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1. Introduction 

 

Nowadays, the employ of composite materials has been 

experimented a great interest in civil, aerospace, automobile 

and other engineering industries (Panjehpour et al. 2011, 

2016, Draiche et al. 2014, Nedri et al. 2014, Pradhan and 

Chakraverty 2015, Bellifa et al. 2016, Ait Yahia et al. 2015, 

Ebrahimi and Dashti 2015, Bennoun et al. 2016, Draiche et 

al. 2016, Houari et al. 2016, Tounsi et al. 2016). Some 

composite materials improve the resistance of engineering 

structures in front of relative higher variations of 

temperature and moisture contents. Unfortunately, the 

structural response of composite materials is not easy to 

understand and hence a mathematical model of composite 

structures is always an important starting point. 

The mechanical response of composite materials has 

been investigated by different models over the last and 

present century. For example, the classical plate theory 

(CPT) was extended to the first order-shear-deformation-

theory (FSDT) in Reissner (1945) and Mindlin (1951) to 

determine the shear deformation influence for thick plates 

by a constant transverse shear strain component with a 

shear correction coefficient. 

The limitations of CPT and FSDTs favored the 

development of higher order shear deformation theories to 

avoid the employ of shear correction coefficients, to 

introduce effect of cross sectional warping and to get the 

realistic distribution of the transverse shear strains and  
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stresses within the thickness of plates. An extensive review 

of laminated plate models can be found in Reissner (1985), 

Noor and Burton (1989), Mallikarjuna and Kant (1993), 

Ghugal and Shimpi (2002), Carrera (2003), Reddy and 

Arciniega (2004), Wanji and Zhen (2008), Demasi (2008, 

2009a, b, c, d, e) and Kreja (2011). Reddy (1984a) has 

proposed well-known higher order shear deformation theory 

by assuming polynomial functions in-terms of thickness 

coordinate. Soldatos (1992) developed a hyperbolic shear 

deformation theory for homogenous monoclinic plates 

whereas Mahi et al. (2015) proposed a new hyperbolic 

shear deformation theory for bending and vibration analysis 

of isotropic, functionally graded, sandwich and laminated 

composite plates. A novel inverse hyperbolic shear 

deformation theory is presented by Grover et al. (2013). 

Hebali et al. (2014) have developed a new quasi 3D-

hyperbolic shear deformation theory for the bending and 

free vibration analysis of functionally graded plates. 

Belabed et al. (2014) presented an efficient and simple 

higher order shear and normal deformation theory for 

functionally graded plates. A novel simple shear and normal 

deformations theory is proposed by Bourada et al. (2015) 

for functionally graded beams. Ait Atmane et al. (2015) 

presented a new computational shear displacement model 

for dynamic analysis of FG beams with porosities. Al-

Basyouni et al. (2015) discussed the size dependent bending 

and vibration analysis of FG micro beams based on a simple 

HSDT, modified couple stress theory and neutral surface 

position. Karama et al. (2003, 2009) developed an 

exponential function in terms of thickness coordinate for 

laminated composite beam and plates. Bousahla et al. 

(2014) presented a new higher order shear and normal 

deformation theory based on neutral surface position for 

 
 
 

Thermal buckling analysis of cross-ply laminated plates  
using a simplified HSDT 

 

Abdelbaki Chikh1,2, Abdelouahed Tounsi1,2,3, Habib Hebali1,2 and S. R. Mahmoud4,5 
 

1Université Ibn Khaldoun, BP 78 Zaaroura, 14000 Tiaret, Algérie 
2Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria 

3Laboratoire de Modélisation et Simulation Multi-échelle, Département de Physique, Faculté des Sciences Exactes, Département de 
Physique, Université de Sidi Bel Abbés, Algeria 

4Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia 
5Mathematics Department, Faculty of Science, University of Sohag, Egypt 

 
(Received October 31, 2016, Revised December 7, 2016, Accepted December 8, 2016) 

 
Abstract.  This work presents a simplified higher order shear deformation theory (HSDT) for thermal buckling analysis of 

cross-ply laminated composite plates. Unlike the existing HSDT, the present one has a new displacement field which 

introduces undetermined integral terms and contains only four unknowns. Governing equations are derived from the principle 

of the minimum total potential energy. The validity of the proposed theory is evaluated by comparing the obtained results with 

their counterparts reported in literature. It can be concluded that the proposed HSDT is accurate and simple in solving the 

thermal buckling behavior of laminated composite plates. 
 

Keywords:  thermal buckling; cross ply-laminated plates; HSDT; analytical modelling 

 



 

Abdelbaki Chikh, Abdelouahed Tounsi, Habib Hebali and S. R. Mahmoud 

 

bending analysis of advanced composite plates. Ait Amar 

Meziane et al. (2014) presented an efficient and simple 

refined theory for buckling and free vibration of 

exponentially graded sandwich plates under various 

boundary conditions. Nguyen et al. (2015) proposed a 

refined higher-order shear deformation theory for bending, 

vibration and buckling analysis of FG sandwich plates. 

Belkorissat et al. (2015) studied vibration properties of FG 

nano-plate using a new nonlocal refined four variable 

model. Sayyad and Ghugal (2012a, b) also investigated an 

exponential shear deformation theory for the bending, 

buckling and dynamic analysis of isotropic plates. Sayyad 

(2013) used the exponential shear deformation theory for 

the bending analysis of orthotropic plates. Versino et al. 

(2013) have been proposed a refined zigzag theory for the 

investigation of homogeneous, multilayer composite and 

sandwich plates. Sturzenbecher and Hofstetter (2011) 

discussed bending response of cross-ply laminated 

composites by employing an accurate and efficient plate 

theory. Finite element analysis of laminated sandwich plate 

based on an improved higher order zigzag plate model is 

investigated by Pandit et al. (2010). Shooshtari and Razavi 

(2010) have used an analytical solution for linear and 

nonlinear vibrations of composite and fiber metal laminated 

rectangular plates. Kar et al. (2015) analyzed the nonlinear 

flexural response of laminated composite flat panel under 

hygro-thermo-mechanical loading. Recently, Bourada et al. 

(2016) studied the buckling behavior of isotropic and 

orthotropic plates by proposing a new four variable refined 

plate theory. Saidi et al. (2016) presented a simple 

hyperbolic shear deformation theory for vibration analysis 

of thick FG rectangular plates resting on elastic 

foundations. Boukhari et al. (2016) presented an efficient 

shear deformation theory for wave propagation of FG 

plates. Bounouara et al. (2016) developed a nonlocal 

zeroth-order shear deformation theory for free vibration of 

FG nanoscale plates resting on elastic foundation. It is noted 

that many studies can be find on the buckling, post-buckling 

and thermo-mechanical behaviors of composite structures 

with and without smart material in the open literature 

(Panda and Singh 2009, Panda and Singh 2010a, b, Panda 

and Singh 2011, Panda and Singh 2013a, b, c, d, Tounsi et 

al. 2013, Bouderba et al. 2013, Zidi et al. 2014, Kar and 

Panda 2014, Mahapatra and Panda 2015, Mahapatra et al. 

2015a, b, Panda and Katariya 2015, Singh and Panda 2015, 

Meradjah et al. 2015, Kar and Panda 2015a, b, Attia et al. 

2015, Tebboune et al. 2015, Hamidi et al. 2015, Katariya 

and Panda 2016, Mahapatra and Panda 2016, Mahapatra et 

al. 2016a, b, Mehar and Panda 2016a, b, Beldjelili et al. 

2016, Bousahla et al. 2016, Bouderba et al. 2016, El-Hassar 

et al. 2016, Kar et al. 2016, Mehar et al. 2016, Kar and 

Panda 2016a, b, c, Ahouel et al. 2016, Mehar and Panda 

2017). 
In this paper, a hyperbolic shear deformation theory is 

employed to develop the analytical solution for the thermal 

buckling analysis of cross-ply composite multilayered 

plates under uniform temperature rise. The present theory 

differs from other higher order theories because, in present 

theory the displacement field which include undetermined 

integral terms and contains only four unknowns which is 

not considered by the other researchers. The results of the 

present model are compared with the known data in the 

literature.  

 
 

2. Analytical modeling 

 
2.1 Kinematics and constitutive equations 

 
The kinematic of the novel theory is proposed as follows 

(Merdaci et al. 2016, Hebali et al. 2016) 
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where ),(0 yxu , ),(0 yxv , ),(0 yxw  and ),( yx  are the 

four unknown displacement functions of middle surface of 

the plate. The last unknown is a mathematical term that 

allows obtaining the rotations of the normal to the mid-plate 

about the x and y axes (as in the ordinary HSDT). Note that 

the integrals do not have limits. In the present work is 

considered terms with integrals instead of terms with 

derivatives. The constants k1 and k2 depends on the 

geometry.  

In this paper, the proposed HSDT is obtained by putting  
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The linear strain relations obtained from the 

displacement model of Eqs. (1a)-(1c), valid for thin, 

moderately thick and thick plates under consideration are as 

follows 
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The integrals employed in the above expressions shall 

be resolved by a Navier solution and can be written by 
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where the parameters 'A  and 'B  are defined according to 

the type of solution used, in this case via Navier. Hence, 

'A  and 'B  are given by 
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where α and β are given in expression (17). 

The constitutive relations for a laminated plate 

considering the thermal influences can be expressed as 
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where 
ijQ  are the transformed material constants given in 

Reddy (1997). αx, αy and αxy are the transformed 

coefficients of thermal expansion and ΔT is the uniform 

constant temperature difference. 

 

2.2 Governing equations 

 
The equilibrium equations of plates under thermal 

loadings may be obtained on the basis of the stationary 

potential energy (Reddy 1984b). The equilibrium equations 

are deduced as 
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(8) 

By employing the constitutive relations, the stress and 

moment resultants are given as 
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Substituting Eq. (7) into Eq. (9) and integrating within 

the thickness of the plate, the stress resultants are expressed 

as 
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and stiffness components are given as 
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The stress and moment resultants, {NT}, {MbT} and 

{MsT} to thermal loading are defined by 
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sT dzzTfM   

(11) 

where 
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To determine the stability equations and study the 

thermal stability behavior of the composite plate, the 

adjacent equilibrium criterion is employed (Brush and 

Almroth 1975). By using this approach, the governing 

stability equations are given as 
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(13) 

where 0
xN , 0

xyN  and 0
yN  are the pre-buckling forces. 

 

2.3 Thermal stability solution 
 

For anti-symmetric cross-ply plates, the following 

stiffness coefficients are identically zero 
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(14) 

For symmetric cross-ply laminated plates, the following 

plate stiffness to have zero values 
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(15) 

Rectangular plates are generally classified in accordance 

with the type of the used support. We are here concerned 

with the exact solution of Eqs. (13) for a simply supported 

laminated plate. Based on the Navier procedure, the 

following expansions of displacements are used to 

automatically respect the simply supported boundary 

conditions of plate 
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where 1
mnU , 1

mnV , 1
mnW  and 1

mnX  are coefficients, and α 

and β are expressed as 

am /   and bn /            (17) 

Substituting Eq. (16) into Eq. (13), one obtains 
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3. Numerical results and discussion 
 

Several examples are presented to show the accuracy 

and efficiency of the proposed theory. In the considered 

examples, both symmetric and anti-symmetric cross-ply 

thick rectangular plates are examined and the following 

material properties are assumed: 

a) Isotropic plate (Brush and Almroth 1975) 

6
02121 1010   ,3.0,  EE  

b) Orthotropic lamina 

• Material A (Brush and Almroth 1975) 

21122232131221 015.0  ,3.0,3356.0,5.0,15   EGEGGEE

21122232131221 015.0  ,3.0,3356.0,5.0,15   EGEGGEE  

• Material B (Shiau et al. 2010) 

CCGEE   10 7.16  , 10 04.0  ,22.0  GPa, 66.0GPa, 17.1 GPa, 5.22 -6
2

-6
1121221 

CCGEE   10 7.16  , 10 04.0  ,22.0  GPa, 66.0GPa, 17.1 GPa, 5.22 -6
2

-6
1121221   

• Material C (Shiau et al. 2010) 

CC

GGEE





 10 1.30  , 10 07.0  ,22.0                      

 GPa, 25.3   GPa, 55.4GPa, 07.8 GPa, 155

6-
2

6-
112

231221


 

• Material D (Thangaratnam et al. 1989) 

2112223131221 2  ,25.0,5.0,20   EGGGEE  

In the first example, the obtained results of critical 

temperatures (α0ΔT) of simply supported square isotropic 

plates are compared with those reported by Noor and 

Burton (1992), Matsunaga (2005), Singh et al. (2013) and 

Bouazza et al. (2016) in Table 1. The square plates with 

different thickness-side ratio (a/h=2, 10/3, 4, 5, 20/3, 10, 

20,100) are examined with considering the uniform 

temperature load. Table 1 demonstrates a good agreement 

between the present results and those reported by Noor and 

Burton (1992), Matsunaga (2005), Singh et al. (2013) and 

Bouazza et al. (2016).  

In the second comparison, orthotropic plate with simply 

supported boundary conditions is considered. Table 2 

presents comparisons of the critical temperatures (α0ΔT) for 

simply supported square orthotropic plates with the 

solutions of Noor and Burton (1992), Matsunaga (2005), 

 

 

Table 1 Comparisons of critical temperatures for simply 

supported square isotropic plates subjected to uniform 

temperature rise 

a/h 
Noor and 

Burton (1992) 
Matsunaga 

(2005) 
Singh et al. 

(2013) 
Bouazza et al. 

(2016) 
Present 

2 – 0.1253 – 0.1325 0.1325 

10/3 0.7193 10-1 0.7193 10-1 – 0.7569 10-1 0.7569 10-1 

4 0.5600 10-1 0.5600 10-1 0.5860 10-1 0.5853 10-1 0.5853 10-1 

5 0.3990 10-1 0.3990 10-1 0.4134 10-1 0.4132 10-1 0.4132 10-1 

20/3 0.2468 10-1 0.2468 10-1 – 0.2527 10-1 0.2527 10-1 

10 0.1183 10-1 0.1183 10-1 0.1198 10-1 0.1198 10-1 0.1198 10-1 

20 0.3109 10-2 0.3109 10-2 0.3120 10-2 0.3119 10-2 0.3119 10-2 

100 0.1264 10-3 0.1264 10-3 0.1256 10-3 0.1265 10-3 0.1265 10-3 
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Table 2 Comparisons of critical temperatures for simply 

supported square orthotropic plates subjected to uniform 

temperature rise, Material A 

a/h 
Noor and 

Burton (1992) 

Matsunaga 

(2005) 

Singh et al. 

(2013) 

Bouazza et al. 

(2016) 
Present 

2 – 0.2761 – 0.3001 0.3001 

10/3 0.2057 0.2057 – 0.2276 0.2276 

4 0.1777 0.1777 0.1878 0.1973 0.1973 

5 0.1436 0.1436 0.1506 0.1591 0.1591 

20/3 0.1029 0.1029 – 0.1124 0.1124 

10 0.5782 10-1 0.5782 10-1 0.5918 10-1 0.6125 10-1 0.6125 10-1 

20 0.1739 10-1 0.1739 10-1 0.1752 10-1 0.1773 10-1 0.1773 10-1 

100 0.7463 10-3 0.7463 10-3 0.7463 10-3 0.7469 10-3 0.7469 10-3 

 

Table 3 Comparisons of critical temperatures for simply 

supported square cross-ply laminated composite plates 

[0°/90°] subjected to uniform temperature rise, Material A 

a/h Matsunaga (2005) Bouazza et al. (2016) Present 

2 0.3198 0.3646 0.3001 

10/3 0.2114 0.2342 0.2276 

4 0.1729 0.1891 0.1973 

5 0.1302 0.1399 0.1591 

20/3 0.8524 10-1 0.8966 10-1 0.1124 

10 0.4310 10-1 0.4428 10-1 0.6125 10-1 

20 0.1177 10-1 0.1186 10-1 0.1773 10-1 

100 0.4856 10-3 0.4858 10-3 0.7469 10-3 

 

Table 4 Comparisons of critical temperatures for simply 

supported square cross-ply laminated composite plates 

[0°/90°/0°] subjected to uniform temperature rise, Material 

A 

a/h 
Noor and 

Burton (1992) 

Matsunaga 

(2005) 

Singh et al. 

(2013) 

Bouazza et al. 

(2016) 
Present 

2 – 0.3298 – 0.3755 0.3755 

10/3 – 0.2447 – 0.2852 0.2852 

4 0.2140 0.2133 0.2253 0.2486 0.2486 

5 0.1763 0.1752 0.1828 0.2022 0.2022 

20/3 – 0.1287 – 0.1446 0.1446 

10 0.7467 10-1 0.7442 10-1 0.7433 10-1 0.7990 10-1 0.7990 10-1 

20 0.2308 10-1 0.2291 10-1 0.2308 10-1 0.2342 10-1 0.2342 10-1 

100 0.9961 10-3 0.9910 10-3 0.9917 10-3 0.9919 10-3 0.9919 10-3 

 

 

Singh et al. (2013) and Bouazza et al. (2016). Again, a 

good agreement is demonstrated between the obtained 

results and those of Noor and Burton (1992), Matsunaga 

(2005), Singh et al. (2013) and Bouazza et al. (2016). It is 

observed that the minimum critical temperatures of 

orthotropic square plates correspond to m=1, n=2. However, 

the minimum critical temperatures of isotropic square plates 

correspond to m=n=1. 

In Table 3, authors presents comparisons of the critical 

temperatures (α0ΔT) for a square two-ply cross-ply 

laminated composite plates [0°/90°] with different values of 

plate width-to-thickness ratio a/h with those of Matsunaga 

(2005) and Bouazza et al. (2016). Examination of Table 3 

also reveals that, the present theory performs as well as 

Matsunaga (2005) and Bouazza et al. (2016). 

Table 4 shows the critical temperatures (α0ΔT) for a 

three-ply cross-ply laminated composite plates [0°/90°/0°] 

under uniform temperature change where a comparison is 

carried out with those of Noor and Burton (1992), 

Matsunaga (2005), Singh et al. (2013) and Bouazza et al. 

(2016). A good agreement is also confirmed from this 

examination. 

Figs. 1 and 2 show the variations of non-dimensional 

critical temperature versus side-to-thickness ratio of 

[0°/90°/90°/0°]S symmetric square plate and [0°/90°] anti-

symmetric square plate, respectively. The results are 

compared with those of the refined hyperbolic shear 

deformation theory used by Bouazza et al. (2016) and CPT. 

The non-dimensional critical temperature is defined by 

22
2

2
2* / DhaTT cr  . It can be observed that the results 

of the present theory are in excellent agreement with those 

of Bouazza et al. (2016) for all values of a/h. However, 

since the transverse shear deformation influences of plate  
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Fig. 1 Non-dimensional critical temperature versus side-

to-thickness ratio of a symmetric square laminated plate 

[0°/90°/90°/0°]S (
22

2
2

2* / DhaTT cr  ). Material C 
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Fig. 2 Non-dimensional critical temperature versus side-

to-thickness ratio of a anti-symmetric square laminated 

plate [0°/90°] ( 22
2

2
2* / DhaTT cr  ). Material C 
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Fig. 3 Non-dimensional critical temperature for cross-

ply symmetric laminates plates (0°/90°)s versus aspect 

ratios of plates (Tcrα2104). Material D 

 

 

are not considered in the CPT, the values of non-

dimensional critical temperature predicted by CPT are 

independent of a/h. It is seen that the non-dimensional 

critical temperature increases with increasing the thickness 

ratio a/h, while the CPT overestimates the non-dimensional 

critical buckling temperature of laminated plate. The 

difference between HSDTs and CPT is found to be 

considerable for thick plates (a/h<50), and negligible for 

thin plates. 

Fig. 3 presents the comparisons of the critical 

temperatures obtained via the proposed theory and those 

computed using the refined hyperbolic shear deformation 

theory used by Bouazza et al. (2016). The variation of 

critical temperature of cross-ply symmetric laminates 

subjected to a constant temperature rise for different aspect 

ratios is presented also in Fig. 3. It can be concluded that 

the obtained results are in excellent agreement with those 

obtained by the theory of Bouazza et al. (2016) for all 

values of aspect ratios a/b. It can be seen from Fig. 3 that 

the critical temperature decreases when a/b varies from 0.5 

to 1.0, while this temperature increases when the aspect 

ratios a/b becomes larger than 1. 

 

 

4. Conclusions 
 

In this work, a simplified HSDT is proposed for thermal 

buckling analysis of simply supported isotropic, orthotropic 

and cross-ply laminated plates. By considering some 

additional simplifying suppositions to the existing HSDTs, 

with the consideration of an undetermined integral term, the 

number of unknowns and governing equations of the 

proposed HSDT are reduced by one, and thus, make this 

formulation simple and efficient to use. The obtained results 

were compared with the solutions of several theories. It is 

concluded that the results of the proposed theory has an 

excellent agreement with the other theories employed for 

comparison for thermal buckling problems.  
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