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1. Introduction 

 
Recently, distributed signal processing has received a 

great deal of attention due to a reduced computational 

requirements and power consumption (Goldingay and 

Mourika 2011, Ilarri et al. 2008, Moghim et al. 2010). The 

nodes organize themselves in distributed systems through 

local interactions and carry out the computations without 

the requirement to transfer the information to a Fusion 

Center (FC). Nodes, which are normally situated in a close-

enough distance to each other, keep in touch in order to 

exchange their information and make decisions (Liu et al. 

2007, Sung and Chen 2010). Distributed estimation is 

useful for the estimation of a desired vector for each node, 

leading to an improved accuracy by accessing to the 

measurements from a subset of its neighbors. This has been 

studied in the context of distributed control, tracking, data 

fusion, and recently in wireless sensor networks (Willsky et 

al. 1982, Mergen and Tong 2006). 

There are, however, situations where the statistical 

information for the underlying processes of interest is not 

available. As a result, it is necessary to conduct estimation 

tasks in a constantly changing environment and the efforts 

to develop distributed adaptive estimation schemes (also 

known as adaptive networks) are then motivated. Adaptive 

networks consist of a collection of spatially distributed 

nodes that are linked together through a connection 
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topology and cooperate with each other through local 

interactions (Ribeiro and Giannakis 2006, Lopes and Sayed 

2006). When the cooperative processing is adopted in 

conjunction with adaptive filtering for each node, the entire 

network and also each individual node are enabled to track 

not only the variations of the environment but also the 

topology of the network (Lopes and Sayed 2007).  

Distributed estimation schemes can be classified into 

incremental and diffusion algorithms (and also their 

probabilities) depending on the approach by which the 

nodes communicate with each other. In the incremental 

mode, a cyclic path through the network is required, and the 

nodes communicate with neighbors within this path. The 

incremental LMS, incremental RLS, incremental techniques 

based on the affine projection algorithm, parallel 

projections, and randomized incremental protocols are 

examples of incremental adaptive networks (Lopes and 

Sayed 2006, 2007, Sayed and Lopes 2006, Li and Chambers 

2008). In contrast, nodes are allowed to communicate with 

all of their neighbors in the diffusion algorithms as reflected 

by the network topology. Typical examples include 

diffusion LMS (Cattivelli and Sayed 2010), diffusion RLS 

(Cattivelli et al. 2008) and diffusion Kalman filtering 

(Cattivelli et al. 2008). Since a cyclic pathway is no longer 

required, these algorithms are preferred in practical 

engineering. We should note that incremental-based 

networks are particularly accurate in small size networks, 

while diffusion based networks are more robust to link and 

node failures. 

There are numerous evidences of complex networks in 

modern science, including the study of biological networks, 

power grids, macro-economies and inference over graphs. 

In many complex systems, especially those encountered in 

nature, it is common for emergent behavior to arise from 

the interaction among individual agents, as happens with 

fish schooling or bird flight formations. While each 
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individual agent in these biological networks is not capable 

of featuring complex behavior, it is the combined 

coordination among multiple agents that leads to the 

manifestation of sophisticated behavior at the network level. 

Research efforts to decipher the intricacies of such complex 

networks have been progressing almost independently 

across several disciplines, including signal processing, 

machine learning, optimization, control, statistics, physics, 

biology, economics, computer science, and the social 

sciences. Yet, in all of the mentioned discipline above, the 

highest interest is towards performing inference and 

learning over graphs (Strogatz 2001, Wang 2002). In the 

realm of signal processing, these applications prompt the 

need to study and develop decentralized strategies for 

information processing that are able to endow networks 

with real-time adaptation and learning abilities. In 

implemented adaptive-then-combine (ATC) diffusion least 

mean square (LMS) over complex networks (Ying et al. 

2012), the data are assumed to be exchanged among 

neighboring nodes without distortion. This assumption, 

however, may not be true in practice due to the noisy link. 

The distributed estimation problem with noisy links has also 

been considered in the context of consensus-type and 

diffusion algorithms (Kar and Moura 2009, Touri and Nedic 

2009, Khalili et al. 2012). However, to the best of our 

knowledge, the same issue has not yet been studied in the 

context of distributed estimation over complex networks. 

Questions are remained to be addressed in real conditions: 

i) the suitable topology and ii) the type of the network to be 

designed (homogeneous or heterogeneous).To answer these 

questions, a methodical study is carried out in this paper to 

analyze the impacts of the network topology on the 

performance of distributed estimation with noisy links. We 

focus on the combine-then-adapt (CTA) diffusion LMS and 

mathematically analyze the mean stability of this algorithm, 

while the mean-square performances over different network 

models, including the regular, small-world (Newman and 

Watts 1999), random (Erdös and Rényi 1959) and the scale-

free (Barabási and Albert 1999) are compared by numerical 

simulations with noisy links. The rest of the paper is 

organized as follows. In Section 2, we briefly revisit the 

CTA diffusion LMS strategy. Its performances in terms of 

mean stability and mean-square errors are then discussed in 

Section 3. In Section 4, the performances of the CTA 

diffusion LMS over different network models are presented 

and the results are discussed in detail. Robustness of the 

networks from node failure, noisier nodes and link density 

effect are simulated in section 5. Finally, conclusions are 

drawn in Section 6. 

Notation: We adopt boldface letters for random 

quantities. The symbol * denotes conjugation for scalars 

and Hermitian transpose for matrices. The notation col{} 

denotes a column vector (or matrix)with the specified 

entries stacked on top of each other. We also denote by 

A⨂B the Kronecker product of two matrices A and B.  

 

 

2. Distributed adaptive diffusion estimation 
 

We consider a connected network consisting of N={1, 2,  

 
Fig. 1 Distributed network with N nodes. {dk(i),uk,i} 

denotes the time realization for each node k 

 

 

…, N} nodes (see Fig. 1). All nodes are assumed to 

measure data that satisfy a linear regression model of the 

form 

0
,( ) ( ), 1,2,...k k i ki w i k N  d u v        (1) 

where w
o
 is a deterministic but unknown M×1 vector, dk(i) 

is a random measurement datum at time i, uk,i is a random 

1×M regression vector at time i, and vk(i) is a random noise 

signal also at time i. The statistical assumptions of the data 

{uk,i, vk(i)} are as follows: 

The regression data uk,i are temporally white and 

spatially independent random variables with zero mean and 

uniform covariance matrix *
, , ,u k k i k iR E u u . The noise 

signals vk(i) are temporally white and spatially independent 

random variables with zero mean and variances 2
,v k . The 

regressors uk,i and noise signals vk(i) are mutually-

independent for all k and l, i and j. 

Two nodes are said to be neighbors if they can 

contribute to information. The set of neighbors of node k 

including k itself is called the neighborhood of k and is 

denoted by Nk. 

For example, w
o
 can be the parameter vector of some 

underlying physical phenomenon, the location of a food 

source(Tu and Sayed 2011) or a vector modeling different 

groupings of nodes. The nodes in the network are assumed 

to estimate the vectors {w
o
} by seeking the solution for the 

following minimization cost function 

2

,

1 1

( ) ( )

N N

k k k i

k k

J w E i w

 

   d u         (3) 

Obviously, the objective of the network is not to use

0 1( ) ( ), ,

1 1

N N

w R ru k du k

k k



 

  , where * *0 ( ), , , , ,R and r iu k k i k i du k k k i    u u d u

, to determine w
o
 since this would require that each node 

has access to the second-order moments from across the 

entire network(Lopes and Sayed 2006). Instead, the nodes 

in the network would like to rely solely on data realizations 

that are available to them locally in order to estimate. So the 

aim is to estimate the vector of interest w
o
 from the data 

collected at N nodes spread in the network using the CTA 

diffusion LMS, which is originally proposed by (Cattivelli 
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Fig. 2 CTA diffusion algorithm LMS 

 

 

and Sayed 2010). It operates as follows. We assign an N×N 

matrix C with nonnegative entries {cl,k} that are real, non-

negative constants satisfying 

,1 1 0, ,     
T

l k kC and c if and only if l N        (4) 

where 1 is a vector of size N with all entries equal to one. 

The entry cl,k denotes the weight on the link connecting 

node l to node k. In other words, {cl,k} is zero if nodes are 

not connected and the entries on each row of C add up to 

one. 

Diffusion LMS algorithms use the data to find an 

estimate for the unknown vector. There are two different 

strategies for this estimation. The first strategy collects 

estimates from its neighbors from the previous iteration and 

combines them using some convex combiner method. Then 

the combined estimate is used to calculate a new estimate 

using the available data {dk(i), uk,i}. Mathematically, it is 

implemented as follows (Khalili et al. 2012) 

, 1 , 1 , , 1 , , 1

*
, , 1 , , , 1

( ) ( )

( ( ) )

k

k i kk k i l k l i l k i

l N

k i k i k k i k k i k i

c i c

i

  

 

   



 

  

  

 q

u d u 
    

(5) 

where , 1k i
 is the combined estimate and ,k i  is the 

estimate for node k at iteration i and ql,k,i-1 are time-

realizations of zero-mean wide-sense stationary random 

process with covariance matrices 
*

, , ,l k l k l kQ  q q . This is 

known as Combine-then-Adapt (CTA) algorithm with noisy 

links. The CTA algorithm consists of two steps namely 

combination and adaptation (see Fig. 2). μk is the positive 

step-size used by node k. Coefficients cl,k govern the node’s  

 

 

Table 1 Possible combination rules for cl,k. ni denotes the 

degree of node i 

Combination rule definition 

Constant , 1/l k kc n  

Laplacian , max1/l kc n  

Metropolis , 1/ max( , )l k k lc n n  

Maximum degree , 1/ Nl kc   

Relative degree , / ( )
k

l k l mm N
c n n


   

cooperative rule, which are determined by the network 

topology. With regard to the combination protocols, several 

models, including the Metropolis rule, the relative degree, 

the Laplacian matrix, and adaptive combiners have been 

suggested. 

Table 1 depicts several ways to select the combination 

weights, motivated by graph theoretical quantities and 

common approaches in the literature. 

In this paper, we use mostly Metropolis rule as it is 

superior to the others (Ying et al. 2012). Also we further 

assume that when a link between two nodes is available, it 

is noisy. 

 

 

3. Performance analysis 
 
The mean stability analysis aims to find out the 

sufficient conditions such that the local estimate at each 

node converges in the mean to the unknown parameter w
o
. 

Let the error vector for any node k be , ,
o

k i k iw   . 

We collect all weight error vectors and step-sizes across the 

network into a block vector and block matrix: i = col{

,k i } and M= diag{μkIM}, and introduce the extended 

combination matrix C=C IM where the symboldenotes 

the Kronecker product operation of two matrices. Then, 

starting from (5) and using model (1), we can verify that the 

global error vector evolves according to the relation 

* *
1 1 1 1(U ) Ui i i i i i i i i iC q MU C v MU q          (6) 

Assuming temporal and spatial independence of the 

regressors and taking expectations of both sides leads to 

1( )i NM u iC I MR                (7) 

where Ru=diag{Ru,1, ..., Ru,N} is block diagonal. Therefore, 

the mean evolution of the global weight error vector 

depends on the data moment *
, ,ME k i k iu u

 
and on the mean 

topology matrix ECi, with changing topology of the 

networks. Henceforth, for stability in the mean we must 

have that 

( ( )) 1NM uC I MR               (8) 

In other words, the spectrum of (INM-MRu)C must be 

strictly inside the unit disc. In the adaptive network case, 

even convergence in the mean will effectively depend on 

space-time data statistics and network topology (represented 

by C). For simplicity, assume that D=μINM so that 

NM uI MR  is Hermitian (Cattivelli and Sayed 2010). 

Using matrix 2-norms we have 

22 2
C( ) . ( )NM u NM uI MR C I MR        (9) 

That is, σmax(BC)≤σmax(B). σmax(C) (Cattivelli and Sayed 

2010), where σmax is the maximum singular value of the 

corresponding matrix. For combiners that render stochastic 

and symmetric matrices C, the matrix G will also be 

symmetric and stochastic so that σmax(G)=1. But since 

σmax(B)=|λmax(B)| and |λmax(BC)|≤σmax(BC), we conclude that 

( ( )) (( ))NM u NM uC I MR I MR         (10) 
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That is, the spectral radius of BG is generally smaller 

than the spectral radius of B. Hence, cooperation under the 

diffusion protocol (3) has a stabilizing effect on the 

network. 

The mean-square performance of the CTA algorithm 

was studied in detail by applying the energy conservation 

approach in (Cattivelli and Sayed 2010) and the network 

mean-square-deviation (MSD) and excess-mean-square-

error (EMSE) are used to assess how well the network 

estimates the weight vector, w
o
. The MSD and EMSE are 

defined as follows 

 
(11) 

 

(12) 

We have performed a series of simulations to investigate 

the performance of the diffusion LMS algorithm over 

different kinds of complex networks from the viewpoint of 

mean-square errors. 

 

 

4. Network models 
 
We overview some common topologies assumed in the 

study of graphs. The following models apply to both 

undirected and directed graphs. 

Regular network which is generated from a regular 

nearest-neighbor network consisting of N nodes arranged in 

a ring, and each node has 2K nearest neighbors. The 

network corresponds to the original nearest-neighbor 

network when p=0. A ring (special case) is a one-

dimensional grid where the vertices are spatially distributed 

forming a circle. The ring is a 2-regular graph, since every 

node has exactly two neighbors (Newman and Watts 1999). 

In order to describe the transition from a regular lattice 

to a random graph, Watts and Strogatz proposed an 

interesting small-world network model, termed as WS 

small-world network. Links are then modified by rewiring 

one end to another node with a probability p while keeping 

another end unchanged. Nevertheless, no two nodes are 

allowed to be connected by more than one link. The 

network corresponds to the original nearest-neighbor 

network when almost like the ER random graph when 

p=1.0. The degree distribution of the small-world network 

(0<p<1) follows a Poisson-like distribution. It peaks at an 

average value and decays exponentially. A common feature 

of the ER random graph and the WS small-world models is 

that the connectivity distribution of the network is 

homogenous, with peak at an average value and decay 

exponentially. Such networks are called homogenous 

networks. 

To explain the origin of power-law degree distribution, 

another network model (BA) is proposed by (Barabási and 

Albert 1999). They argued that many existing models fail to 

take into account two important attributes of most real 

networks. First, real networks are open and they are 

dynamically formed by continuous addition of new nodes to 

the network; but the other models are static in the sense that 

although edges can be added or rearranged, the number of 

nodes is fixed throughout the forming process. Second, both 

the random graph and small-world models assume uniform 

probabilities when creating new edges, but this is not 

realistic either. The BA model suggests that two main 

ingredients of self-organization of a network in a scale-free 

structure are growth and preferential attachment.  

It starts with a small network composing of N(0) nodes 

and L(0) links. A new node is then added in each step and 

linked with m existing nodes using the standard preferential 

attachment mechanism until a network of N nodes is 

obtained. 

After t time steps, the algorithm results in a network 

with N=N(0)+t nodes and L=L(0)+mt links. Studies in scale 

free networks have shown that the nodes’ degrees follow a 

power-law distribution and thus the network is free of 

characteristic scale (Barabási and Albert 1999). In these 

graphs, some vertices are highly connected but most 

vertices have a low number of connections. Consequently, it 

is referred as heterogeneous network, because most nodes 

have very few link connections except a few high-degree 

nodes. 

The last topology that we mention here is a lattice where 

the vertices are spatially distributed according to a two 

dimensional grid. The number of neighbors for an internal 

vertex is 4, whereas for an external vertex is 2. 

 
 

5. Simulation results 
 

We now apply the CTA diffusion LMS algorithm to 

estimate the unknown vector w
o
 from the data {dk(i),uk,i} 

across all the N nodes in different kinds of networks. The 

small-world networks are generated by the WS algorithm 

with K=2 and p=0.1. In this way, a total of L=2000 links are 

generated. To make a fair comparison with the work of 

(Ying et al. 2012), we used regular network (p=0) and 

random network (p=1.0) and set N(0)=5, L(0)=5, and m=2 

for the BA scale-free network. After t=995 steps, we have a 

total of 1000 nodes and 1995 links. Since removing an edge 

may reduce the spectral radius of the Laplacian, which in 

turn improves the asymptotic speed of convergence of the 

matrix GB, the same values of N and L must be used for 

each model for an exact comparison. Therefore, five more 

links are randomly added into the BA model so that the 

total number of links also becomes 2000. For such a large 

network, we assume that this minor change will not affect 

its scale-free property. 

• Independent regressors 

In this case, we assume that the regressors’ data arise 

from an independent Gaussian where their eigenvalue 

spread is ρ=5. Although the analysis relied on the 

independence assumptions, simulations presented in this 

subsection were carried out using regressors with shift 

structure to better represent realistic scenarios. 

• Regressors with shift structure 

For this definition of regressors, we use simulations 

using regressor input with shift structure. The desired data 

are generated according to the model given in (1), and the 
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unknown vector w
o
 is set to [1,1,…,1]

T
 / √M. In the same 

example as in (Chunguang et al. 2012) for simulations to 

for facilitate the comparison. We assume that the non-

Gaussian regressors are uniformly distributed and are 

generated at each node k according to the recursion 

( ) . ( 1) . ( )k k k k ku i a u i b n i            (13) 

Eq. (13) describes a first-order autoregressive process 

with a pole at αk that  ,.5a k 0 is the correlation index and 

nk(i) is a spatially independent white Gaussian process with 

unit variance and 2 2
, (1 )k u k kb a  . The regressor power 

profile is considered as 2
, (0,.5]u k  . The resulting regressors 

have Toeplitz covariance with correlation sequence 
2 ( )
,( ) ( ) , 0,1,2,..., 1i

k u k kr i a i M   . These parameters are 

chosen randomly and taken the same as in (Chunguang et 

al. 2012) for comparison purpose. 

The mean stability based on the criterion of spectral 

radius of the matrix GB, as given in (11), is firstly 

investigated. In the simulation, an i.i.d. Gaussian noise with 

variance 
2 3
, 1 10v k    is considered and a small step-size 

μk=0.03 is adopted. The length of the regressor is set as 

M=3, and thus there are total 3000 eigenvalues of the 

matrix GB, denoted as ρ(GB). Fig. 3 depicts these 

eigenvalues for different networks, where the eigenvalues 

of the matrix B, denoted as ρ(B), correspond to the case 

without cooperation. The results are averaged over 40 times 

of independent experiments. As illustrated in Fig. 3, we 

have the spectral radii (maximum eigenvalue norm) satisfy 

qRan<qWS<qBA<qRG<qNC<1, (while qRG, qWS, qRan and qBA 

denote diffusion cooperative matrices GB for the regular, 

the WS small-world, the random and the BA scale-free 

networks, respectively) and hence the convergence of the 

estimate in the mean sense can be assured. Moreover, it is 

noticed that the cooperation reduces the eigenvalues as 

compared with the non-cooperative scheme, confirming our 

analysis given in Section 3. We should also mention the 

inequality applied for the spectral radii can vary depending 

on the combination coefficient, as happens for curves in the 

right panel of Fig. 3. As Fig. 3 shows, the cooperation 

significantly decreases the eigenmodes and thus yields 

faster convergence as compared with the non-cooperative  

 

 

 
Fig. 3 The eigenvalues of different network models for 

three different combination rule (Metropolis (left), 

uniform (right, top) and laplacian (right, bottom)) with 

defined the network 

scheme. Generally this is the largest eigenmodes that 

determine the speed of convergence and the resulting speed 

in Regular networks, compared to the other ones, is higher.  

Fig. 4 plots the transient MSD of the entire network in 

dB for different network models. From Fig. 4, we notice 

that the regular network has the worst MSD performance. 

However, by rewiring a certain number of links, the 

accuracy of the estimation is significantly improved with 

the WS small-world network (p=0.1). The results are even 

better when p=1.0, corresponding to the random network. 

The performance of BA scale-free network lies somewhere 

between the regular and the small-world. It is also worth 

pointing out that the results in Figs. 3 and 4(a) are 

consistent. With the decrease of q(GB), the convergence 

rate is increased and the accuracy of the estimate is 

improved. Based on the complex network theory, all these 

networks have shorter average path length as compared 

with the regular networks (Wang 2002). This suggests that 

the average path length is one of the key factors affecting 

the performance of in-network distributed estimation. In 

general, the shorter the average path length, the better the  
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Fig. 4 The Learning behaviors of the CTA diffusion 

LMS algorithm under different conditions 
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performance of the distributed estimation. 

In Fig. 4, we have shown the MSD and EMSE learning 

curves for two different conditions including (1) networks 

with noisy links and (2) networks with ideal links. We 

assume that channel noise terms qk,i-1 are temporally and 

spatially i.i.d. with circular white Gaussian distribution. 

As shown in Figs. 4-5, the MSD performances under the 

independent and dependent conditions are quite similar. In 

all of the following simulations, the step-size is set to 

μk=0.03 and only the case with temporal and spatial 

independence is considered. However, similar conclusions 

can be extended to other cases such as temporally and 

spatially dependent data in noisy condition of channels. As 

it is understood from Figs. 4-5, the scale free network, 

compared to the regular ones, shows a better MSD value by 

about 20 percent in real condition (noisy channels) and this 

is a motivation to design networks with heterogeneous link 

density. 

We also investigate the impact of the step-size μk to the 

performance of the estimation for different networks and  

 

 

 
(a) Ideal links 

 
(b) Noisy links(Q=10

-3
I), temporal and spatial 

independence 

 
(c) Noisy links (Q=10

-3
I), temporal and spatial dependence 

Fig. 5 The Learning behaviors of the CTA diffusion LMS 

algorithm under different conditions 
 

 
Fig. 6 The EMSE performance against the change of the 

step-size for a small-world network 

 

 
(a) one lattice structure 

 
(b) defined lattice with 1000 nodes 

Fig. 7 Learning behaviors of the CTA diffusion LMS 

algorithm over lattice network 

 

 

only small world network is presented in Fig. 6. As shown 

in Fig. 6 the EMSE performance is not monotically 

increasing (ideal links) is in agreement with the conclusion 

obtained in (Khalili et al. 2012). As it is shown in this 

figure, the steady state performance of the network in this 

condition depends on the step sizes and there are some 

parameter values for which, the non-cooperative network 

works better. 

As explained in the network models for lattice structure, 

we simulated the estimation performance for one lattice 

structure (Fig. 7, left) and also with predefined the network 

for faire comparison. As illustrated here, this kind of 

networks’ performance is similar with scale free network 

and has better performance in noisy channel in comparison 

to other ones.  

 

5.1 Links density 
 

To show the relation between number of neighbors with 

steady state of MSD (estimation result), we defined three 

networks with 100 nodes and perform estimation with  
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(a) regular network 

 
(b) small world network 

 
(c) random network 

Fig. 8 steady state of MSD with links density varation 

 

 

increasing number of neighborhood until it became fully 

connected. As depicted in Figs. 8, by increasing the number 

of neighbors (link density) the estimation of the networks 

does not improve monotonically. It means that about 30% 

of a fully connected version of the networks we can reach 

the optimal design from the estimation performance point of 

view and implementing of networks budget (power 

consumption and communication burden). However, with 

increasing the noise in links, increasing this value (link 

density) may not improve the result of estimation 

performance. As it is demonstrated in this simulation 

results, in all of the networks with increasing link density 

up to maximum number of neighbors (full connected), we 

obtain improvements in steady state up to 12dB in ideal 

links which decreases by the presence of noisy links. 

 

5.2 Effect of noisier nodes 
 

More specifically, we consider the estimation problem 

in an inhomogeneous environment where some of the nodes 

make unreliable observations (noisy nodes). To show the 

effects of noisy nodes we consider a distributed network 

with 100 nodes. We also assume that up to 90% of nodes 

may become noisier with variance of observation noise 

belonging to (0, 2) based on maximum numbers of links. As  

 
Fig. 9 steady state of MSD with noisier nodes 

 

 

shown in Fig. 9, in this condition, noisy nodes do not 

deteriorate considerably the performance of the CTA 

algorithm (except scale free) and this proves one advantage 

for these networks. Although this degradation can be 

dependent on the values of noisier nodes, the behavior is all 

the same as depicted in this figure. 

 

5.3 Node failure 
 

In a practical sensor network, a sensor may be out of 

power, damaged or attacked, making its measurement 

unreliable. If this happens, the sensor will only observe the 

pure noise and certainly degrade the estimation 

performance. We refer to this phenomenon as node failure. 

Once a node fails to work, it is assumed to be turned silent 

and no information is exchanged with the others. This is 

simulated by removing this node together with its links 

from the network. The node removal is studied here and we 

name it intentional removal where the nodes of highest-

degree are removed. 

The steady-state network MSD is used as the measure to 

evaluate the robustness of different networks. In Fig. 10 we 

plot MSD variation by increasing the number of intentional 

removals with noisy links (Q=10
-3

I). From Fig. 10, we find 

that the homogenous networks, i.e. the random and the 

small-world, show similar tendencies for intentional 

removal while the robustness of the small-world network is 

slightly better. 

 

5.4 Link-rewiring experiment 
 

Our simulations are performed by starting with a regular 

network of N=1000 nodes, where each node is coupled to 

its 2K=4 nearest neighbors. The rewiring probability p is 

then varied from 0 (regular) to 1 (random) with ideal and 

noisy links. From Fig. 11, it can be observed that in the  

 

 

 
Fig. 10 steady state of MSD with node removal condition 
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Fig. 11 steady state of MSD with link rewiring probability 

 

 

noisy links case, the random networks (p=1) work well in 

homogeneous networks. 

 
 
6. Conclusions 

 
The importance of studying complex networks in the 

signal processing and learning arises from the fact that 

cooperation among nodes in real networks seems to 

improve certain performance inference value like estimation 

and detection. In this study, a numerical simulation 

procedure for distributed adaptive estimation over complex 

networks has been proposed. We have demonstrated that the 

presence of noisy links do not affect the convergence of the 

introduced networks. While the scale free networks have 

better performance in real working conditions (noisy links) 

in terms of steady state value of MSD, regular networks are 

the worst, both in ideal and in noisy links. We have shown 

that the trend of MSD value versus the step size is not 

monotically increasing like in ideal links networks. This 

helps in obtaining the value of MSD through properly 

selection of the step sizes. It has also proposed to use lattice 

structure networks which have similar MSD behavior to 

that of the scale free networks. In the view of design from 

aspects of efficient consumption of sources (power and 

bandwidth), it has also shown that, unlike ideal links where 

about 30% of neighbors connectivity is equal to full 

connection of nodes, it can be reduced about 10% giving 

the same estimation performance in the presence of noisy 

links. 

Also given are the effect of noisier nodes, node failure 

according to their link densities and link rewiring 

probability effect on the overall estimation performance. 
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