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1. Introduction 
 

Functionally graded materials (FGMs) are a class of 

composites that have continuous variation of material 

properties from one surface to another, and thus eliminating 

the stress concentration found in laminated composites. A 

typical FGM is made from a mixture of ceramic and metal. 

These materials are often isotropic but nonhomogeneous. 

The reason for interest in FGMs is that it may be possible to 

create certain types of FGM structures capable of adapting 

to operating conditions. 

Due to the increased relevance of the FGMs structural 

components in the design of engineering structures, many 

studies have been reported on the vibration analyses of 

functionally graded (FG) plates. Thai et al. (2013a) used a 

simple quasi-3D sinusoidal shear deformation theory for 

functionally graded plates. Thai et al. (2013b) proposed a 

simple higher-order shear deformation theory for bending 

and free vibration analysis of functionally graded plates. 

Zhang et al. (2013) studied the modeling and analysis of 

FGM rectangular plates based on physical neutral surface 

and high order shear deformation theory. Fekrar et al. 

(2012) analyzed the buckling response of FG hybrid 

composite plates using a new four variable refined plate 

theory. Tai et al. (2014) studied the analysis of functionally 

graded sandwich plates using a new first-order shear 

deformation theory. Bousahla et al. (2014) investigated a 

novel higher order shear and normal deformation theory 

based on neutral surface position for bending analysis of  
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advanced composite plates. Belabed et al. (2014) used an 

efficient and simple higher order shear and normal 

deformation theory for functionally graded material (FGM) 

plates. Ait Amar Meziane et al. (2014) used an efficient and 

simple refined theory for buckling and free vibration of 

exponentially graded sandwich plates under various 

boundary conditions. Mahi et al. (2015) developed a new 

hyperbolic shear deformation theory for bending and free 

vibration analysis of isotropic, functionally graded, 

sandwich and laminated composite plates. Bellifa et al. 

(2016) studied the bending and free vibration analysis of 

functionally graded plates using a simple shear deformation 

theory and the concept the neutral surface position. Al-

Basyouni et al. (2015) investigated size dependent bending 

and vibration analysis of functionally graded micro beams 

based on modified couple stress theory and neutral surface 

position. Belkorissat et al. 2015) developed new shear 

deformation plates theories involving only four unknown 

functions. Larbi Chaht et al. (2015) studied the bending and 

buckling of functionally graded material (FGM) size-

dependent nanoscale beams including the thickness 

stretching effect. Ahouel et al. (2016) investigated a size-

dependent mechanical behavior of functionally graded 

trigonometric shear deformable nanobeams including 

neutral surface position concept. Zemri et al. (2015) 

proposed an assessment of a refined nonlocal shear 

deformation theory beam theory for a mechanical response 

of functionally graded nanoscale beam. Nedri et al. (2014) 

developed new shear deformation plate theorie involving 

only four unknown functions for free vibration analysis of 

laminated composite plates resting on elastic foundations. 

Tounsi et al. (2013) used a refined trigonometric shear 

deformation theory for thermoelastic bending of 

functionally graded sandwich plates. Zidi et al. (2014) study 
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hygro-thermo-mechanical loading for the bending of FGM 

plates using a four variable refined plate theory. Bouderba 

et al. (2013) studied the thermomechanical bending 

response of FGM thick plates resting on Winkler-Pasternak 

elastic foundations. Bouderba et al. (2016) studied the 

thermal stability of functionally graded sandwich plates 

using a simple shear deformation theory. Attia et al. (2015) 

developed the free vibration analysis of functionally graded 

plates with temperature-dependent properties using various 

four variable refined plate theories. Bakora et al. (2015) 

investigated the thermo-mechanical post-buckling behavior 

of thick functionally graded plates resting on elastic 

foundations. Boukhari et al. (2016) used an efficient shear 

deformation theory for wave propagation of functionally 

graded material plates. Hebali et al. (2014) studied the static 

and free vibration analysis of functionally graded plates 

using a new quasi-3D hyperbolic shear deformation theory. 

Hamidi et al. (2015) used a sinusoidal plate theory with 5-

unknowns and stretching effect for thermomechanical 

bending of functionally graded sandwich plates. Bourada et 

al. (2015) used a new simple shear and normal 

deformations theory for functionally graded beams. Hadji et 

al. (2016a) analyze the functionally graded beam using a 

new first-order shear deformation theory. Bennoun et al. 

(2016) used a novel five variable refined plate theory for 

vibration analysis of functionally graded sandwich plates. 

Ait Yahia et al. (2015) studied the wave propagation in 

functionally graded plates with porosities using various 

higher-order shear deformation plate theories. Beldjelili et 

al. (2016) analyzed the hygro-thermo-mechanical bending 

of S-FGM plates resting on variable elastic foundations 

using a four-variable trigonometric plate theory. Hadji et al. 

(2016b) used a new first shear deformation theory for the 

dynamic behavior of FGM beam. Bounouara et al. (2016) 

studied the free vibration of functionally graded nanoscale 

plates resting on elastic foundation using a nonlocal zeroth-

order shear deformation theory. Hadji et al. (2016c) 

analyzed the bending of FGM plates using a sinusoidal 

shear deformation theory.  

In this paper, a refined shear deformation plate theory 

which eliminates the use of the shear correction factor is 

developed for FG plates. By making a further assumption, 

the number of unknowns and governing equations of the 

present refined theory is reduced, thus makes it simple to 

use. Equations of motion and boundary conditions are 

derived from Hamilton’s principle. Analytical solutions for 

rectangular plates are obtained. Numerical examples are 

presented to verify the accuracy of the present theory in 

predicting the free vibration responses of FG plates.  
 

 

2. Theoretical formulation 
 

Consider a rectangular FGM plate having the thickness 

h, length a, and width b. A Cartesian coordinate system (x, 

y, z) is used to label the material point of the plate in the 

unstressed reference configuration, as depicted in Fig. 1. It 

is assumed that the material is isotropic and grading is 

assumed to be only through the thickness. The xy plane is 

taken to be the undeformed mid plane of the plate with the z 

axis positive upward from the mid plane. 

 

Fig. 1 Geometry of rectangular FG plate and coordinates 

 
 

2.1 Basic assumptions 
 

The assumptions of the present theory are as follows: 

The displacements are small in comparison with the 

plate thickness and, therefore, strains involved are 

infinitesimal. 

The transverse displacement W includes two 

components of bending wb, and shear ws. These components 

are functions of coordinates x, y, and time t only 

),,(),,(),,,( tyxwtyxwtzyxw sb      (1) 

The transverse normal stress σz is negligible in 

comparison with in-plane stresses σx and σy. 

The displacements U in x-direction and V in y-direction 

consist of extension, bending, and shear components 

sb uuuu  0     sb vvvv  0      (2) 

The bending components ub and vb are assumed to be 

similar to the displacements given by the classical plate 

theory. Therefore, the expression for ub and vb can be given 

as 
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The shear components us and vs give rise, in conjunction 

with ws, to the parabolic variations of shear strains γxz, γyz 

and hence to shear stresses τxz, τyz through the thickness of 

the plate in such a way that shear stresses τxz, τyz are zero at 

the top and bottom faces of the plate. Consequently, the 
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2.2 Displacement fields and strains 

 
Based on the assumptions made in the preceding 

section, the displacement field can be obtained 
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where u0 and v0 are the mid-plane displacements of the plate 

in the x and y direction, respectively; wb and ws are the 

bending and shear components of transverse displacement, 

respectively.  

The kinematic relations can be obtained as follows 
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while f(z) represents shape functions determining the 

distribution of the transverse shear strains and stresses along 

the thickness and is given as 
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2.3 Constitutive relations 

 
The material properties of FG plate are assumed to vary 

continuously through the thickness of the plate in 

accordance with a power law distribution as 
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Where P denotes a generic material property like 

modulus, Pt and Pb denotes the property of the top and 

bottom faces of the plate respectively, and k is a parameter 

that dictates material variation profile through the thickness. 

Here, it is assumed that modules E and G vary according to 

the Eq. (8) and ν is assumed to be a constant. The linear 

constitutive relations of a FG plate can be written as 
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2.4 Governing equations  

 
Hamilton’s principle is used herein to derive the 

equations of motion appropriate to the displacement field 

and the constitutive equations. The principle can be stated 

in analytical form as 
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where δU is the variation of strain energy; and δK is the 

variation of kinetic energy. The variation of strain energy is 

calculated by 
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where Ω is the top surface and N, M, and S are stress 

resultants defined by 
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The variation of kinetic energy can be written as 
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where dot-superscript convention indicates the 

differentiation with respect to the time variable t; and (I1, I2, 

I3, I4, I5, I6) are mass inertias defined as  
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Substituting the expressions for δU and δK from Eqs. 

(12) and (14) into Eq. (11a) and integrating by parts, and 

collecting the coefficients of δu0, δv0, δwb, and δws, one 

obtains the following equations of motion 
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(16) 

Using Eq. (9) in Eq. (13), the stress resultants of a plate 

can be related to the total strains by 
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The stiffness coefficients Aij and Bij, etc., are defined as 
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Substituting from Eq. (15) into Eq. (16), the equations 

of motion can be expressed in terms of displacements (δu0, 

δv0, δwb, δws) as 
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2.5 Closed-form solution for simply supported plates 
 

Rectangular plates are generally classified according to 

the type of support used. Here, we are concerned with the 

exact solutions of Eqs. (18) for a simply supported FG 

plate. Based on the Navier approach, the solutions are 

assumed as 
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where Umn, Vmn, Wbmn and Wsmn are arbitrary parameters to 

be determined, ω is the eigenfrequency associated with (m, 

n) th eigenmode, and λ=mπ/a and μ=nπ/b. 

Substituting Eqs. (19) into Eq. (18), the analytical 

solutions can be obtained from 
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where {Δ}={U, V, Wb, Ws}
t
, [C] and [M] refers to the 

flexural stiffness and mass matrices and ω to the 

corresponding frequency 
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3. Results and discussion 
 

In numerical analysis, static and free vibration analysis 

of simply supported FG Plates is evaluated. The FG plate is 

taken to be made of aluminum and alumina with the 

following material properties: 

Ceramic (PC: Alumina, Al2O3): Ec=380 GPa; v=0.3; 

ρc=5700 kg/m
3
 

Metal (PM: Aluminium, Al): Em=70 GPa; v=0.3; 

ρm=2702 kg/m
3
 

And their properties change through the thickness of the 

plate according to power-law. The bottom surfaces of the 

FG plate are aluminum rich, whereas the top surfaces of the 

FG plate are alumina rich.  

 
3.1 Free vibration analysis  
 

The accuracy of the present theory is also evaluated 

through free vibration analysis of the FGM plates. Table 1 

present Comparison of the first eight nondimensional 

frequency Gha /0

2   of simply supported 

homogeneous isotropic square plate versus thickness-to-

lengh ratio h/a. As it can be seen, with increases of 

thickness-to-lengh ratio the nondimensional frequency 

decreases. Again the present results show good agreement 

with those reported by Hosseini et al. (2011), Thai et al. 

(2012) and 3-D Ritz. 

As another verification attempt, Comparison study of 

frequency parameters Gh /   rectangular plates 

when thickness-to-lengh ratio h/a=0.1 are presented in 

Table 2. It can be seen that the obtained results are in very 

good agreement with those predicted by Exact HSDT  
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Table 2 Comparison study of frequency parameters 

Gh /   rectangular plates when, h/a=0.1 

(m, n)
  Exact 

HSDT 
Exact 3-D 

FEM 

(HSDT) 

Hosseini 

(2011) 
Present 

(1, 1) 0.0931 0.0932 0.0930 0.0930 0.0978 

(2, 1) 0.2222 0.226 0.2222 0.2222 0.2333 

(2, 2) 0.3411 0.3421 0.3406 0.3406 0.3581 

(1, 3) 0.4158 0.4171 0.4149 0.4151 0.4364 

(2, 3) 0.5221 0.5239 0.5206 0.5210 0.5476 

(1, 4) 0.6545 - 0.6520 0.6525 0.6862 

(3, 3) 0.6862 0.6889 0.6834 0.6840 0.7193 

(2, 4) 0.7481 0.7511 0.7447 0.7454 0.7839 

(3, 4) 0.8949 - 0.8896 0.8908 0.9370 

(1, 5) 0.9230 0.9268 0.9174 0.9187 0.9663 

(2, 5) 1.0053 - 0.9984 1.0001 1.0520 

(4, 1) 1.0847 1.0889 1.0760 1.0001 0.6862 

(3, 5) 1.1361 - 1.1266 1.1292 1.1880 

 

 

(1985), Exact 3-D (1970), FEM (HSDT) and Hosseini et al. 

(2011). 

The effect of side-to-thickness ratio on the fundamental 

frequencies of the FGM plate for different values of 

gradient index and aspect ratio are presented in Figs. 2 and 

3, respectively. It’s clear that the fundamental frequency is 

maximum when the gradient index k=0 and aspect ratio 

a/b=2, and minimum when the gradient index k=10 and 

aspect ratio a/b=0.5. 

Figs. 4 and 5, plot the variation of the fundamental  
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Table 1 Comparison of the first eight nondimensional frequency Gha /0

2    of simply supported homogeneous 

isotropic square plate a=b, k=0 

h/a
 

Method 
Modes 

1 2 3 4 5 6 7 8 

0.01 

3-D Ritz 19.7392 49.3480 49.3480 78.9568 98.6951 98.6951 128.3030 128.3030 

Hosseini 

(2011) 
19.7320 49.3032 49.3032 78.8421 98.5169 98.5169 128.0024 128.0024 

Thai (2012) 19.7320 49.3032 49.3032 78.8421 98.5169 98.5169 128.0024 128.0024 

Present 19.7320 49.3031 49.3031 78.8421 98.5170 98.5170 128.0025 128.0025 

0.1 

3-D Ritz 19.0898 45.6193 45.6193 70.1038 85.4876 85.4876 107.3710 107.3710 

Hosseini 

(2011) 
19.0653 45.4869 45.4869 69.8093 85.0646 85.0646 106.7350 106.7350 

Thai (2012) 19.0653 45.4869 45.4869 69.8093 85.0646 85.0646 106.7350 106.7350 

Present 19.0656 45.4895 45.4895 69.8159 85.0749 85.0749 106.7523 106.7523 

0.2 

3-D Ritz 17.5264 38.4826 38.4826 55.7870 65.9961 65.9961 - - 

Hosseini 

(2011) 
17.4523 38.1883 38.1883 55.2543 65.3135 65.3135 78.9865 78.9865 

Thai (2012) 17.4523 38.1883 38.1883 55.2543 65.3135 65.3135 78.9865 78.9865 

Present 17.4539 38.1983 38.1983 55.2788 65.3506 65.3506 79.0464 79.0464 

0.3 

3-D Ritz 15.6877 31.9834 31.9834 44.5346 50.4850 50.4850 - - 

Hosseini 

(2011) 
15.5745 31.6413 31.6413 44.0236 51.1314 51.1314 60.6549 60.6549 

Thai (2012) 15.5744 31.6413 31.6413 44.0236 51.1314 51.1314 60.6551 60.6551 

Present 15.5780 31.6618 31.6618 44.0711 51.2016 51.2016 60.7649 60.7649 
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frequencies of the FGM plate versus Em/Ec and aspect ratio, 

respectively. As it can be seen, the difference of the 

fundamental frequencies increases as the aspect ratio 

increases. 

 

 
4. Conclusions 
 

In this work, a refined plate theory based on the refined 

shear deformation plate theory is successfully developed for 

free vibration simply supported FG plates. The theory 

accounts for a quadratic variation of the transverse shear 

strains across the thickness, and satisfies the zero traction 

boundary conditions on the top and bottom surfaces of the 

plate without using shear correction factors. Accuracy and 

convergence of the present refined plate theories was 

verified by comparing the results obtained with those 

reported in the literature for the FG plate. Parametric studies 

for varying of the power low index, the aspect and side-to-

thickness ratio are discussed and demonstrated through 

illustrative numerical examples. 
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