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1. Introduction 
 

The health conditions of in-service civil infrastructures 

can be evaluated by employing structural health monitoring 

technology. A reliable health evaluation result depends 

heavily on the quality of the data collected from the 

structural monitoring sensor network. Thus, the problem of 

use in diagnosing sensor has received considerable attention 

in recent years (Dmitrienko et al. 2011, Huang et al. 2016). 

Optimal placement of sensors is an integral component in 

the development of effective structural monitoring of 

building structures (Zhou et al. 2015a, b, Yi et al. 2015). 

Theoretical and computational issues arising in the selection 

of the optimum topology sensor network for estimating 

coverage area with sensor placement in building structural 

monitoring discussed (Haque et al. 2015). Yi et al. (2015) 

proposed an algorithm, which combines the artificial fish 

swarm algorithm with the monkey algorithm, as a strategy 

for the optimal placement of a predefined number of 

sensors. Lü et al. (2015) explored the three-point method 

that uses a grating eddy current absolute position sensor for 

bridge deflection estimation. Real spatial positions of the 

measuring points along the span axis are directly used as 

relative reference points of each other rather than using any 

other auxiliary static reference points for measuring devices 

in a conventional method. Dung and Sasaki (2016) 

investigated the effect of sensor location attached on a 

cantilever beam. Ozbey et al. (2016) studied experimentally 

measured relative displacements and deformations in a  
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simply supported beam. Loktionov (2013) studied the use 

of methods of approximation and reduction of 

measurements to determine the load on the cantilever beam. 

Reduction of measurements allows determining a support 

moment of a cantilever beam, loaded with bending moment, 

if initial values of the problem are not assigned. 

Determination of the bending moment realized Lagrange 

approximation of the second derivative of the deflection and 

numerical differentiation of information-measuring system. 

The deflection is measured at points on a grid of 

approximation. Chekushkin et al. (2015) examined 

polynomial methods to create functional dependencies 

in data-measuring systems. Cheney and Kincaid (2013) 

described interpolation and numerical differentiation of 

functions without input errors on the set of roots of 

Chebyshev. The initial conditions in the calculation scheme 

may be dependent on the external load or to be unknown. In 

solving the inverse problem, the sensor signals are used to 

calculate initial conditions in the calculation scheme. The 

procedure of the solving of an inverse problem of structural 

analysis with measurement of the beam curvature and 

subsequent calculation of beam characteristics, in particular, 

of bending moments in a beam was described by Liew and 

Choo (2004). The authors highlighted the low accuracy of 

determination of the curvature near beam ends by means of 

the method of polynomial approximation using 

measurement aggregation of six sensors. 

The need to eliminate the influence of the coordinates of 

an external force, the deflection of the support section and 

the angle of rotation of the support section is of great 

importance in the problem of experimental and theoretical 

determination of the support moment of cantilever beam. 

The purpose of this work is to improve methods of 

polynomial approximation of not measured directly 
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characteristics of a measured object using an information 

and measurement system of numerical differentiation. The 

goal of the investigation is to develop a unified formalism 

of measurement and criteria of estimation of the 

effectiveness of the solving of a measurement reduction 

problem. 

A method of experimental and computation 

determination of internal forces (shear and bending 

moment) in case of cross bending of a beam, loaded with 

concentrated force is proposed in the paper. The method is 

based on the reduction of measurements using Lagrange 

approximation in numerical differentiation. The procedure 

of reduction of measurements lies in the reaching of limit 

optimum relationships in measurement aggregation of 

sensors according to the class of transformation, number 

and position of sensors on a beam. The application 

significance of the investigation is in the increase of 

accuracy of determination of beam target characteristics. 

 

 

2. Reduction of measurements by means of 
Lagrange approximation of numerical differentiation 

 

The procedure of reduction of measurements of forces 

acting in a mechanical structure was described by Loktinov 

(2007). Optimization of characteristics of measurement 

aggregation of sensors and their arrangement in structures 

were studied. Under reduction of measurement we 

understand formalism allowing obtaining more precise 

description of non-observable system “analyzed object - 

environment” using the results of measurements of the 

observable system “measured object - environment-

information and measurement system” (Mordvinov 2010, 

Zelenkova and Skripka 2015). The information and 

measurement system consists of measuring and calculation 

components. The measuring component includes 

transforming aggregation of sensors and a communication 

channel. Characteristics of a measured object unlike the 

analyzed object are distorted by the interaction with the 

information and measurement system, in particular, with its 

measurement component and in some cases with the 

environment. The algorithm implemented by the calculation 

component of the information and measurement system, 

derives from the output signal of the communication 

channel the most precise required values of target 

characteristics of the analyzed object not available for direct 

examination. 

 

 

 
Fig. 1 Deflection Curve of Beam 

The system was examined as is shown in Fig. 1 as 

applied to a cantilever beam. 

The specific features of inverse problems of structural 

mechanics with numerical differentiation and use of 

measurement reduction without loss of generality are 

examined using the example of a mechanical structure load-

bearing element - a cantilever beam with length l and 

permanent flexural rigidity EI, loaded with concentrated 

load P at its end. Here beam deflections are measured, 

target characteristic of the load-bearing element - support 

moment M0 is determined.  

Select the following system elements - the measured 

object (cantilever beam), the external environment (the 

external load on the beam, the coordinate of the external 

force, the conditions of fixing the beam), the measurement 

component (sensors), a computer component, the object 

under study (the bending moment and shear force acting in 

the beam). According to the results of measurements of 

indirect manifestations of the object being analyzed, in 

particular deflections, can be obtained more accurate values 

of the desired bending moment and shear force. 

Function of deflection y(x) is assigned using the results 

of joint measurements - finite values of deflections y
*
(xi) on 

the longitudinal registration section [xa, xb] of the beam at 

data points xi. Minimum number of data points depends on 

the characteristics of the cantilever beam, in particular, on 

the accuracy of its length l assignment and initial 

parameters - support settlement 0 and angle of rotation of 

the support section 1. 

The effectiveness of measurement reduction is 

connected with the optimization of sensors measuring 

aggregation. Let us study two classes of deflection data 

transformation and consequently, of a sensors. The used 

sensors can have similar characteristics. Class of p-

transformation of deflection data, i.e. linear transformation 

with a uniform continuous norm of absolute uncertainty in 

measurement, similar reduced uncertainty of measurements 

p of sensor readings in all data points xi (i=1, 2, … n) and 

similar limits of measurements yp, equal to the upper limit 

sup y
*
(xi) for a compact set of real numbers {y

*
(x1), …, 

y
*
(xn)}. The following relations are performed in p-

transformation 

           ,*
iiippimi xyxyxyyxyxy   (1) 

where m(y(xi)) is the upper limit of absolute values of 

deflection measurement uncertainty. 

However, sensors can have different characteristics. Let 

us consider a special case - class of pi-transformation, 

which is different from p-transformation class by 

measurements limits ypi=y(xi). The following relations are 

performed in pi-transformation 

m(y(xi)) = pypi  (y(xi)).           (2) 

Restoring not directly measured target characteristics of 

the element of a structural unit we consider the class of 

inverse problems, presented by the function 

f(x) = y (x),   x  I             (3) 

where I=[0, l] is the section of problem-solving assignment, 

432



 

A measuring system for determination of a cantilever beam support moment 

y(x) is the solution of the initial problem with differential 

equation 

y (x) = fд(x)                 (4) 

and fд(x)=P/EI is the external load in Eq. (4). 

Remark 1 To take account Saint-Venant’s principle, 

sensors are placed in section [xa, xb] outside the area of 

application of forces and fixing of the beam in a general 

case at the non-uniform grid of approximation 

0.05 l = xa  xi xb = 0.95 l.           (5) 

After deformation Bernoulli beam cross section is flat 

and normal to the beam axis deformed (Gere and 

Timoshenko 1997, Kuchumov 2011). The initial problem 

(4) for the Bernoulli beam has particular solutions 

 
62

3

3

2

210
ii

ii

xx
xxy          (6) 

for initial conditions  

y0 = 0, 2010 ,  yy , 

where 0, 1, 2, 3  are the initial parameters of function 

y(x), 
EI

M0
2  , 

EI

Q0
3  , 2 =  l3, E is the Young 

modulus of beam material, I is the moment of inertia and 

Q0=P. 

Along with the target not directly measured 

characteristics of object M0 to the deflections y
*
(xi) a set of 

other arguments are transformed, characterizing influence 

quantities including those relevant to the external 

environment. By reduction of measurements we obtain 

approximation to function f(x) - function f
*
(x) with 

minimum value of the level of its uncertainty.  

Range {yi
*
} forms an observation space - a finite-

dimensional coordinate Euclidian space of measured data 

points in Eq. (5), which allows calculating the value of the 

support moment M0 through function f(x) in Eq. (3) when 

x=0 using Lagrange one-dimensional approximation of the 

first degree  

   



n

i

ii xyLy
1

2 0 ,           (7) 

where Li are the Lagrange coefficients and n is the number 

of parameters of approximation (number of sensors in the 

measurement aggregation).  

Approximation polynomial going through the observed 

values of the function in approximation grid points (at the 

points of sensors location) is in some cases impractical. 

Considering the uncertainty in values y
*
(xi) approximation 

polynomial repeats this uncertainty. However, it is possible 

to select such a polynomial whose curve goes near these 

points. The concept of proximity is specified by the type of 

approximation.  The type of metrics is as a rule determined 

by the experiment type. Mean-square approximation is quite 

acceptable to process observation data, it smoothes some 

inaccuracy of function y(x), takes into account uncertainty 

of measurement at nodal grid points. The effectiveness of 

mean-square approximation decreases in case of small 

quantity of observed data. In this paper more rigid 

conditions are set, i.e., a uniform continuous norm of 

absolute uncertainty of measurements.  

 

 

3. Estimation of effectiveness of measurements 
reduction  

 

Let us consider the procedure of using reduction of 

measurements for Lagrange approximation of numerical 

differentiation in Eq. (7) in terms and notions of the 

proposed method. Criteria for assessing the effectiveness of 

solving the task - the absolute () conditioning number of 

the task and the relative (v) condition number of the 

reduction problem. We use the following relations 

   yvf mm   sup ,             (8) 

m(f)  v p,                 (9) 

where m(f), m(f), m(y) and m(y) are respectively upper 

limits of absolute and relative values of uncertainty of 

solution and deflection measurements. 

Limit optimum relationships in measurement 

aggregation of sensors according to the class of 

transformation, number and location of sensors on the beam 

are obtained by regularization of aggregation and obtaining 

of minimum condition number of the problem of a 

measurement reduction - the size of the structural 

uncertainty of the solution of problem.  

The objective function in the problem of reduction with 

estimating the effectiveness of Eq. (8) has the form min 

v=min m(f)/m(y), and for Eq. (9) min v=min m(f)/p 

with boundary constraints in accordance with the Eq. (5). 

There m(f), m(y), m(f) the function of controlled variables 

xi. 

Regularization is in choice of the class of transformation 

of sensors and a communication channel signal and a type 

of distribution of approximation grid nodal points. There is 

no single strategy of selection of optimum nodal points of 

the grid ensuring process convergence of the obtaining of 

measure of structural error of the problem of measurements 

reduction for all continuous at section [xa, xb] functions.  

Some particular results were described by Loktionov 

(2013). In particular, for p-transformation of deflection 

y
*
(xi) the problem of regularization according to Eq. (7) is 

reduced to the problem of regularization of a compact set of 

grid nodal points in the implementation of the objective 

function (Lebesgue constant of the second type) 





n

i

in L
0

2 min .              (10) 

Consider the optimization problem for a function Eq. 

(10) with boundary constraints in accordance with the Eq. 

(5). 

Loktionov (2013) announced a theorem: For function 

approximation using Eq. (3) by Lagrange one-dimensional 

approximation for uniform approximation norm, equality of 

the number of approximation parameters n in Eq. (7) and 

increased by a degree m function y(x), performing relations 
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in Eq. (1), optimum nodal points of approximation formula 

to obtain minimum absolute number of uncertainty of the 

problem of reduction are points of Chebyshev alternance of 

the order m+1. Here pi-transformation method uses 

successive extreme points of Chebyshev polynomials. 

Deviations points are equal and alternate in sign. Accuracy 

of approximation by this method above interpolation 

method Cheney and Kincaid (2013) on the set of roots of 

Chebyshev. 

When pi-approximation transducers have various 

approximation norm and this theorem does not apply to the 

totality of the transducers. 

Chebyshev polynomial of degree m at section [xa, xb] 

has Chebyshev alternance of order m+1– a set of points 

m+1, where polynomial takes a value with maximum 

modulo with sequential alteration of signs. 

The Chebyshev points are obtained by taking equally-

spaced points on a semicircle and projecting them down 

onto the horizontal axis (Cheney and Kincaid 2013). 

Constructing points Chebyshev alternance shown in Fig. 2. 

In particular, for m=1 two points 

x1 = xa, x2 = xb,              (11) 

for m = 2 three points 

x1 = xa, 
2

2
ba xx

x


 , x3 = xb,         (12) 

for m = 3 four points 

x1 = xa, 
4

3
2

ba xx
x


 , 

4

3
3

ba xx
x


 , x4 = xb.  (13) 

The special features of inverse problems of numerical 

differentiation and procedure of using measurements 

reduction without loss of generality are examined using the 

example of function y(x) in Eq. (6). In the model of a beam 

Timoshenko cross-sections remain flat, but not 

perpendicular to the deformed axis of the beam (Gere and 

Timoshenko 1997, Kuchumov 2011). The results obtained 

in this paper are suitable for the model of the beam 

Timoshenko, which takes into account the effect of shear 

deformation on deflection of the beam.  

  ,
62

3
3

2

210

xx
x

GF

Q
kxxy


  

where k is the coefficient of shear, G is the material shear 

modulus, F is the beam cross-section area.  

 

 

 
Fig. 2 Approximation with Chebyshev points (m=4) 

4 Problem with low accuracy of assignment of 
support settlement, angle of rotation and beam 
length 

 

Four deflection data y(xi) are enough to determine the 

initial parameter ξ2 by Eqs. (6) and (7), if accuracy of 

cantilever beam parameters assignment l (coordinates of 

areas of force application P), ξ0 and ξ1 is insufficient. In 

order for approximation polynomial according to Eq. (7) at 

n=4 to implement at numerical differentiation by 

measurement and compution system a formula of the 

second derivative of the function of deflection at the point 

with coordinate x=0 and not to be the function of length l 

and initial data 0, 1, according to the method of 

undetermined coefficients, it is necessary to meet the 

following conditions 

0
4
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
i
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
i

ii xL , 2
4

1

2 
i

ii xL , 0
4

1

3 
i

ii xL .  (14) 

Lagrange coefficients satisfy the conditions of Eq. (14)  
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(15) 

The approximate solution as per Eq. (7) satisfies the 

perturbed initial data - deflection data y
*
(xi), the level of 

errors of initial data within uncertainty of each deflection 

point. The integrated absolute uncertainty of value ξ2 for all 

4 data points equals to  

 



4

1

2

i

ii xyL .            (16) 

Relative uncertainty of value ξ2 equals to  

 






4

12

2

1

i

ii xyL .           (17) 

Let us compare the uncertainty of special results of 

solving the problem of determination of a beam support 

moment using values of absolute and relative measure of 

structural uncertainty - minimum absolute and relative 

condition number of the reduction problem. 

The absolute condition number of the reduction problem 

v and relative condition number of the reduction problem 

v are determined by relations as per Eqs. (8)-(9) 

m(ξ2)  v sup m(y(xi)),           (18) 

m(ξ2)  v p,               (19) 

where m(ξ2) and m(ξ2) are respectively the limit of 

absolute and relative values of uncertainty of the result of 

the problem. 

 

4.1 Non-uniform distribution of data points  
 

4.1.1 P-transformation of deflection data y(xi)  
Taking into account yp=y(x3) of Eqs. (1), (7), (16) and 
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(18) we obtain an absolute condition number of the 

reduction problem 




 
4

1i

iLv .                (20) 

Regularization result as per Eqs. (10), (15) and (20) - is 

the minimum absolute conditioning number of 132/l
2
 at 

distribution of deflection coordinates by Eq. (13). 

Remark 2. Determining relative condition number of the 

reduction problem let us introduce at [xa, xb] relations  

)(10 ii xyx  , 

and from Eq. (6) we obtain approximate equation  

 
 lxx

xy
ii

i
3/1

1
2

22


 .          (21) 

Then the accuracy of determination of relative condition 

number of the reduction problem is determined by the 

accuracy of Eq. (21). 

Taking into account Eq. (21) at xi=x4, Eqs. (1), (9) and 

(19) we obtain relative condition number of the problem  

 








4

1

4
2
4

2

31

i

iL
lxx

v .          (22) 

The result of regularization of Eqs. (15) and (22) is 

coordinate distribution of deflection data in Eq. (13), and 

minimum relative conditioning number of the problem is 

40.6. 

 

4.1.2 Pi-transformation of deflection data y(xi)  
Taking into account relations of Eqs. (2), (16) and 

ypi=y(xi) we obtain 

   



4

1

2

i

iipm xyL .           (23) 

Substitution of Eq. (21) in Eq. (23) yields the upper 

limit of the absolute uncertainty of problem-solving results  
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Fig. 3 Influence on data points coordinate accuracy 

 

 
Fig. 4 Algorithm - the choice and placement of 

transducers in section 4.1 

 

 

Then, using Eq. (18) we obtain absolute condition 

number of the reduction problem of determination ξ2 
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The result of regularization of the problem by the 

numerical method is the coordinate distribution of 

deflection data points 

x1 = xa, x2 = 0.083l, x3 = 0.389l, x4 = xb,     (24) 

minimum absolute conditioning number is 14.9/l
2
. 

Taking into account Eqs. (2), (17), (19) and (21) we 

obtain relative condition number of the reduction problem 
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




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4
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3
1

2

1

i

i
ii

l

x
xLv . 

The result of the regularization of the problem by 

numerical method is coordinate distribution of the data 

points in Eq. (24), minimum relative condition number is 

4.60. 

In case of no regularization, in particular when x2< 

0.051l or x2>0.35l relative condition number of the 

reduction problem increases more than 3 times (it becomes 

more than 16) as shown in Fig. 3, where α=x1/l, β=x2/l, 

γ=x3/l, =x4/l. 
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Selection and placement of transducers in section 4.1 is 

shown in Fig. 4. It is necessary to enter the value of l, p, 

approximate values of the initial parameters of the function 

y(x), M - the expected measurement uncertainty of the 

initial parameter 2. 

 

4.2 Uniform distribution of deflection data points  
 

The expectedly worst results were obtained at 

regularization only of length and location of the section 

with uniform distribution of deflectometers along the beam  

x1 = xa, x2 = (2 xa + xb)/3, x3 = (xa +2 xb)/3, x4 = xb. 

At p-transformation of the deflection data, minimum 

absolute conditioning number is 148/l
2
, minimum relative 

conditioning number is 45.7, and at pi-transformation they 

are 50.6/l
2
 and 15.6 respectively. 

 

 

5. Problem with low accuracy of assignment of 
support settlement and angle of rotation, and known 
value of beam length 

 

Three deflection data y(xi) are enough to determine the 

initial parameter ξ2 by Eq. (6), if accuracy of assignment of 

parameters ξ0, ξ1 is insufficient and beam length assignment 

l is sufficient. In order for approximation polynomial as per 

Eq. (7) at n=3 to implement at numerical differentiation by 

measurement and computation system a formula of the 

second derivative of the function of deflection at the point 

with coordinate x=0 and not to be a function of initial data 

0, 1, according to the method of undetermined coefficients 

it is necessary to meet the following conditions 
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Lagrange coefficients satisfy the conditions of Eq. (25)  
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where 
l

xxx
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3
1 321 
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According to the method shown in Section 2 the 

following results were obtained 

 

5.1 Non-uniform distribution of data points  
 

5.1.1 P-transformation of deflection data y(xi)  
Regularization of the absolute conditioning number 




 
3

1i

iLv . 

gives minimum absolute condition number of 38.7/l
2
 at 

distribution of deflection data points 

x1 = xa, x2 = 0.4365l, x3 = xb. 

Relative condition number is 
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Substituting Eq. (26) in Eq. (27) yields the condition 

number of the reduction problem 
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Function by Eq. (28) at [xa, xb] takes on minimum value 

of 11.2 at data points distribution  

x1 = xa, x2 = 0.3072l, x3 = 0.6015l. 

In case of no optimization, in particular, at 0.1l> x1, 

x2>0.42l, 0.5l>x3 or at 0.1l>x1, x2>0.6l, 0.65l>x3 relative 

condition number of the reduction problem increases more 

than by three times (it becomes more than 30) as shown in 

Fig. 5 (function F1 x1/l=0,050, x3/l=0,650, for the function 

F2 x1/l=0,050, x3/l=0,500). 

 

5.1.2 Pi-transformation of deflection data y(xi)  
Regularization of the absolute condition number of the 

reduction problem 


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gives minimum absolute condition number 5.57/l
2
 at 

distribution of data points  

x1 = xa, x2 = 0.09435l, x3 = xb.         (29) 

Relative condition number is 
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Substituting Eq. (26) in Eq. (30) yields the condition 

number of the reduction problem 
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Function as per Eq. (31) when [xa, xb] takes the least 

value at data points distribution as per Eq. (29). 

Substituting Eq. (29) in Eq. (31) yields the minimum 

relative condition number 1.72. 

In case of no regularization, in particular when x1> 0.3l 

or x2>0.7l relative condition number increases more than 7 

times (it becomes more than 12) as shown in Fig. 5 

(function F3 x1/l=0,051, x3/l=0,950, for the function F4 x1/l 

0,300, x3/l=0,950). 

 

5.2 Uniform distribution of data points  
 

The expectedly worst results were obtained in case of 

regularization of only length and location of the section 

with uniform distribution of sensors along the beam. At p-

transformation of deflection data minimum absolute 

condition number of the reduction problem 39.5/l
2
 was  
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Fig. 5 Influence on data points coordinate accuracy 

 

 

obtained at distribution of data points as per Eq. (12), 

minimum relative condition number is 11.3
 
at data points 

distribution 

x1 = xa, x2 = 0.3179l, x3 = 0.5857l. 

At pi-transformation minimum absolute condition 

number of the reduction problem 16.6/l
2 

was obtained at 

distribution
 
of data points as per Eq. (12) and minimum 

relative condition number is 4.69
 
at data points distribution

 
 

x1 = xa, x2 = 0.326l, x3 = 0.602l. 

 

 

6. Problem with known settlement and angle of 
rotation of support section and low accuracy of the 
assignment of beam length 

 

Two deflection data y(xi) are enough to determine the 

initial parameter ξ2 as per Eq. (6), if accuracy of length l 

assignment is not sufficient. In order for approximation 

binomial  

  
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
2

1

10
*

2

i

iii xxyL  

to implement at numerical differentiation by the 

measurement - computation system the formula of second 

derivative of the function of deflection at the point with 

coordinate x=0 and not to be the function of length l, as per 

the method of undetermined coefficients it is necessary to 

meet the following conditions 

2
2
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Lagrange coefficients satisfy the conditions of Eq. (32) 
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By the method specified in Section 2 the following results 

are obtained.  

6.1 P-transformation of deflection data y(xi)  
 

Absolute conditioning number has the form of 




 
2

1i

iLv .                 (34) 

Substituting Eq. (33) in Eq. (34) yields the absolute 

conditioning number of the problem 
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Function as per Eq. (35) at [xa, xb] takes the least value 

when x2=xb. Then, from the equation   0


 lxv  we obtain 

cubic equation 

023 3
1

23
1  bb xxxx  

with Cardano solution  

lxxx bb 566.0596.02121 33

1 




  .  (36) 

Substitution of x2=xb and Eq. (36) in Eqs. (33)-(34) 

yields the minimum absolute condition number of the 

reduction problem of 18.7/l
2
. 

In case of no optimization, in particular, for coordinate 

x1 when 0.9>x1>0.14 absolute condition number increases 

more than by 4.6 times (it becomes more than 87l
2
) as 

shown in Fig. 6, where V=l
2
 is the reduced condition 

number of the reduction problem. 

Relative condition number of the reduction problem has 

the following form 
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Substitution of Eq. (33) in Eq. (37) yields the relative 

condition number of the reduction problem 
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Regularization of Eq. (38) yields the minimum relative 

condition number of the reduction problem of 5.77 at the 

distribution of data points x2 = xb and by Eq. (36). 

 

 

 
Fig. 6 Influence on accuracy of the first data 

point coordinate 
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6.2 Pi-transformation of deflection data y(xi)  
 

Absolute condition number of the reduction problem has 

the following form 
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Substitution of Eq. (33) in Eq. (39) yields the absolute 

condition number of the reduction problem 
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Regularization gives minimum absolute condition 

number of the reduction problem of 3.49/l
2
 at distribution of 

data points by Eq. (11). 

In case there is no optimization, in particular, for 

coordinate x1 when x1>0.7 the absolute condition number of 

the reduction problem increases more than by 4.5 times (it 

becomes more than 15.6/l
2
) as shown in Fig. 6. 

Regularization of the relative conditioning number  


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


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2

1

2

3
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ii

l

x
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gives minimum relative condition number of the reduction 

problem 3.40 at data points distribution by Eq. (11). 

 

 

7. Comparison of the results of the solutions of the 
problem  

 

In the problem in Sub-section 5.1 sensors with accuracy 

class 0.5 (the reduced uncertainty of measurements is 0.5%) are 

applied. The values of uncertainty of signal transmission in 

the communication channel and method of measurement are 

not taken into account. 

In case of p-transformation, minimum relative condition 

number of the reduction problem is 11.2. For maximum pre-

calculated deflection, sensors with upper limit of 

measurement of 2 mm and absolute uncertainty of 

measurement of 0.01 mm were chosen. The reduced 

uncertainty of determination of the support moment can 

amount 0.5%11.2=5.6%. 

In case of pi-transformation, relative condition number 

of the reduction problem is 1.72. According to pre-

calculated deflection for optimum coordinate distribution of 

data points by Eq. (29) sensors with different upper limits 

of measurements (2 mm and less) were selected. Reduced 

measurement error of determination of support moment 

5%1.72=0.86% can be reached. The result is - the second 

variant is 6.5 times better that the first one. 

Liew and Choo (2004) studied approximation with a 

uniform grid and excessive number of data points - six, 

seven. The increase of the number of data points for the set 

class of accuracy of sensors can lead to inadmissible values 

of the class of accuracy of the measurement system on the 

whole and requires preliminary numerical estimate. 

Approximation by Eq. (7) with a uniform grid at the 

distribution of sensors along the beam in case of slight 

redundancy (n=5) is 

            543212
2211222820870

24

1
0 xyxyxyxyxy

h
y   , 

where h=l/4 has a minimum absolute condition number of 

the reduction problem of 427/l
2
. This value corresponds to 

an unacceptable in practice class of accuracy of at least 20 

of a measurement system for determination of support 

moment of a cantilever beam with sensors of high class of 

accuracy of 0.5.  

 

 

8. Conclusions 
 

There were obtained solutions of the problem of 

experimental-computation determination of the support 

moment of a cantilever beam loaded with concentrated 

force at its end including optimum choice of coordinates of 

distribution of sensors along the beam and data 

transformation parameters at insufficient accuracy of initial 

parameters and length of cantilever beam assignment.  

• Suitable for engineering evaluation formulae of 

estimation of error of determination of a support 

moment of a cantilever beam at specified sensors 

inaccuracy were obtained.  

• The proposed method depending on the required level 

of uncertainty of determination of sought function with 

some known restrictions for the level of experimental 

base allows taking decision about the choice of the type 

of approximation with uniform distribution of  sensors 

along the beam or using regularization to increase the 

accuracy, and about the use of comparably simple 

aggregation of p-transformation  sensors or use of more 

complicated for the implementation of aggregation of 

pi-transformation sensors to decrease the value of 

minimum condition number of the reduction problem. 
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