loads (expressed in 

global coordinates),   ( 1, … ,   , … )
𝑇  is the vector of 

tension in the active cables and   is the influence matrix 

of the cable forces, projecting the cable forces in the global 

coordinate system (the columns of   contain the direction 

cosines of the various active cables);   depends on the 

topology of the active cable network. 

If we neglect the cable dynamics, the active cables 

behave like (massless) bars. If   ( 1, … ,   , … )
𝑇 is the 

vector of (free) active displacements of the active tendons 

acting along the cables, the tension in the cables are given 

by 

   𝑐( 
𝑇   )   (A.2) 

 

 

 

Fig. A.1 Left: Cable-structure system with active tendons. 

Center: Active tendon. Right: Passive structure 

 

where  𝑐  diag(𝑘 ) is the stiffness matrix of the cables, 

 𝑇  are the relative displacements of the end points of the 

cables projected along the chord lines. This equation 

expresses that the tension in the cable is associated with the 

elastic extension of the cable. Combining Eqs. (A.1) and 

(A.2), we get 

    ̈  (    𝑐 
𝑇)    𝑐    (A.3) 

This equation indicates that     𝑐 
𝑇  is the stiffness 

matrix of the structure including all the guy cables (passive 

+ active). Next, we assume that all the active cables are 

controlled according to the decentralized force feedback 

law 

    𝑔ℎ(𝑠).  𝑐
−1  (A.4) 

where 𝑔ℎ(𝑠) is the scalar control law applied to all control 

channels
1
 (note that  𝑐

−1  represents the elastic extension 

of the active cables). Combining Eqs. (A.2)-(A.4), the 

closed-loop equation is 

[ 𝑠2    
1

1+𝑔ℎ(𝑠)
.   𝑐 

𝑇]     (A.5) 

It is readily observed that the open-loop poles, solutions 

of the characteristic equation for 𝑔  0, satisfy 

   [ 𝑠2      𝑐 
𝑇]  0          (A.6) 

(the solutions are the eigenvalues of the structure with all 

cables), while the transmission zeros, solutions of Eq. (A.5) 

for 𝑔 → ∞, satisfy 

[ 𝑠2   ]  0  (A.7) 

which is the eigenvalue problem for the open-loop structure 

where the active cables have been removed (they can be 

computed very easily). 

 

Control law 
 

If an Integral Force Feedback (IFF) controller is used, 

ℎ(𝑠)  𝑠−1, the closed-loop equation becomes 

   [ 𝑠2    
𝑠

𝑠+𝑔
  𝑐 

𝑇]     (A.8) 

which indicates that the closed-loop static stiffness matrix is 

     lim
𝑠=0
 [ 𝑠2    

𝑠

𝑠+𝑔
  𝑐 

𝑇]     (A.9) 

This means that the active cables do not contribute to 

the static stiffness and this may be problematic in some 

applications. However, if the control is slightly changed 

into 

𝑔ℎ(𝑠)  
𝑔𝑠

(𝑠+𝛽)2
   (A.10) 

where 𝛽 is small and positive, the closed-loop equation 

becomes 

                                           
1𝑠 is the Laplace variable. 
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       [ 𝑠2    
(𝑠+𝛽)2

𝑔𝑠+(𝑠+𝛽)2
  𝑐 

𝑇]     (A.11) 

and the closed-loop static stiffness matrix becomes 

lim
𝑠=0
 [ 𝑠2    

(𝑠  𝛽)2

𝑔𝑠  (𝑠  𝛽)2
  𝑐 

𝑇]      𝑐 
𝑇 (A.12) 

 

which indicates that the active cables have a full 

contribution to the static stiffness. 

 

Modal Behavior 
 

Next, let us project the characteristic equation on the 

normal modes of the structure with all the cables,   Φ𝑧, 

which are normalized according to Φ𝑇 Φ  1. According 

to the orthogonality condition of the normal modes 

       Φ𝑇(    𝑐 
𝑇)Φ  Ω2  diag(  

2)  (A.13) 

where    are the natural frequencies of the complete 

structure. In order to derive a simple and powerful result 

about the way each mode evolves with 𝑔, let us assume that 

the mode shapes are little changed by the active cables, so 

that we can write 

        Φ𝑇 Φ  𝜔2  diag(𝜔 
2)   (A.14) 

where 𝜔  are the natural frequencies of the structure where 

the active cables have been removed. It follows that the 

fraction of modal strain energy is given by 

      𝜈  
𝜙𝑖
𝑇𝐵𝐾𝑐𝐵

𝑇𝜙𝑖

𝜙𝑖
𝑇(𝐾+𝐵𝐾𝑐𝐵

𝑇)𝜙𝑖
 
𝛺𝑖
2−𝜔𝑖

2

𝛺𝑖
2   (A.15) 

Considering the IFF controller, the closed-loop 

characteristic Eq. (A.8) can be projected into modal 

coordinates, leading to 

(𝑠2    
2)  

𝑔

𝑔  𝑠
(  

2  𝜔 
2)  0 

or 

    1  𝑔
𝑠2+𝜔𝑖

2

𝑠(𝑠2+𝛺𝑖
2)
 0  (A.16) 

This result indicates that the closed-loop poles can be 

predicted by performing two modal analyzes (Fig. A.3), one 

with all the cables, leading to the open-loop poles ±𝑗  , 
and one with only the passive cables, leading to the open-

loop zeros ±𝑗𝜔 , and drawing the independent root loci of 

Eq. (A.16). The maximum modal damping is given by 

              𝜉 
𝑚𝑎𝑥  

𝛺𝑖−𝜔𝑖

2𝜔𝑖
  (A.17) 

and it is achieved for 𝑔    √  /𝜔  . 

Eq. (A.17) relates directly the maximum achievable 

modal damping with the spacing between the pole    and 

the zero 𝜔 , which is essentially controlled by the fraction 

of modal strain energy in the active cables, as expressed by 

Eq. (A.15). 

 

 

 

Fig. A.2 Root locus of the closed-loop poles with an IFF 

controller. The system is unconditionally stable 
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