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1. Introduction 
 

As the modal parameters (such as damping and 

frequency) of structure vibrations are dependent variables 

that relate to physical parameters (such as mass and 

stiffness), accurate identification of structure parameters is 

the premise of a reasonable structure health monitoring 

system. Various analysis methodologies for parametric 

identifications have been proposed (e.g., Bernal and Beck 

2004, Lin et al. 2001, Zhou and Yan 2006). Most of the 

methods available in the literature work in the frequency 

domain and are capable of identifying constant parameters 

which do not change with time. In practice, however, 

structural parameters are often time-varying and hence, it is 

desirable for an analysis method to be capable of estimating 

structural parameters instantly and based solely on 

measured vibration data. Along this line, several time 

domain damage identification methodologies have been 

developed recently, which estimate the stiffness of the 

structure directly, including the least square estimation 

(LSE), e.g., as (Lin et al. 2001, Yang and Lin 2004, 2005), 

the extended Kalman filter (EKF), e.g., as (Hoshiya and 

Saito 1984), the sequential nonlinear least square estimation 

(SNLSE) (Yang et al. 2006), the quadratic sum-squares 

error (QSSE) (Yang et al. 2009), and others. 

However, the above mentioned identification methods 

have better accuracy and adaptability for relatively small 

DOF structural systems (e.g., Caravani et al. 1977, Yang 

and Lin 2004, 2005), and the problem becomes challenging 

when the structure system is large and complex, for 

example, bridge structures where the number of degree of  
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freedom (DOF) is huge. Therefore, in order to ensure 

accurate identification of structural parameters of bridges, 

different approaches have been proposed. For example, the 

integration of GPS technology and accelerometers has been 

shown to be effective in characterizing the dynamic 

behavior of bridge structures (Yi et al. 2010, 2013a), the 

multi-stage structural damage diagnosis method is proved to 

be computational efficient in assessing damages in large 

structures (Yi et al. 2013b), and substructure approach can 

be used to decompose the complex structure having 

multiple DOFs into smaller parts such that the number of 

unknowns is limited within a certain range (Koh et al. 1991, 

2003, Law and Yong 2011, Wen et al. 2012, Lei et al. 

2013).  

In this paper, the substructure approach proposed in Koh 

et al. (2003) will be combined with the least square 

estimation (LSE) method given in Yang and Lin (2004, 

2005) for identifying the parameters of a cable-stayed 

bridge with large DOFs. As presented in the authors’ 

previous work (Huang et al. 2015), the proposed method 

exhibits great accuracy and efficiency in identifying the 

stiffness of the structure without measurement noises. 

However, the effects of measurement noises are significant, 

and sometimes critical, for the online identification of 

structural damages in practical application and should not 

be ignored. Hence, this paper aims to unravel the role of 

measurement noises playing in the online parametric 

identification process for bridge structures. Numerical 

analysis has been carried out for substructures extracted 

from the 2-dimentional (2D) finite element model of a 

cable-stayed bridge under only vertical white noise 

excitations. The effect of measurement noises on the 

accuracy and efficiency of online parametric identification 

of the bridge structure is studied by examining the noise 

sensitivities of loading region, loading pattern as well as 
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element size. 

 

 

2. Fundamental theory 
 
2.1 Substructure approach 
 

The equation of motion (EOM) for a complete structural 

system can be written as 

        t t t t  Mx Cx Kx F                (1) 

where M, C, K are the mass, damping and stiffness 

matrices, respectively, x(t) is the displacement vector and 

F(t) is the excitation force vector. 

Consider a complex structure and suppose we are 

interested in monitoring some critical areas where damages 

may occur. A substructure containing that critical area can 

be extracted from the full structure, the corresponding EOM 

may be written by partitioning the original matrices and 

vectors as follows 
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    (2) 

where subscripts ‘f’ and ‘g’ denote the interface DOFs at 

the two ends of the substructure and subscript ‘r’ denotes 

the internal DOFs (Koh et al. 1991). Since we are interested 

in identifying the parameters within the substructure, only 

the second equation of Eq. (2) will be used, i.e. 
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(3) 

For parametric identification, we can rearrange all the 

interface DOFs to the right hand side of the above equation 

and treat them as inputs (excitations) to the substructure. 

Then, Eq. (3) can be expressed as 

        rr r rr r rr r eqt t t t M x C x K x = F         (4) 
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where  r tx ,  r tx ,  r tx  are the output (measured) 

acceleration, velocity and displacement responses, 

respectively (Koh et al. 1991). 

 
2.2 Least square estimation (LSE) 
 

Supposed (t) is an n-parametric vector consisting of n  

unknown parameters, including damping, stiffness, and 

nonlinear parameters, i.e. 

        1 2=
T

nt t t t                  (6) 

The observation equation associated with the EOM of 

Eq. (1) can be written as 

            , , ;t t t t t t t   x x x y             (7) 

where  tx ,  tx ,  tx  are m-measured acceleration, 

velocity, displacement response vectors; y(t) is m-measured 

output vector; ε(t) is m-model noise vector contributed by 

the measurement noise and possible model errors; and [ ] 

is (m×n) observation matrix. 

At each time instant t=tk+1=(k+1)Δt, Eq. (7) can be 

discretized as 

 
1 1 1 1k k k k     y                          (8) 

Combining all equations in Eq. (8) for k+1 time instants, 

and assuming that k+1 is a constant vector, one obtains 
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Let 1
ˆ
k  be the estimate of 1k  at t=tk+1=(k+1)Δt, the 

recursive solution for 1
ˆ
k  can be obtained as 

  1 1 1 1
ˆ ˆ ˆ= +k k k k k k   G y                  (11) 

in which 
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  1 1 1k k k k   P I G P                     (13) 

where Gk+1 is the LSE gain matrix, Eqs. (10)-(12) are the 

recursive solution of classic LSE method (Yang and Lin 

2005). 

 

2.3 Combination of substructure and LSE methods 
 

In order to identify unknown structural parameters using 

both methods in the numerical study, Rayleigh damping is 

assumed for the substructure as 

  sb sb sb Gsb   C M K K                (14) 

where subscripts ‘sb’ denotes substructure; α and β are the 

mass and stiffness damping coefficient respectively; Ksb and 

KGsb are the substructure stiffness and geometric stiffness 

matrices respectively; Msb is the substructure mass matrix. 

For time instant tk, the EOM can be presented as 

           sb Gsb k sb sb Gsb k sb k eq kt t t t        K K x M K K x M x F (15) 

In the finite element modeling, the substructure stiffness 

matrix Ksb is assembled from element stiffness matrix 
e

iK ,  
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Fig. 1 Program flow chart 

 

 

in which i denotes the element number, and Eq. (15) can be 

transformed to 
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  (16) 

where n denotes total number of elements. Since KGsb and 

Msb are regarded as known value and Feq(tk),  ktx  and x(tk) 

are measured vectors, the right hand side of the above 

equation corresponds to y(t) while the left hand side 

corresponds to φ(t) in Eq. (7).  
The process of carrying out parametric identification 

using LSE method combined with substructure approach 

can be summarized using a flow chart as shown in Fig. 1 

(Huang et al. 2014). 

 

 

3. Numerical model of a cable-stayed bridge 
 

In this paper, the Kezhushan Bridge, which is one of the 

main navigation channels of Donghai bridges located in 

Shanghai China, will be studied using numerical simulation. 

The bridge is 710 meters long with a main span of 332 

meters and two side spans of 139 meters each and the full 

wide is 35 meters. It is a steel-concrete composite beam 

structure with two pylons and double cable planes.  Each of 

the pylons is a reinforced concrete structure of 105 meters 

high. Cables are shaped into sectors and di sposed  

 
Fig. 2 The general layout of Kezhushan Bridge 

 

 

symmetrically and each cable plane has 64 (2×32) cables. 

The general layout of the bridge is shown in Fig. 2. 

 

3.1 Simplified model 
 

As this paper focuses on the vibrations of bridge under 

vertical excitations such as traffic loads, for the 

simplification of analysis, a 2-dimensioanl (2D) model is 

established in the numerical study, consisting of a beam, 

two towers and 64 cables. The cross section of a tower or a 

cable is two times of the original ones, since parallel cables 

or towers are combined into one. The axial deformation of 

beam and tower elements is ignored.  

The finite element model of the bridge is set up with 

numbering of nodes and elements shown in Fig. 3. The 

beam element is chosen between adjacent cable nodes and 

numbered from left to right as 1-67 where the nodes are 

numbered as 1-68. On the upper tower, the elements are 

selected between adjacent cable nodes, while it is divided 

into 14 elements equally on the middle and lower tower. 

Therefore, the entire tower has 30 elements and 31 nodes 

numbered as 68-97 and 69-99 respectively for the left 

tower, and as 98-127 and 100-130 respectively for the right 

tower. Each cable is taken as one element numbered from 

left to right as 128-191.  

Since only vertical excitations are considered, the beam 

node has just vertical DOF while the tower node has 

horizontal DOF, and all the nodes at the boundaries are 

constrained. 

 

 

 

 
Fig. 3 Numbering of elements and nodes of half model 
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In summary, the entire model has 191 elements, 130 

nodes and 252 DOFs. 

 

3.2 Element matrices 
 

Beam and tower element stiffness matrix 

The geometric stiffness should be considered for 

element stiffness matrix if considering the axial forces, one 

has 

 
e e e

G K K K                            (17) 
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where E, I, N and l are the modulus of elasticity, moment of 

inertia, axial force of length of the element, respectively. 

 

Beam and tower element mass matrix    

Suppose mass is distributed evenly along the length of 

element, a consistent element mass matrix can be written as 

follows 
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where m  is the linear density of element. 

 

Cable element stiffness matrix    

A cable element only has two DOFs, a vertical DOF at 

the beam side and a horizontal DOF at the tower side, and 

its stiffness matrix can be written as follows 

 
2

2

sin sin cos

sin cos cos

ege
E A

l

  

  

 
  

 
K         (21) 

where Eeg is the modulus of elasticity modified by Ernst 

equation given in Eq. (30), A is the cross sectional area, and 

α is the horizontal inclination of the cable 
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where  is the initial tension stress, γ is the bulk density, 

and lh is the horizontal length of the cable, respectively. 

 

Cable element mass matrix    

Table 1 Frequencies of the first six modes of the bridge 

mode Simplified model ANSYS 3D model error 

1 0.4018 Hz 0.3979 Hz 0.98% 

2 0.5403 Hz 0.5079 Hz 6.38% 

3 0.7985 Hz 0.8124 Hz 1.71% 

4 0.9832 Hz 0.9215 Hz 6.70% 

5 1.1104 Hz 1.0320 Hz 7.60% 

6 1.3027 Hz 1.2253 Hz 6.32% 

 

 

The mass matrix of cable element can be obtained based 

on linear interpolation as follows 
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After establishing the mass and stiffness matrices, the 

frequencies of the first six modes of the simplified 2D 

bridge model can be computed. The results are compared 

with the frequencies obtained from the 3-dimensional (3D) 

model in Dong (2010), as summarized in Table 1. It shows 

that the 2D model can be used to represent the dynamic 

characteristics of the bridge with reasonable accuracy. 

 

 

4. Identification of structural parameters 
 

Because of the symmetry of the cable-stayed bridge, 

only the parameters of half of the model need to be 

identified and the structure is divided into three 

substructures. The parameters to be identified are the 

stiffness of all elements, namely EI  for beam and tower 

elements and EA  for cable elements.  

 

4.1 Substructures 
 

The beam of the left span of the bridge model and the 

cables attached to it are considered as substructure 1, and 

the beam of the right span of the bridge model and the 

cables attached to it are considered as substructure 2 as 

shown in Fig. 4(a) and 4(b) respectively. The tower and all 

the cables attached to it are extracted as substructure 3 

shown in Fig. 4(c). 

Substructure 1 contains NO.1-17 beam elements and 

NO.128-143 cable elements. The responses at the beam 

nodes and the cable nodes on the tower are considered as 

interface DOFs. There are 33 stiffness parameters to be 

identified for this substructure.  

Substructure 2 contains NO.18-34 beam elements and 

NO.144-159 cable elements. Similar to substructure 1, the 

responses at the beam nodes and the cable nodes on the 

tower are considered as interface DOFs. Again, there are 33 

stiffness parameters to identify.  
Substructure 3 contains NO.68-97 tower elements and 

NO.128-159 cable elements. The cable elements EA can be 

regarded as known quantities since they have already been 
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(a) Substructure1 

 
(b) Substructure2 

 
(c) Substructure3 

Fig. 4 Substructures 

 

 

obtained in substructure1 and 2. Therefore, in this 

substructure, there are only 30 stiffness parameters to be 

identified.  

 

4.2 White noise excitations 
 

Three patterns of white noise excitations are considered, 

as shown in Fig. 5(a)-(c) respectively. In pattern 1, the 

white noise excitations are applied only near the boundaries 

of the bridge, while in pattern 2, the excitations are applied 

on every node of the left span except for the boundary 

nodes, and in pattern 3, the excitations are applied on every 

node of the right span. For every pattern, the loading period 

is 10 seconds and the corresponding responses are measured 

with sampling frequency of 1000 Hz. 

 

4.3 Simulation of noises 
 

All the measured responses are simulated by the 

theoretically computed quantities superimposed with the 

corresponding noise process with a 2% noise-to-signal ratio, 

as 

      2%i i ix t x t rms randn t               (24) 

in which i denotes the DOF’s number, xi(t) denotes the 

 

 

 
Fig. 5 Three patterns of white noise excitations 

 

 

original response, randn(t) is a normal random process. Eq. 

(24) reflects the independence and randomness of 

measurement noises of a sensor reasonably. 

 

4.4 Effect of measurement noises on beam elements 
 
4.3.1 Noise sensitivity of loading region 
Intuitively, the responses in loading regions are not 

affected deeply by measurement noises while those far from 

loading regions may be sensitive to noises. To verifying this 

assumption, the following experiment is conducted. 

(1) Apply noises to the responses of a DOF and 

calculate the value of    / 1ij ijx t x t   which is considered as 

the error caused by noises. For the whole time domain, the 

error vector is written as 
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in which j is the number of the DOF of the noise-applied 

response, n is the number of sampling instants. 

(2) In order to simulate random events, step (1) is 

repeated for 100 times, namely, i=1, 2, …, 100 in Eq. (14), 

and the corresponding probability accumulation is obtained. 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6 The probability accumulations of 3 DOFs 

under excitations 

 

As representation, the probability accumulation of the 

vertical DOFs of NO.1, 9 and 17 nodes in substructure 1 

under three excitations are plotted in Fig. 6(a), (b) and (c), 

respectively. It can be seen that the probability 

accumulation of the DOFs in loading regions approaches 1 

instantaneously, while the others present clear dispersion 

due to noise effect. Therefore, it proves the assumption that 

the responses in the loading regions are not inclined to be 

distorted by noises. 

 

4.4.2 Noise sensitivity of loading pattern 
It is well known that the loading pattern will affect the 

system identification results even without measurement 

noises. In this study, the counter effects of loading pattern 

and measurement noises will be investigated by examining 

the identification errors of substructure 1 under three 

different loadings shown in Fig. 5. The identification errors 

of the stiffness EI of beam elements within the substructure 

are lists in Table 2, which are defined by the absolute 

differences between the identified and the corresponding 

theoretical values. 

It can be seen that loading pattern 1 gives the best 

identification results, while loading pattern 2 has larger 

errors and loading pattern 3 is the worst among three 

patterns, especially for NO.1-4 elements. The reason causes 

the differences in the accuracy of system identification can 

be shown by looking at the vibrations of the beam under 

three loading patterns, as given in Fig. 7. 

It is obvious that the deformation of the beam induced 

by loading pattern 1 contains various modes including some 

asymmetrical high order modes while the other loading 

patterns mainly excite some symmetrical modes. 

Particularly, loading pattern 3 is applied outside of 

substructure 1, and therefore, only very small vibrations are 

induced within the substructure. 

Definitely, vibrations containing abundant modes not 

only help accelerate the identification process, but also 

reduce the noise sensitivities and improve the accuracy of 

identification results. The magnitudes of responses induced 

by loading pattern 1 are approximately 1/10 of the other two 

patterns, which proves that the varsity of vibrations modes 

are much more important than the amplitudes of vibration 

in ensuring the accuracy of system identification results. 

Although the loading positions in pattern 2 are more than  

 

 

Table 2 The identification errors of substructure 1 under 

different loading patterns 

NO. Pattern 1 Pattern 2 Pattern 3 NO. Pattern 1 Pattern 2 Pattern 3 

1 3.56% 83.73% 99.71% 10 0.06% 1.01% 11.32% 

2 2.02% 69.94% 97.69% 11 0.06% 0.85% 9.00% 

3 0.24% 48.70% 87.27% 12 0.12% 1.00% 6.76% 

4 0.14% 40.64% 81.43% 13 0.04% 0.53% 5.21% 

5 0.16% 9.68% 37.30% 14 0.05% 0.61% 3.71% 

6 0.06% 0.82% 20.92% 15 0.08% 0.35% 2.65% 

7 0.08% 1.34% 15.63% 16 0.20% 0.39% 1.87% 

8 0.06% 1.09% 14.17% 17 0.51% 0.33% 0.10% 

9 0.12% 0.94% 12.78%     
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(a) 

 
(b) 

 
(c) 

Fig. 7 Vibrations of the beam under different loading 

patterns (a) pattern 1;(b) pattern 2; (c) pattern 3 

 

 

pattern 1, the high order asymmetrical modes induced by 

one force may be offset by those induced by other forces, 

which leads to smaller overall deformation than that in 

pattern 1. 

For elements nearby the bearings, the angular 

displacements may be the key factors affecting the 

identification results. Fig. 8 shows the two angular 

vibrations of NO.1 element under three loading patterns. 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 Rotation vibrations of NO.1 element under 

different loading patterns (a) pattern 1;(b) pattern 2; (c) 

pattern 3 

 

 

It can be seen that the angular vibrations are severe 

under loading pattern 1, where the differences between the 

two nodes are much larger than those in other two patterns. 

This is also one of the reasons that the accuracy of 

identification results of loading pattern 1 is higher.  

To further explain this phenomenon, considering a 50 m  
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(a) Excitation 1 

 
(b) Excitation 2 

Fig. 9 Two different loading patterns on the simply 

supported beam model 

 

Table 3 The identification results of the simply supported 

beam model 

error 
NO.1 

element 

NO.2 

element 

NO.3 

element 

NO.4 

element 

NO.5 

element 

Excitation 1 -4.23% -4.90% -8.07% -4.73% -3.85% 

Excitation 2 -0.74% -0.79% -0.79% -0.80% -0.84% 

 
 

long simply supported beam with five elements of equal-

length and loaded with two different excitation patterns: (1) 

same white noise excitations applied on NO.3 and 4 node in 

the mid-span (Excitation 1); (2) one white noise excitation 

applied on NO.2 node (Excitation 2), as showing in Fig. 9. 

The responses are also applied with 2% noises without 

damping and the identification results are summarized in 

Table 3. 

It is obviously seen from Fig. 9 and Table 3 that the 

identification errors resulting from Excitation 1 are much 

larger than that from Excitation 2. This is because in 

Excitation 1 the two loads are applied symmetrically, and 

theoretically, the displacements of the two nodes of NO.3 

element are the same. However, errors were induced due to 

noises, which led to different displacements between the 

two nodes. Although the absolute values of the errors might 

not be very large, the original states are deeply altered 

which makes it hard to obtain high accuracies in parametric 

identification.  

 

4.4.3 Noise sensitivity of element size 
According to the results in Table 1, the identification 

errors of NO.1-4 element are larger than other elements in 

every loading pattern. It seems to be related to the element 

size, because the lengths of NO.1-4 elements are 1.5 m, 1.5 

m, 3 m, 3 m respectively, while those of other beam 

elements are mostly 9 m. Intuitively, shorter elements 

should have higher accuracy in normal structural analysis. 

However, the differences between the responses at the two 

end nodes are smaller for shorter elements according to the 

continuity principle, and thus, the required precision of 

responses used for system identification are higher 

contrarily. In other words, the noise sensitivities of smaller 

elements are higher than those of larger elements. This “size 

effect” magnified the errors caused by the sensitivities of 

loading patterns in NO.1-4 element under loading pattern 2 

and 3 even more. 

To further examining this problem, a 50 m long  

Table 4 Comparison of the identification results for 

different element lengths 

Length (m) 1 5 10 

Estimated EI 

(N·m2) 
102.0417 10  111.0080 10  111.1396 10  

Theoretical EI 

(N·m2) 
111.1508 10  

 

Table 5 Identification errors of cable elements from three 

different loading patterns 

NO. Excitation1 Excitation2 Excitation3 NO. Excitation1 Excitation2 Excitation3 

1 15957.23% 638.73% 59.76% 9 14.72% 10.68% 50.29% 

2 9369.54% 976.66% 20.84% 10 60.74% 27.41% 27.75% 

3 233.15% 856.23% 470.48% 11 58.54% 5.79% 30.83% 

4 1481.01% 428.96% 450.90% 12 33.96% 2.88% 25.18% 

5 213.92% 30.90% 254.31% 13 29.49% 7.75% 1.35% 

6 45.70% 39.11% 147.35% 14 23.44% 4.87% 14.41% 

7 51.00% 27.80% 64.78% 15 8.33% 4.03% 8.80% 

8 66.76% 29.77% 45.89% 16 14.70% 1.76% 1.95% 

 

 

cantilever beam is considered. Three different finite element 

modes are established, each with element length of 1 m, 5 

m and 10 m, respectively. The same white noise excitation 

as the one used for the simply supported beam example in 

session 4.4.2 is applied on the free end of each model. The 

responses are also applied with 2% noises without damping 

and the identification results of the element at the free end 

are summarized in Table 4 for comparison. 

As the above results presented, the “size effect” is clear 

that the identification is more accurate when the length of 

the element is reduced. 

 

4.5 Effect of measurement noises on cable elements 
 

The identification errors of cable elements from three 

different loading patterns are listed in Table 5 below in 

which NO.1-16 denote the EA of NO.128-143 cable 

elements in substructure 1. 

It can be seen from the table that most of the cable 

elements can not be identified with high accuracy, 

especially for No.1-4 parameters corresponding to No. 128-

134 cable elements. This is caused by the significant 

differences in the magnitude of stiffness between cables and 

beams, where theoretically the stiffness of beam element EI 

is 1.1508×1011 N·m2 and that of cable element EA is about 

2×109 N·m2. In the formulation of EOM under vertical 

equilibriums, beams took up most of the dynamic loads 

compared to cables, which made it less accurate in 

identifying cable elements. 

In order to explain the phenomenon more clearly, a 

numerical experiment is conducted by extracting a small 

substructure as shown in Fig. 10 consisting of only NO.1 

beam element and NO.128 cable element, and the EOMs 

are built on the equilibriums of two DOFs of NO.1 node. 

The EOM is written as 

    G t  Mx K K x F                  (26) 
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Fig. 10 Substructure containing No.1 beam element 

and No.128 cable element 

 

 

and the corresponding state equation is 

  11 12

G

21 22

φ φ EI
t - +

φ φ EA

   
    
  

F Mx K x       (27) 

where EI  and EA  are parameters to be identified. 

Expressed in SI unit, after one time step, the load vector 

is F=1×105 (-5.2123  0)T; the displacement vector is 

x=1×10-3 (-0.3179  0.1840  0.2513  -0.2518)T, in which the 

four elements are the vertical and angular displacements of 

the left node of beam element (y1 and 1), the angular 

displacement of the right node of beam element (2) and the 

vertical displacement of cable element on the tower side 

(y2); and the corresponding acceleration vector is 

 41 10 0.1133 0.7488 2.1660 0.0047
T

x      . 

The partition observation matrix of the beam is  

     
3 2 2

4

2

12 / 6 / 6 /
1 10 0.3068 0.2185

6 / 4 / 2 /

T T T

11 21 1 1 2

l l l
φ φ y θ θ

l l l


 

     
 

 

     
3 2 2

4

2

12 / 6 / 6 /
1 10 0.3068 0.2185

6 / 4 / 2 /

T T T

11 21 1 1 2

l l l
φ φ y θ θ

l l l


 

     
 

 
(28) 

and the partition observation matrix of the cable is 

     
2

6

1 2

sin / sin cos /
0.1704 10 0

0 0

TT T

12 22

L L
φ φ y y

   
 

    
 

 

     
2

6

1 2

sin / sin cos /
0.1704 10 0

0 0

TT T

12 22

L L
φ φ y y

   
 

    
 

 

(29) 

The mass matrix is  

 4
1.3097 0.2004 0.1184 0.3088

1 10
0.2004 0.0546 0.0041 0

 
   

 
M    (30) 

and the geometric stiffness matrix is 

 6
1.968 0.246 0.246 0

1 10
0.246 0.492 0.123 0

G

 
   

 
K         (31) 

Finally, the state equation is written as 

4 6

6

4

0.3068 3.531410 0.1704 10
10

2.51480.2185 10 0

EI

EA

 



      
       

      

(32) 

Solving the second submatrix equation, EI can be 

obtained as  6 4 11
1.15092.5148 10 / 0.2185 10 10EI         

and the identification error is 0% compared to its theoretical 

value of 1.1508×1011. Subsequently, EA can be solved as 

EA=438.8/(0.1704×10-6)=2.5751×109 and the error is 16.5% 

compared to its theoretical value of 2.21×109. It can be seen 

that after one time step, the accuracy in he identification of 

beam element is precise enough, while the error lies in the 

identification of cable element is relatively large. This is 

because the vertical load supported by the beam is 

F1=3.5314×106-438.8=3.5310×106, while that by the cable 

is F2=438.8, and the difference between the magnitudes of 

F1 and F2 is huge. 

The above study showed that as the beam is more 

dominant in forming the dynamic equilibrium of vertical 

DOFs than the cable, the accuracy in identifying the 

stiffness of cable element relied deeply on the precision of 

estimated stiffness of beam element. This leads to greater 

influence of measurement noises on the cable stiffness 

compared to that on the beam stiffness. Also, when the 

cable gets shorter, the difference between the stiffness of 

beam and cable element connecting at the same node is 

smaller, and the identification results of the cable stiffness 

will be more accurate.  

Additionally, higher noise-to-signal ratios, such as 5% 

and 10%, have also been studied. Although larger noise 

leads to greater identification errors, similar conclusions can 

be drawn upon the effects of measurement noises on 

parametric identification as the conclusions obtained for the 

case of 2% noise. Therefore, analysis using higher noise 

level is not presented in this paper due to space limitation. 

 

 

5. Conclusions 
 

In this paper, the LSE method has been used combined 

with a substructure approach for the identification of 

structural parameters of a cable-stay bridge with large 

DOFs. Numerical analysis has been carried out based on the 

simplified 2D model of the bridge under vertical 

excitations. Three substructures are extracted from the full 

finite element model of the bridge and the parameters of 

each substructure are estimated. The effect of measurement 

noises on the accuracy and efficiency of online system 

identification has been studied by examining the noise 

sensitivities of loading region, loading pattern as well as 

element size. Simulation results demonstrate that (1) the 

sensitivities loading patterns are more influential than 

loading regions and the varsity of vibrations modes are 

much more important than the amplitudes of vibration in 

ensuring the accuracy of identification results; (2) the noise 

sensitivities of smaller elements are higher than those of 

larger elements, and this “size effect” will magnify the 

errors caused by the sensitivities of loading patterns; (3) for 

elements nearby the bearings, the angular displacements 

may be the key factors affecting the identification results; 

(4) most of the cable elements cannot be identified with 

high accuracy due to the significant differences in the 

magnitude of stiffness between cables and beams, because 

in the formulation of EOM under vertical equilibriums, 

beams took up most of the dynamic loads compared to 
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cables, which made it less accurate in identifying cable 

elements. In summary, further studies have to be carried out 

on reducing the noise effects on calculating the parameters 

of beam elements and improving the precision of estimating 

parameters of cable elements. 
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