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1. Introduction 
 

No matter how well they appear to have been designed, 

civil engineering structures can be damaged due to 

earthquake, storm, fire, corrosion or other issues during 

their service life. Such damages if not detected and 

amended early enough, they may lead to catastrophic 

structural failure. Therefore, detecting the position and 

extent of these damages is becoming increasingly important 

from both economic and life safety viewpoints. Finding the 

location and severity of these damages through local 

damage detecting methods such as visual inspection or 

localized experimental methods is not always possible. To 

overcome this difficulty, global damage detection (GDD) 

techniques are developed. The basic idea behind GDD is 

that a structural damage causes a decrease in the structural 

stiffness matrix that produces changes in the dynamic or 

static responses of the structure. A vibration based damage 

detection (VBDD) method as a GDD technique is based on 

changes in the modal properties (modal frequencies, mode 

shapes and modal damping) which has been widely utilized 

for structural damage identification.  

A VBDD problem can be defined as an inverse problem 

that measured modal characteristics are used as inputs to 

determine damage locations and severities. The limited 

measured data of structure convert damage detection 

problem to an undetermined problem that have several 

solutions. Many methods have been introduced to solve this 

kind of inverse problems. One of the most general methods  
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is based on employing optimization algorithms. 

Maity and Tripathy (2005) used changes in modal 

frequencies for structural damage detection. They employed 

genetic algorithm to address the problem of damage 

detection. A nonclassical optimization approach involving 

the use of genetic algorithms (GAs) was proposed by Perera 

and Torres (2006) to localize damaged areas of the 

structure. The proposed method was based on the changes 

in frequencies and mode shapes of vibration of a structural 

system. He and Hwang (2006) combined an adaptive real-

parameter genetic algorithm with simulated annealing to 

detect damage in beam-type structure. They used the 

displacements of the static response and natural frequencies 

of modal analysis as input data. Sahoo and Maity (2007) 

proposed a hybrid neuro-genetic algorithm. They used both 

natural frequencies and strains as input to determine the 

location and extent of structural damages. Begambre and 

Laier (2009) proposed a hybrid particle swarm 

optimization-simplex (PSOS) algorithm and considered 

frequency domain data as input parameters for structural 

damage identification. Sandesh and Shankar (2010) 

identified multiple crack damages in a thin plate using a 

novel heuristic search algorithm which was hybrid of 

particle swarm optimization (PSO) method and genetic 

algorithm (GA). Nobahari and Seyedpoor (2011) proposed 

an efficient correlation based index (ECBI) and a modified 

genetic algorithm to determine the site and severity of 

damages. Moradi et al. (2011) using the bees algorithm 

(BA) identified the crack location in beams. The objective 

function in their study was the weighted sum of the squared 

errors between the measured and computed natural 

frequencies. A two-step approach to multi-damage 

detection for plate structures was introduced by Xiang and 

Liang (2012). In the first step they focused on finding 
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damage location by applying the wavelet transformation. In 

the second step then damage events at the identified 

location are determined by using a PSO algorithm. 

Seyedpoor (2012) proposed a two stage method for 

identifying the site and extent of multiple damage cases in 

structures. In the first stage, using the concept of modal 

strain energy, located the eventual damage of structure. In 

the second stage, the extent of actual damage was 

determined via a particle swarm optimization (PSO) using 

the first stage results. An immunity enhanced particle 

swarm optimization (IEPSO) algorithm, which combines 

particle swarm optimization (PSO) with the artificial 

immune system, was proposed by Kang et al. (2012) for 

damage identification of structures. They used natural 

frequencies and mode shapes as input data in this study. 

Baghmisheh et al. (2012) formulated the identification of a 

crack location and depth in a cantilever beam as an 

optimization problem and solved this inverse problem by 

using a hybrid particle swarm-Nelder-Mead (PS-NM) 

algorithm. An improved charged system search (CSS) for 

damage detection of truss structures using changes in 

natural frequencies and mode shapes was proposed by 

Kaveh and Zholghadr (2015). 

Among different structural responses that can be used as 

inputs for inverse structural damage identification problem, 

modal parameters (modal frequencies and mode shapes) are 

more attractive because they enjoy the benefit of being 

independent from excitation and can be measured 

conveniently. Also modal frequencies can be measured from 

just a few accessible points on the structure and are less 

vulnerable to experimental noise than mode shapes. Despite 

the fact that damage detection using only natural 

frequencies are very attractive, it is not possible to identify 

the location and extent of any damage by using only 

frequencies. In this paper we use the natural frequencies for 

structural damage identification. 

Since 1950s that the idea of using evolution as an 

optimization tool for engineering problems was proposed, 

several heuristic search algorithms such as GA, PSO, ACO, 

DE etc. have been proposed. They have shown to be robust 

for solving various types of engineering problems and many 

engineers demonstrated their abilities in several different 

fields. Among those researchers one may refer to Wang and 

Ohmori (2013), Kang and Li (2015), Kaveh and Maniat 

(2015), Manoharan et al. (2015), Kang et al. (2016) and 

Seyedpoor and Montazer (2016). 

Although heuristic search algorithms are a robust tool 

for structural damage identification, however they impose 

much computational cost to the damage detection process 

due to the stochastic base of these search algorithms. It is 

more considerable when there are a great numbers of 

structure elements and continues nature of damage variables 

is considered. 

In this paper a novel search algorithm, Echolocation 

Search Algorithm (ESA), is proposed for structural damage 

identification using changes in modal frequencies. 

Considerable role of training for finding new situations in 

search space in proposed algorithm causes a significant 

decrease in required computational effort. In each iteration 

of a heuristic search algorithm such as GA, PSO etc., equal 

to the number of design points, analyses are carried out and 

corresponding to each design, its objective function is 

calculated. Each point according to its fitness will have a 

role in creating new points. Thus weak points may have 

little if any choice in creating new spots while there is a 

high chance for fitter ones to play the major role. In this 

case, the analysis cost for weak points may well be wasted. 

The ESA diplomacy for generating new points is quite 

different compared to other such algorithms. In ESA, every 

point is a set of information, and is considered important. 

The fitness of each point, is only a data of this set of 

information. ESA, by comparing the information of all 

points (whether weak or strong) creates new points. For 

creating each new point, the information of three points are 

needed, therefore it is highly possible that the information 

of all points are used for generating new points. Numerical 

results show that proposed algorithm with high accuracy 

and efficiency can determine the site and severity of 

structural damages and can utilize it as a robust tool for 

optimization problems. 

 

 

2. Problem formulation 
 

When a damage event occurs, the stiffness of the 

damaged element is reduced. In many studies on structural 

damage detection, the damage has been simulated by 

decreasing one of the element’s stiffness parameters, such 

as the moment of inertia, cross sectional area or elasticity 

modulus. In this paper, the damage of each element was 

simulated via the reduction of the elasticity modulus. To 

incorporate this, an elasticity modulus reduction factor x 

was introduced as follows 

𝑥𝑖 =
𝐸 − 𝐸𝑖

𝐸
 (1) 

Where E is the initial elasticity modulus and Ei is the new 

elasticity modulus of the i
th

 element. Then if damage occurs 

in the i
th

 element, its stiffness matrix will be modified as 

𝐾𝑑𝑖
= (1 − 𝑥𝑖)𝐾𝑖 (2) 

where 𝐾𝑖and 𝐾𝑑𝑖
are initial and updated values of the i

th
 

element stiffness matrix, respectively. Then structure’s 

stiffness matrix is created by assembling the element 

stiffness matrices. In this work, the mass matrix change due 

to damage occurrence was ignored. Change in the 

structure’s stiffness matrix leads to changes in natural 

frequencies. Determining the level of correlation between 

the measured and predicted modal responses (natural 

frequencies) can provide a simple statistical tool for finding 

the location and severity of structural damage. To do this, 

several objective functions have been proposed in the 

literature. In this paper, the efficient correlation based index 

(ECBI), as developed by Nobahari and Seyedpoor (2011), 

was used. This function merely considers the natural 

frequencies of the structure and is defined as 

𝐸𝐶𝐵𝐼(𝑋) =
1

2
(𝑀𝐷𝐿𝐴𝐶(𝑋) + 𝑜𝑏𝑗(𝑋)) (3) 

where MDLAC(X) is expressed in the following form 
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𝑀𝐷𝐿𝐴𝐶(𝑋) =
|∆𝐹. 𝛿𝐹(𝑋)|2

(∆𝐹𝑇 . ∆𝐹)(𝛿𝐹(𝑋). 𝛿𝐹(𝑋))
 (4) 

And obj(X) is defined as 

𝑜𝑏𝑗(𝑋) =
1

𝑛𝑓
∑

min⁡(𝑓𝑥𝑖 , 𝑓𝑑𝑖)

max⁡(𝑓𝑥𝑖 , 𝑓𝑑𝑖)

𝑛𝑓

1

 (5) 

Also 

∆𝐹 =
𝐹ℎ − 𝐹𝑑

𝐹ℎ
 (6) 

And 

𝛿𝐹(𝑋) =
𝐹ℎ − 𝐹(𝑋)

𝐹ℎ
 (7) 

In the above relations, X
T
={x1, x2, x3, …..,xn} represents     

a damage variable vector containing the damage severity  

(xi, i=1, ..., n) of all n structural elements, F(X) is a natural 

frequency vector that can be computed from an analytic 

model, Fh and Fd refer to the natural frequency vectors of 

healthy and damaged structures and finally,𝑓𝑥𝑖and 𝑓𝑑𝑖
are 

the i
th

 components of vectors F(X) and Fd, respectively. For 

evaluating the ECBI(X), only the first nf natural frequencies 

are considered. 

The ECBI(X) compares the change vector of measured 

and analytical frequencies. The ECBI(X) varies from a 

minimum value of 0 to a maximum value of 1. It will be 

maximal when the analytical frequencies vector becomes 

identical to the frequency vector of the damaged structure, 

F(X)=Fd. Then damage detection problem can be solved by 

using an optimization algorithm to find a set of damage 

variables maximizing the ECBI(X) 

𝐹𝑖𝑛𝑑⁡⁡⁡⁡⁡𝑋𝑇 = *𝑥1, 𝑥2, … , 𝑥𝑛+ 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸𝐶𝐵𝐼(𝑋) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡⁡⁡⁡⁡𝑋𝑙 ≤ 𝑋 ≤ 𝑋𝑢 

(8) 

In this work, parameter x ranged from 0 to 0.5 for the 

first and the third example and ranged from 0 to 0.3 for the 

second test example. 

 

 

3. Introducing Echolocation search algorithm (ESA) 
 

Due to industrial and scientific developments many 

complex optimization problems are needed to be solved. 

Having discrete variables, high dimensional and none 

differential are some characteristics of most of these 

problems. Then traditional optimization methods can’t help 

us to solve them. To overcome this difficulty, in the 1950s 

and the 1960s the idea of utilizing an evolutionary 

technique as an optimization tool for engineering problems 

was developed. Since then many heuristic search algorithms 

were developed. Some of the novel heuristic algorithms are 

harmony search proposed by Geem et al. (2001), 

gravitational search algorithm proposed by Rashedi et al. 

(2009), charged system search presented by Kaveh and 

Talatahari (2010), water cycle algorithm proposed by 

Eskandar et al. (2012), Dolphin Echolocation proposed by 

Kaveh and Farhoudi (2013). 

In this paper, inspired by animals such as bat, dolphin, 

oilbird, shrew etc. that use echolocation for finding food, a 

new and efficient method for finding the optimum points is 

introduced. In ESA, first a point is randomly selected in the 

searching space assigned as the primary location of the 

echolocating animal (EA). The Echolocating Animal’s 

Location (EAL) is a d dimensional vector being the 

corresponding number of variables. The objective function 

and its degree of constraints satisfaction are evaluated for 

EA in its current Location. Then, the EA sends nw waves in 

various directions randomly. Each wave, in its own 

direction, randomly hits a candidate as an object. The 

fitness of that object is calculated and the wave then returns 

to the EA.  The EA now, according to the information it 

has about the validity of each nw point around its location 

and by the use of relations which will be introduced in the 

following sections, will compute nw new points, that is nw 

new candidates. Then it sends waves to these new points to 

estimate their bigness (calculating their objective 

functions). Furthermore, according to 3 top points have 

been discovered so far, the EA calculates a direction for 

movement and proceeds in that direction. This continues 

until reaching convergence to the optimum point or it 

terminates. 

Regarding the above explanations, in each iteration 

nw+1 time analysis takes place. nw time relates to points to 

which the wave is sent, and 1 stands for another analysis 

associated to the EAL. In this method, for obtaining new 

points, all points share the same chance for training the EA. 

In other words, the EA enjoys from information, even from 

the weakest points. Through observation and comparison of 

the weak and strong points, the EA will identify points 

which are likely to be stronger. However, 3 top points 

among nw+1 points play a considerable role in the 

education and movement of the EA. In fact, the EA 

analyzes its direction only by the prior 3 top points. 

Additionally, one of the coordinates of nw new points will 

certainly be computed by the primary 3 top points. 

The general ESA flowchart is as given in Fig. 1. In the 

next section, all stages related to the flowchart will be 

described in details. 

 

3.1 Select the primary location of the echolocating 
animal (EA) 

 

To begin with, first the EAL is randomly selected 

𝐸𝐴𝐿 = *𝑥1, 𝑥2, … , 𝑥𝑑+ (9) 

Where xi is the value of the i
th 

variable of EAL vector. Also, 

d denotes search space dimension or the number of the 

problem variables. Then, the value of the objective function 

relevant to EAL is computed 

𝑃𝑂𝐸𝐿 = 𝑜𝑏𝑗𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐸𝐴𝐿) (10) 

In the above relation, objfunction () is the objective function 

to be optimized. POEL is the value of the objective function 

related to the current EAL. According to the Eq. (9), EAL is 

the vector of the echolocating animal location. 

451



 

Mehdi Nobahari, Mohammad Reza Ghasemi and Naser Shabakhty 

3.2 Send stochastic waves and locate a point along 
each wave 

 

The EA randomly sends nw waves and each wave 

selects a point in its own direction stochastically. Therefore, 

nw points are randomly created. The result is the creation of 

POINT matrix which is a nw× d matrix as follows 

𝑃𝑂𝐼𝑁𝑇 = [

𝑥1,1 … 𝑥1,𝑑
: 𝑥𝑖,𝑗 :

𝑥𝑛𝑤,1 … 𝑥𝑛𝑤,𝑑

] (11) 

where, xij stands for j
th

 variable related to i
th 

point. 

 

3.3 Calculate objective function value of points 
 
At this stage of procedure, there are nw+1 coordinates 

that consist of the current EAL and nw points around the EA 

in the space. The objective function value at the nw 

specified points should be calculated and for training and 

making decision, it should be sent back to the EA. To do 

this, the value of the objective function in the above points 

is calculated 

*𝑓1, … , 𝑓𝑛𝑤+ = 𝑜𝑏𝑗𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑃𝑂𝐼𝑁𝑇) (12) 

In the above relation, fi is the value of the objective function 

in the i
th

 point. Now, there are nw+1 points plus their 

objective functions. 

 

3.4 Determine top three points of all iterations so far 

 
After having computed the objective values, coordinates 

of the top three points’ so far will be saved in the EA’s 

memory in the form of a matrix named BESTP 

𝐵𝐸𝑆𝑇𝑃 = [

𝑏𝑥1,1 … 𝑏𝑥1,𝑑
𝑏𝑥2,1 … 𝑏𝑥2,𝑑
𝑏𝑥3,𝑑 … 𝑏𝑥3,𝑑

] (13) 

𝐵𝐸𝑆𝑇𝑉 = *𝑏𝑒𝑠𝑡𝑣1 , 𝑏𝑒𝑠𝑡𝑣2, 𝑏𝑒𝑠𝑡𝑣3+ (14) 

In Eqs. (13)-(14), bestv1 is the value of the objective 

function for the optimum point so far and bx1,1 through bx1,d 

are the values of the coordinates related to this point. bestv2 

and bestv3 are the values of the objective function of the 

second and third top points in all prior iterations, 

respectively. 

 

3.5 Termination criteria? 
 

After the determination of the top three points in all 

prior iterations, termination criteria will be examined. Like 

other methods, in the ESA two types of termination 

condition, dependent on the answer and independent of the 

answer, can be adapted.  

 

3.6 Satisfies criterion of specifying variables 
domains? 

 

If the modification of the best point in the certain prior 

iterations is less than a certain value that determined by 

user, search space is limited and new points are generated in 

new search space stochastically. Otherwise ESA behaves in 

another way. In following all of these described in details. 

 

3.7 Specify lower and upper bounds for each design 
variable 

 

If the criterion of specifying variables domain satisfied, 

the EA considers the best point it has found so far and 

extenuate the scope around the best point. In other words, it 

will slightly narrow down the search space. The restriction 

amount of the scope will be given to the EA through a rbf 

coefficient whose positive value is smaller than 1. In this 

stage, the EA computes a new domain considering the 

following relation 

𝑛𝑑𝑜𝑚𝑎𝑖𝑛𝑖 =  𝑏𝑓. 𝑝𝑑𝑜𝑚𝑎𝑖𝑛𝑖 ⁡⁡⁡𝑖 = 1: 𝑑 (15) 

In the above relation, d is number of variables, ndomaini 

length of new domain related to the i
th

 variable, pdomaini is 

the length of the previous domain of i
th

 variable and the rbf 

is coefficient of the reduction range. Upper and lower 

bounds for each variable calculated according to below 

relations 

𝑥𝑖
𝑢 

= min⁡(𝑏𝑥1,𝑖 +  .  𝑛𝑑𝑜𝑚𝑎𝑖𝑛𝑖 , 𝑥𝑖
𝑢) 

𝑥𝑖
𝑙 = max⁡(𝑥𝑖

𝑢 
− 𝑛𝑑𝑜𝑚𝑎𝑖𝑛𝑖 , 𝑥𝑖

𝑙)⁡⁡⁡𝑖 = 1: 𝑑 
(16) 

In these relations 𝑥𝑖
𝑢and 𝑥𝑖

𝑙

 
are upper and lower bounds 

for the i
th

 design variable. 𝑥𝑖
𝑢 

 and 𝑥𝑖
𝑙  are new upper and 

lower bounds for i
th

 design variable respectively. bx1i is the 

value of i
th

 design variable in best point. 

 

3.8 Adapt Stochastically New Points Along the New 
Waves Generated 

 

After determination of the new search space boundaries, 

EA emitted nw waves stochastically and in this way 

generated nw stochastically points in new search space. 

 

3.9 Produce new points based on the proposed 
method 
 

If the criterion of specifying variables domain was not 

satisfied, in this stage, according to the received data from 

points around, the EA prepares itself and computes the new 

coordinates to send waves. For achieving the coordinates of 

nw new points, the EA enjoys all information obtained from 

the previous iteration’s points. To do this, the EA chooses 

three stochastic points and then arrange them according to 

the object of the problem. Now there are three points P1, P2 

and P3 ranking 1, 2 and 3, respectively. The EA at first 

estimates the disparity of the coordinate of points 1, 2 and 

2, 3 as follow 

𝐷𝐸𝐿𝑇𝐴1 = 𝑃1 − 𝑃2 = {𝑥1,1 − 𝑥2,1, … , 𝑥1,𝑑 − 𝑥2,𝑑} 

𝐷𝐸𝐿𝑇𝐴2 = 𝑃2 − 𝑃3 = {𝑥2,1 − 𝑥3,1, … , 𝑥2,𝑑 − 𝑥3,𝑑} 
(17) 

Now, the movement direction from P2 to P1 and P3 to P2 in 

each dimension is achieved by the use of the sign() 

function, which reverses its parameter sign 
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𝐷𝐼𝑅𝐸𝐶𝑇1 = 𝑠𝑖𝑔𝑛(𝐷𝐸𝐿𝑇𝐴1) = {𝑠1,1, … . , 𝑠1,𝑑} 

𝐷𝐼𝑅𝐸𝐶𝑇2 = 𝑠𝑖𝑔𝑛(𝐷𝐸𝐿𝑇𝐴2) = {𝑠2,1, … . , 𝑠2,𝑑} 
(18) 

For instance, s1,2 is the value of the sign (x1,2-x2,2). So if x1,2-

x2,2 is positive, s1,2will be equal to 1 and if it is negative s1,2 

will be -1. Finally, if it is equal to zero then s1,2 will become 

0. Now, for the calculation of the new point, we multiply 

peer by peer of both vectors by each other. The resulted 

vector will have NDIR. 

𝑁𝐷𝐼𝑅 = 𝐷𝐼𝑅𝐸𝐶𝑇1 ⊗ 𝐷𝐼𝑅𝐸𝐶𝑇2 = *𝑑 1, … . , 𝑑 𝑑+ (19) 

 

 

In this relation, the sign ⊗ implies the multiplication of 

peer by peer of the two vectors 

𝑑 𝑖 = 𝑠1,𝑖 × 𝑠2,𝑖 ⁡⁡⁡⁡⁡⁡𝑖 = 1: 𝑑 (20) 

dri can have one of three values, 1,0,-1. If dri=1 it means 

that movement direction in the i
th

 dimension from P3 toward 

P2 is similar to the movement direction in the same 

dimension from P2 to P1. In other words, both are either 

ascending or descending. Therefore, movement in this 

direction may improve the answer. It can be shown in 

mathematical form as follows 

 
Fig. 1 Flowchart of Echolocation Search Algorithm (ESA) 
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𝑑 𝑖 = 1⁡ ⇨ {
𝑥3,𝑖 < 𝑥2,𝑖 < 𝑥1,𝑖 ⁡⇨ ⁡𝑛𝑥𝑗,𝑖 > 𝑥1,𝑖
𝑥3,𝑖 > 𝑥2,𝑖 > 𝑥1,𝑖 ⁡⇨ ⁡𝑛𝑥𝑗,𝑖 < 𝑥1,𝑖

 (21) 

In the relation, nxj,i stands for the i
th

 variable from the j
th

 

new point. As a result, the EA computes the coordinates of 

the new point through the following formula 

𝑛𝑥𝑗,𝑖 = 𝑥1,𝑖 +  𝑎𝑛𝑑 × (𝑥1,𝑖 − 𝑥2,𝑖) (22) 

rand is a random value in the range [0,1] and i indicates the 

number of variables. If dri=0, it means that either x1,i=x2,i or 

x2,i=x3,I or both are applicable. If dri possesses a zero value 

due to the relation of x1,i=x2,i then most likely this value will 

be suitable for the i
th

 dimension. If x2,i=x3,I then the 

movement from x2,i to x1,iwill be appropriate. In each case, 

Eq. (22) is useful. The following formula certifies the above 

statements 

𝑑 𝑖 =  ⁡ ⇨

{
 
 

 
 
𝑥3,𝑖 = 𝑥2,𝑖 > 𝑥1,𝑖 ⁡⇨ 𝑛𝑥𝑗,𝑖 < 𝑥1,𝑖
𝑥3,𝑖 = 𝑥2,𝑖 < 𝑥1,𝑖 ⁡⇨ 𝑛𝑥𝑗,𝑖 > 𝑥1,𝑖
𝑥3,𝑖 = 𝑥2,𝑖 = 𝑥1,𝑖 ⁡⇨ 𝑛𝑥𝑗,𝑖 = 𝑥1,𝑖
𝑥3,𝑖 > 𝑥2,𝑖 = 𝑥1,𝑖 ⁡⇨ 𝑛𝑥𝑗,𝑖 = 𝑥1,𝑖
𝑥3,𝑖 < 𝑥2,𝑖 = 𝑥1,𝑖 ⁡⇨ 𝑛𝑥𝑗,𝑖 = 𝑥1,𝑖

⁡ (23) 

But if dri<0, then movement from P3 to P2 and from P2 

to P1 in the i
th

 dimension is in opposite direction. So, it is 

impossible to decide on the movement direction. In this 

condition, the EA with 50 % probability will choose x1,I or 

x2,I for nxj,i. It can be mathematically represented as shown 

below 

𝑑 𝑖 = −1 ⇨ {

𝑥1,𝑖 < 𝑥2,𝑖 > 𝑥3,𝑖

𝑥1,𝑖 > 𝑥2,𝑖 < 𝑥3,𝑖

⇨

𝑛𝑥𝑗,𝑖 = 𝑥1,𝑖
𝑜 

𝑛𝑥𝑗,𝑖 = 𝑥2,𝑖
 (24) 

For example suppose each design has 8 variables and 

the search space domain of each design variable is [1, 50]. 

If the three points that stochastically selected to generate a 

new point were as shown in Fig. 2, so that P1, P2 and P3 

have best fitness, mid fitness and least fitness among their 

self, respectively. In this case according to relations that 

described above, the new point which shown in Fig. 2, can 

be a probable point that generated. The EA obtains the 

coordination of one point out of nw points through the use 

of three top points. 

  

3.10 Apply dislocalization technique (DT) 
 

During optimization process by the ESA, it is possible 

that all points in one or more dimensions become 

convergent in special values. If these values are not 

appropriate, this directs the answer toward improper 

convergence. To avoid this, when the coefficient of 

variation of each variable is less than that of user-defined 

values (cvmin), the EA randomly changes the value of these  

 

 

 
Fig. 2 New generated points using previous information 

variables in a certain percent of points. Selection of 

points and the new value of the variables will be done 

stochastically. The new value can be chosen in the 

primary range defined at the beginning. 
 

3.11 Determining new location of echolocating animal 
(EAL) 

 

To determine the direction of movement, EA enjoys the 

three top points. To do this, first the fitness value of these 

three points will be obtained. The fitness value should be a 

positive one. The fitness value of the point is calculated as 

shown below. If the aim is to compute the maximum value 

of the function, the fitness function is as follows 

𝑓𝑖𝑡𝑖 = 𝑏𝑒𝑠𝑡𝑣𝑖 + 𝑐𝑚𝑎𝑥 + 𝑐𝑚𝑖𝑛 ⁡⁡⁡𝑖 = 1: 3 (25) 

where bestvi and fiti are the value of objective function and 

fitness value of the i
th 

top point respectively 

𝑐𝑚𝑎𝑥 = |max(𝑏𝑒𝑠𝑡𝑣𝑖)|⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑐𝑚𝑖𝑛 = |min(𝑏𝑒𝑠𝑡𝑣𝑖)|⁡⁡⁡⁡⁡⁡𝑖 = 1: 3
 (26) 

If the aim is to compute the minimum value of function, the 

fitness function will be achieved by the following relation 

𝑓𝑖𝑡𝑖 = 𝑐𝑚𝑎𝑥 + 𝑐𝑚𝑖𝑛 − 𝑏𝑒𝑠𝑡𝑣𝑖  (27) 

The EA estimates the coordinates of the end point of the 

movement vector form the following relation 

𝑒𝑝𝑜𝑖𝑛𝑡 = ∑
𝑓𝑖𝑡𝑖 . 𝐵𝑃𝑖
𝑡𝑓𝑖𝑡

3

𝑖=1

 (28) 

Where BPi is coordinate’s vector of i
th

 top point or in other 

words it is the i
th 

row of BESTP described in Eq. (13), and 

tfit is calculated by the following relation 

𝑡𝑓𝑖𝑡 = ∑𝑓𝑖𝑡𝑖

3

𝑖=1

 (29) 

The new place of EA is achieved via the relation given as 

𝑁𝐸𝐴𝐿 = 𝐸𝐴𝐿 +  𝑎𝑛𝑑 × (𝑒𝑝𝑜𝑖𝑛𝑡 − 𝐸𝐴𝐿) (30) 

where EAL is the current location of the EA, NEAL is the 

new location of the EA and rand is a random value in the 

range [0,1]. This procedure continues until convergence 

criteria are met. 

 

 

4. Test examples 
 

In this section, in order to show the capabilities of the 

proposed algorithm for identifying structural damage, three 

illustrative test examples are considered. The first example 

is a 31-bar planar truss, the second one is 10-bar planar 

truss and the last example is a 47-bar planar truss. The first 

and the second examples do not consider the measurement 

noise, however the third example is studied in two 

circumstances of noise-free and noisy measurement data. 

 

4.1 Thirty one bar-planar truss 
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Fig. 3 The 31-element planar truss 

 

 

The 31-bar planar truss shown in Fig. 3 is selected from 

(Mesina et al. 1998). In this example the first ten natural 

frequencies are utilized for damage identification. The 

material density and elasticity modulus are 2770 kg/m
3
 and 

70 GPa, respectively. Based on (Mesina et al. 1998), the 

stiffness reduction caused by the damage is smaller than 

50% for this example. 

Number of waves is set to 19. Thus, 20 evaluations 

including location of the echolocating animal are carried out 

in each iteration. The maximum number of iterations, the 

minimum coefficient of variation (cvmin) and the reduced 

boundary factor (rbf) are set to 1000, 0.01 and 0.9, 

respectively. The convergence of ESA is meant to occur 

when the ECBI differs a fraction of 1*10
-5

 of the target 

value, or the maximum number of iterations is reached. 

Based on (Mesina et al. 1998), two Scenarios are set as 

follows: 

Scenario1: 25% damage in element 11 and 15% damage 

in element 25. 

Scenario2: 30% damage in element 1 and 20% damage 

in element 2. 

According to (Nobahari and Seyedpoor 2011), ten 

independent runs are carried out for each Scenario using the 

proposed technique. The results of damage identifications 

for the two Scenarios are given in Tables 1 and 2. The 

average of damage ratios obtained in (Nobahari and 

Seyedpoor 2011, Shirazi et al. 2014) and their 

corresponding number of analyses required were shown in 

these tables for comparison. 

According to the results shown in Tables 1-2, the 

robustness of ESA in identifying the location and severity 

of structural damage is comparable with GA (Nobahari and 

Seyedpoor 2011) and MPSO (Shirazi et al. 2014) . It is to 

be noted that the damage ratios were considered as discrete 

variables in (Nobahari and Seyedpoor 2011) which 

obviously reduces the search space significantly and one 

would have expected less number of analyses accordingly.  

 

4.2 Ten bar planar truss 
 

The 10-bar planar truss shown in Fig. 6 is considered as 

the second example. The stiffness reduction caused by the 

damage is smaller than 30%. The material density, elasticity 

modulus and cross sectional area are set to 2770 kg/m
3
, 69.8 

GPa and 0.0025 m
2
, respectively. The optimization 

parameters are the same as the first example. According to 

(Kaveh and Zolghadr 2015) the first 8 natural frequencies 

are utilized for damage detection. 

This example employs two Scenarios: 

Scenario 1: 5% damage in element 1(5% damage in 

element 3 will result in the same set of natural frequencies) 

 
Fig. 4 Convergence history of the 31-bar planar truss for 

Scenario 1 obtained by ESA 

 

 
Fig. 5 Convergence history of the 31-bar planar truss for 

Scenario 2 obtained by ESA 

 

 
Fig. 6 10-bar planar truss 

 

 

Scenario 2: 10% damage in element 2 and 5% damage 

in element 4.(5% damage in element 2 and 10% damage in 

element 4 will result in the same set of natural frequencies) 

Due to stochastic nature of optimization algorithm, ten 

independent runs are made for each damage case. The 

results of damage identification for this example are given 

in Tables 3-4.  

As it is shown in Tables 3 and 4 and emphasized by 

Kaveh and Zolghadr (2015), the proposed algorithm could 

clarify the fact that two different damage Scenarios may 

cause identical frequency variations while the output for the 

function value is equal to one in both. 

 

4.3 Forty seven-bar planar truss 
 

The final example investigated here is a 47-bar planar 

455



 

Mehdi Nobahari, Mohammad Reza Ghasemi and Naser Shabakhty 

power line tower, shown in Fig. 9. The material density, 

elasticity modulus and cross sectional area for the problem 

are 0.3 lb/in
3
, 30000 ksi and 3.87 in

2
, respectively. In this 

example the first 10 natural frequencies are utilized for 

detection of damage. In order to investigate the effect of 

measurement noise on the performance of the proposed 

algorithm, the measurement noise is considered by riddling 

the natural frequencies using a standard error of ± .1 %. 

The optimization parameters are kept the same as the first 

example. Two Scenarios are set as follows: 

Scenario 1: 30% damage in element 10. 

Scenario 2: 30% damage in element 10 and 30% 

damage in element 30. 

Due to stochastic nature of optimization algorithm, ten 

independent runs are made for each damage case. The 

results of damage identification without considering 

measurement noise are given in Tables 5-6. 

 

 

 

In this example, to investigate the ability of ESA in 

detecting the severity and extents of damages using the 

proposed algorithm, the GA was run and the obtained 

results were compared as shown in Tables 5-10. 

 

 

 
Fig. 7 Convergence history for the 10-bar planar truss 

for Scenario 1 obtained by ESA 

 

 

Table 1 The damage percentage of the 31-bar truss for Scenario 1 

Run no 1 … 10 11 12 … 23 24 25 26 … 30 31 No. analyses carried 

1 0 0 0 25 0 0 0 0 15 0 0 0 0 6380 

2 0 0 0 25 0 0 0 0 15 0 0 0 0 6720 

3 0 0 0 25 0 0 0 0 15 0 0 0 0 5420 

4 0 0 0 25 0 0 0 0 15 0 0 0 0 6720 

5 0 0 0 25 0 0 0 0 15 0 0 0 0 5920 

6 0 0 0 25 0 0 0 0 15 0 0 0 0 4480 

7 0 0 0 25 0 0 0 0 15 0 0 0 0 5500 

8 0 0 0 25 0 0 0 0 15 0 0 0 0 9760 

9 0 0 0 25 0 0 0 0 15 0 0 0 0 5460 

10 0 0 0 25 0 0 0 0 15 0 0 0 0 7040 

Average damage % 0 0 0 25 0 0 0 0 15 0 0 0 0 6340 

MPSO-based damage % 0 0 0 24.95 0 0 0 0 14.96 0 0 0 0 35700 

GA-based damage % 0 0 0 26.5 0 0 0 0 18 0 0 0 0 8910 

Actual damage % 0 0 0 25 0 0 0 0 15 0 0 0 0  

Table 2 The damage percentage of the 31-bar truss for Scenario 2 

Run no 1 2 3 … 13 14 … 24 25 26 27 … 31 No. analyses carried 

1 30 20 0 0 0 0 0 0 0 0 0 0 0 7820 

2 30 20 0 0 0 0 0 0 0 0 0 0 0 2680 

3 30 20 0 0 0 0 0 0 0 0 0 0 0 3720 

4 30 20 0 0 0 0 0 0 0 0 0 0 0 6700 

5 30 20 0 0 0 0 0 0 0 0 0 0 0 3220 

6 30 20 0 0 0 0 0 0 0 0 0 0 0 4820 

7 30 20 0 0 0 0 0 0 0 0 0 0 0 10800 

8 30 20 0 0 0 0 0 0 0 0 0 0 0 2200 

9 30 20 0 0 0 0 0 0 0 0 0 0 0 4640 

10 30 20 0 0 0 0 0 0 0 0 0 0 0 2900 

Average damage % 30 20 0 0 0 0 0 0 0 0 0 0 0 4950 

MPSO-based damage % 30 20 0 0 0 0 0 0 0 0 0 0 0 33900 

GA-based damage % 30 20 0 0 0 0 0 0 0 0 0 0 0 6391 

Actual damage % 30 20 0 0 0 0 0 0 0 0 0 0 0  
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Fig. 8 Convergence history for the 10-bar planar truss 

for Scenario 2 obtained by ESA 

 

Table 3 The damage percentage of the 10-bar truss for 

Scenario 1 

Run no 1 2 3 … 10 ECBI 

No. 

analyses 

carried 

1 5 0 0 0 0 1 660 

2 0 0 5 0 0 1 720 

3 5 0 0 0 0 1 1000 

4 5 0 0 0 0 1 720 

5 5 0 0 0 0 1 500 

6 0 0 5 0 0 1 1020 

7 5 0 0 0 0 1 720 

8 5 0 0 0 0 1 720 

9 0 0 5 0 0 1 720 

10 5 0 0 0 0 1 720 

Average      1 750 

Actual damage % 5 0 0 0 0   

Actual damage % 0 0 5 0 0   

 

 

According to the results given in Tables 5 and 6, ESA 

could find the location and severity of damaged members 

with an acceptable accuracy. 

In this example for both Scenarios, ESA could detect 

damaged members for all runs. Also in both Scenarios, for 

70% of runs, the damage severity evaluated by ESA is exact 

and for 30% of runs, the estimated damage severity is very 

close to actual value.  

For example, in Scenario 1, the mean value of evaluated 

damage severity for damaged member (element 10) is 

29.6% which has a little divergence with real value (30%). 

In Scenario 2, the mean value of evaluated damage severity 

for damaged members (elements 10 and 30) are 27.9% and 

29.8% which are very close to real value (30%). Thus in 

general, one would observe that the discrepancy is very 

small and negligible. Also it is worth to note that although 

the damage variables were considered discrete in GA, the 

number of analyses carried out in GA was greater than that 

of ESA. 

Although achieving the target value of ECBI (1) by 

considering measurement noise is impossible but according 

to Figs. 10-11, ESA could achieve 0.995 after 

approximately 250 iterations. 

 

Table 4 The damage percentage of the 10-bar truss for 

Scenario 2 

Run no 1 2 3 4 .. 10 ECBI 

No. 

analyses 

carried 

1 0 10 0 5 0 0 1 1080 

2 0 10 0 5 0 0 1 1020 

3 0 5 0 10 0 0 1 1020 

4 0 5 0 10 0 0 1 1040 

5 0 10 0 5 0 0 1 1020 

6 0 5 0 10 0 0 1 1020 

7 0 5 0 10 0 0 1 1260 

8 0 10 0 5 0 0 1 1020 

9 0 5 0 10 0 0 1 1020 

10 0 10 0 5 0 0 1 720 

Average       1 1022 

Actual 

damage % 
0 10 0 5 0 0   

Actual 

damage % 
0 5 0 10 0 0   

 

 
Fig. 9 The 47-bar planar power line tower 
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Table 5 The damage percentage of the 47-bar planar power line tower for Scenario 1 with free noise data 

Run no 1 … 7 8 9 10 11 … 21 22 23 … 47 No. analyses carried 

1 0 0 1 0 0 29 0 0 0 0 0 0 0 6300 

2 0 0 0 0 0 30 0 0 0 0 0 0 0 7620 

3 0 0 0 0 0 30 0 0 1 0 0 0 0 4580 

4 0 0 0 0 0 29 0 0 0 0 0 0 0 5680 

5 0 0 0 0 0 30 0 0 0 2 0 0 0 5820 

6 0 0 0 0 0 30 0 0 0 0 0 0 0 4780 

7 0 0 0 0 0 30 0 0 0 0 0 0 0 5760 

8 0 0 0 0 0 29 0 0 0 0 0 0 0 7080 

9 0 0 0 0 0 30 0 0 0 0 0 0 0 3860 

10 0 0 0 0 0 30 0 0 0 0 0 0 0 5960 

Average damage % 0 0 0.1 0 0 29.6 0 0 0.1 0.2 0 0 0 5744 

GA-based damage % 0 0 0 0 2 29.5 1.5 0 0 0 0 0 0 10060 

Actual damage % 0 0 0 0 0 30 0 0 0 0 0 0 0  

Table 6 The damage percentage of the 47-bar planar power line tower for Scenario 2 with free noise data 

Run no 1 … 8 9 10 11 … 22 … 30 31 32 33 … 47 No. analyses carried 

1 0 0 0 0 30 0 0 0 0 30 0 0 0 0 0 5740 

2 0 0 0 0 30 0 0 0 0 30 0 0 0 0 0 6720 

3 0 0 0 0 30 0 0 0 0 30 0 0 0 0 0 5580 

4 0 0 0 0 30 0 0 0 0 30 0 0 0 0 0 6660 

5 0 0 1 0 30 0 0 0 0 30 0 0 0 0 0 10180 

6 0 0 0 0 30 0 0 0 0 30 0 0 0 0 0 10300 

7 0 0 0 0 28 1 0 0 0 30 0 0 0 0 0 20000 

8 1 0 3 0 20 2 0 0 0 29 0 0 2 0 0 20000 

9 0 0 1 0 30 0 0 0 0 30 0 0 0 0 0 12420 

10 1 0 3 0 21 2 0 2 0 29 0 0 2 0 0 20000 

Average damage % 0.2 0 0.8 0 27.9 0.5 0 0.2 0 29.8 0 0 0.4 0 0 11760 

GA-based damage % 0 0 0 0 25.5 0.5 0 0 0 35 0 1 0 0 0 18460 

Actual damage % 0 0 0 0 30 0 0 0 0 30 0 0 0 0 0  

Table 7 The damage percentage of the 47-bar planar power line tower for Scenario 1 with noisy data 

Run no 1 … 7 8 9 10 11 … 18 … 20 21 … 46 47 No. analyses carried 

1 2 0 9 0 0 24 0 0 0 0 0 0 0 1 0 20000 

2 0 0 0 0 0 20 0 0 1 0 0 0 0 1 1 20000 

3 0 0 0 6 0 45 4 0 0 0 0 0 0 0 0 20000 

4 0 0 0 3 0 17 0 0 0 0 10 0 0 0 0 20000 

5 0 0 0 0 0 34 0 0 2 0 2 2 0 0 0 20000 

6 0 0 3 0 7 17 0 0 5 0 0 5 0 0 0 20000 

7 1 0 2 0 0 15 2 0 0 0 1 0 0 5 0 20000 

8 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0 20000 

9 0 0 0 9 0 12 0 0 0 0 0 0 0 0 0 20000 

10 0 0 0 0 2 11 2 0 0 0 0 10 0 0 0 20000 

Average damage % 0.3 0 1.4 1.8 0.9 26.7 0.8 0 0.8 0 1.3 1.7 0 0.7 0.1 20000 

Actual damage % 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0  
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Table 8 The damage percentage of the 47-bar planar power line tower for Scenario 2 with noisy data 

Run no 1 … 8 9 10 11 … 22 … 28 29 30 … 33 … 43 … 47 

No. 

analyses 

carried 

1 0 0 0 3 15 0 0 0 0 0 0 29 0 0 0 1 0 0 20000 

2 0 0 10 0 12 0 0 0 0 0 0 27 0 0 0 0 0 0 20000 

3 0 0 12 7 19 0 0 0 0 2 0 29 0 0 0 8 0 0 20000 

4 0 0 0 0 28 0 0 0 0 0 0 30 0 0 0 0 0 0 20000 

5 0 0 7 1 10 4 0 10 0 0 0 28 0 4 0 0 0 0 20000 

6 0 0 0 0 11 0 0 9 0 5 0 29 0 0 0 1 0 0 20000 

7 0 0 0 0 13 2 0 0 0 0 3 21 0 0 0 0 0 0 20000 

8 0 0 8 0 10 1 0 2 0 8 0 27 0 2 0 0 0 0 20000 

9 0 0 0 0 32 0 0 0 0 12 0 30 0 0 0 1 0 0 20000 

10 0 0 0 3 16 1 0 1 0 0 0 21 0 1 0 0 0 0 20000 

Average damage % 0 0 3.7 1.4 16.6 0.8 0 2.2 0 2.7 0.3 27.1 0 0.7 0 1.1 0 0 20000 

Actual damage % 0 0 0 0 30 0 0 0 0 0 0 30 0 0 0 0 0 0  

Table 9 The results for the damage detection of the 47-bar planar truss, Scenario 1 with noisy data, using GA 

Run no 1 … 6 7 8 9 10 11 … 15 16 …. 47 

No. 

analyses 

carried 

1 0 0 0 10 5 0 45 15 0 0 0 0 0 20000 

2 0 0 10 20 25 35 0 0 0 0 0 0 0 20000 

3 0 0 0 0 25 35 15 0 0 0 0 0 0 20000 

4 0 0 0 0 15 45 0 0 0 10 0 0 0 20000 

5 0 0 0 0 10 10 25 0 0 10 15 0 0 20000 

6 0 0 0 0 15 25 0 0 0 15 0 0 0 20000 

7 0 0 0 0 10 0 45 0 0 0 0 0 0 20000 

8 0 0 0 0 15 5 50 0 0 0 10 0 0 20000 

9 0 0 0 0 5 0 25 0 0 15 10 0 0 20000 

10 0 0 0 0 0 45 0 0 0 10 0 0 0 20000 

Average damage % 0 0 1 3 12.5 19.5 20.5 1.5 0 6 3.5 0 0 20000 

Actual damage % 0 0 0 0 0 0 30 0 0 0 0 0 0  

Table 10 The results for the damage detection of the 47-bar planar truss, Scenario 2 with noisy data, using GA 

Run no 1 2 3 … 6 7 8 9 10 11 … 30 31 32 … 35 … 47 

No. 

analyses 

carried 

1 0 0 0 0 0 0 0 25 15 0 0 40 0 0 0 20 0 0 20000 

2 0 0 0 0 0 0 10 0 25 0 0 50 0 0 0 0 0 0 20000 

3 0 0 20 0 10 0 0 0 45 0 0 25 0 0 0 0 0 0 20000 

4 0 0 20 0 25 0 0 0 35 0 0 45 0 0 0 0 0 0 20000 

5 0 0 10 0 0 0 0 45 0 0 0 40 0 0 0 0 0 0 20000 

6 0 0 0 0 20 0 0 10 25 0 0 35 0 10 0 0 0 0 20000 

7 0 0 0 0 0 0 20 0 15 0 0 35 0 0 0 0 0 0 20000 

8 0 0 0 0 15 0 0 0 40 0 0 50 0 0 0 0 0 0 20000 

9 0 0 0 0 10 0 0 0 45 0 0 50 0 0 0 10 0 0 20000 

10 0 0 0 0 0 0 5 0 35 0 0 45 0 0 0 0 0 0 20000 

Average damage % 0 0 5 0 8 0 3.5 8 27 0 0 46.5 0 1 0 3 0 0 20000 

Actual damage % 0 0 0 0 0 0 0 0 30 0 0 30 0 0 0 0 0 0  

459



 

Mehdi Nobahari, Mohammad Reza Ghasemi and Naser Shabakhty 

 
Fig. 10 Convergence history of the 47-bar planar truss 

for Scenario 1 obtained by ESA 

 

 
Fig. 11 Convergence history of the 47-bar planar truss for 

Scenario 2 obtained by ESA 
 

 

Existence of measurement noise converts the damage 

detection problem to a complicated one. In these cases, a 

precise damage severity assessment is very difficult if not 

impossible and damage localization is more important than 

damage severity assessment. If damage extents are needed 

to be evaluated accurately, other measurement data such as 

mode shapes may also be needed. As presented in Tables 7 

and 8, ESA could detect damaged members in all runs for 

both the damage Scenarios. Also estimated damage 

severities by ESA is adjacent to reality and may be regarded 

as acceptable. However, according to Table 9, for the first 

Scenario, in 40% of runs, GA could not detect the damage 

location (bolded in the table). Also, as depicted in Table 10, 

for the second Scenario, GA was ineffective to detect the 

damaged members in 10% of runs (bolded in table). 

 

 

5. Conclusions 
 

In this paper a vibration-based structural damage 

identification was conducted as an inverse optimization 

problem. To solve such problems, there are several search 

algorithms such as GA, PSO etc. In this paper by 

mimicking from strategies used by echolocation animals 

such as bats, dolphins, oilbirds, shrews etc. searching for 

food and navigation, a novel heuristic search algorithm 

(ESA) was proposed. Although searching process in the 

proposed algorithm, similar to other heuristic search 

algorithms, is based on stochastic laws, its governing rules 

are less chaotic compared to other search algorithms. This 

feature helped the authors to solve the three numerical 

optimization problems with lower computational efforts. 

The first example was a 31 elements planar truss, for 

which two damage Scenarios were considered. The results 

of the first Scenario showed that ESA could meet the exact 

response by approximately 18% of computational cost 

using MPSO. Besides, although in GA, the damage 

variables were considered as discrete, as a result of which 

one would expect the size of search space to be reduced 

compared to continuous type of variables, the required 

computational cost by ESA was found 71% lower than GA 

and also more accurate. In the second damage Scenario, 

superiority of ESA results was clearly evident when 

compared to those based on GA or MPSO. ESA could 

obtain the exact solution by 4950 analyses, nearly seven 

times that of MPSO and 1.5 times that of GA. 

The second example was a 10-bar planar truss. In this 

example, ESA confronted a challenging dilemma. Two 

different frequency diversities were studied, each of which 

had two different responses. Thus, two different damage 

Scenarios causing identical natural frequency changes were 

correctly detected by ESA. 

As the last example, a 47-bar planar truss with two 

different damage Scenarios was studied. In this example to 

investigate the robustness of ESA, the measurement noise 

was considered. Existence of measurement noise obscures 

the structural damage detection problems. Exact damage 

severity assessment by just utilizing the noisy natural 

frequencies is an impossible task. In that respect, for both 

damage Scenarios in this example, ESA could detect 

damaged elements properly and the damage severity 

approximated by ESA had a satisfactory accuracy. 
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