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1. Introduction 
 

Functionally graded materials (FGMs) are a new class 

of novel non-homogeneous materials which are generally 

composed of two different parts such as ceramic and metal 

in which the material properties changes smoothly between 

two surfaces. (Ebrahimi 2013). Possessing this structure, 

makes the FGMs receive wide application in modern 

industries including aerospace, mechanical, electronics, 

optics, chemical, biomedical, nuclear, and civil engineering. 

(Ebrahimi et al. 2009, Aghelinejad et al. 2011, Ebrahimi 

and Rastgoo 2008a, b, 2009, 2011). It is commonly believed 

that the nanotechnology will motivate a series of industrial 

revolutios in the following years. Therefore, Recently there 

has been growing interest for application of nonlocal 

continuum mechanics especially in the field of fracture 

mechanics, dislocation mechanics and micro/nano 

technologies. Structural elements such as beams, plates, and 

membranes in micro or nanolength scale are commonly 

used as components in micro/nano electromechanical 

systems (MEMS/NEMS). Therefore understanding the 

mechanical and physical properties of nanostructures is 

necessary for its practical applications. At nanolength 

scales, size effects often become prominent, which cause an 

increasing interest in the general area of nanotechnology. 

Applying the continuum elasticity theory to the analysis of 

the nanoscale structures, indicates that it is inadequate  
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because of ignoring the small scale effects. Therefore, we 

need to consider the small length scales associated with 

nanostructures such as lattice spacing between individual 

atoms, surface properties, grain size, etc. Nonlocal elasticity 

theory introduced by Eringen accounts for the small-scale 

effects arising at the nanoscale level. It has been extensively 

applied to analyze the bending, buckling, vibration and 

wave propagation of beam-like elements in nanomechanical 

devices. Unlike the constitutive equation in classical 

elasticity, `, Reddy, and Levinson beam theories using the 

nonlocal differential constitutive relations of Eringen. In 

other scientific work, Wang and Liew (2007) carried out the 

static analysis of micro- and nano-structures based on 

nonlocal continuum mechanics using Euler-Bernoulli beam 

theory and Timoshenko beam theory. Aydogdu (2009) 

proposed a generalized nonlocal beam theory to study 

bending, buckling, and free vibration of nanobeams based 

on Eringen model using different beam theories. Phadikar 

and Pradhan (2010) reported finite element formulations for 

nonlocal elastic Euler-Bernoulli beam and Kirchoff plate. 

Pradhan and Murmu (2010) investigated the flapwise 

bending-vibration characteristics of a rotating 

nanocantilever by using Differential quadrature method 

(DQM). They noticed that small-scale effects play a 

significant role in the vibration response of a rotating 

nanocantilever. Civalek et al. (2010) presented a 

formulation of the equations of motion and bending of 

Euler–Bernoulli beam using the nonlocal elasticity theory 

for cantilever microtubules. Thai (2012) proposed a 

nonlocal shear deformation beam theory for bending, 

buckling, and vibration of nanobeams using the nonlocal 

differential constitutive relations of Eringen. 

 
 
 

Semi-analytical vibration analysis of functionally graded size-dependent 
nanobeams with various boundary conditions 

 

Farzad Ebrahimi and Erfan Salari  
 

Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran 

 
(Received April 2, 2015, Revised January 6, 2017, Accepted January 6, 2017) 

 
Abstract.  In this paper, free vibration of functionally graded (FG) size-dependent nanobeams is studied within the framework 

of nonlocal Timoshenko beam model. It is assumed that material properties of the FG nanobeam, vary continuously through the 

thickness according to a power-law form. The small scale effect is taken into consideration based on nonlocal elasticity theory of 

Eringen. The non-classical governing differential equations of motion are derived through Hamilton’s principle and they are 

solved utilizing both Navier-based analytical method and an efficient and semi-analytical technique called differential 

transformation method (DTM). Various types of boundary conditions such as simply-supported, clamped-clamped, clamped-

simply and clamped-free are assumed for edge supports. The good agreement between the presented DTM and analytical results 

of this article and those available in the literature validated the presented approach. It is demonstrated that the DTM has high 

precision and computational efficiency in the vibration analysis of FG nanobeams. The obtained results show the significance of 

the material graduation, nonlocal effect, slenderness ratio and boundary conditions on the vibration characteristics of FG 

nanobeams. 
 

Keywords:  free vibration; functionally graded nanobeam; timoshenko beam theory; differential transformation method; 

nonlocal elasticity theory 

 



 

Farzad Ebrahimi and Erfan Salari 

 

Recently several researches have been carried out on 

static and dynamic behavior of FGM structures. Asghari et 

al. (2010) studied the free vibration of the FGM Euler-

Bernoulli microbeams, which has been extended to consider 

a size-dependent Timoshenko beam based on the modified 

couple stress. The dynamic characteristics of FG beam with 

power law material graduation in the axial or the transversal 

directions was examined by Alshorbagy et al. (2011). Also 

the analysis of mechanical characteristics of nanostructure 

is one of the interesting research topics. (Ebrahimi and 

Barati 2016f-n, Ebrahimi and Barati 2017). Ke and Wang 

(2011) exploited the size effect on dynamic stability of 

functionally graded Timoshenko microbeams. Eltaher et al. 

(2012, 2013a) presented a finite element formulation for 

free vibration analysis of FG nanobeams based on nonlocal 

Euler-Bernoulli beam theory. They also exploited the size-

dependent static-buckling behavior of functionally graded 

nanobeams on the basis of the nonlocal continuum model. 

(Eltaher et al. 2013b). Using nonlocal Timoshenko and 

Euler-Bernoulli beam theory, Simsek and Yurtcu (2013) 

investigated analytically bending and buckling of FG 

nanobeam by analytical method. Thermal buckling and free 

vibration analysis of FG nanobeams subjected to 

temperature distribution have been exactly investigated by 

Ebrahimi and Salari (2015a-c) and Ebrahimi et al. (2015 a, 

b). Ebrahimi and Barati (2016o-q) investigated buckling 

behavior of smart piezoelectrically actuated higher-order 

size-dependent graded nanoscale beams and plates in 

thermal environment. As one may note, the most cited 

references deal with the modeling of micro/nano-beams are 

based on the assumptions that the material is homogeneous 

and a very limited literature is available for micro/nano-

scale FGM structures. Motivated by this fact, in this study, 

differential transformation method is applied in analyzing 

vibration characteristics of FG size-dependent nanobeams. 

The superiority of the DTM is its simplicity and good 

precision and depends on Taylor series expansion while it 

takes less time to solve polynomial series. It is different 

from the traditional high order Taylor’s series method, 

which requires symbolic competition of the necessary 

derivatives of the data functions. The Taylor series method 

is computationally taken long time for large orders. With 

this method, it is possible to obtain highly accurate results 

or exact solutions for differential equations. To the best 

knowledge of the authors, no research effort has been 

devoted so far to to find the solution of vibrational behavior 

of a FG nanobeams withbased on nonlocal timoshenko 

beam theroy employing DTM . 

Motivated by these considerations, in this paper, the free 

vibration of FG nanobeams is investigated based on the 

nonlocal Timoshenko beam theory. It is assumed that 

material properties of the beam, such as Young’s modulus 

and mass density, vary continuously through the beam 

thickness according to power-law form. The governing 

equations and the related boundary conditions are derived. 

These equations are solved using both analytical method 

and DTM and natural frequencies of FG nanobeam are 

obtained. The effects of nonlocal parameter, slenderness 

ratio, material graduations on the vibration responses of the 

FG nanobeam are discussed. Comparisons with the results 

from the existing literature are provided and the good 

agreement between the results of this article and those 

available in literature validated the presented approach. 

Numerical results are presented to serve as benchmarks for 

the application and the design of nanoelectronic and nano-

drive devices, nano-oscillators, and nanosensors, in which 

nanobeams act as basic elements. 

 

 

2. Theory and formulation 
 
2.1 Power-law functionally graded material (P-FGM) 

beam 
 

One of the most favorable models for FGMs is the 

power-law model, in which material properties of FGMs are 

assumed to vary according to a power law about spatial 

coordinates. The coordinate system for FG nano beam is 

shown in Fig. 1. The FG nanobeam is assumed to be 

composed of ceramic and metal and effective material 

properties (Pf) of the FG beam such as Young’s modulus Ef, 

shear modulus Gf and mass density f are assumed to vary 

continuously in the thickness direction (z-axis direction) 

according to an power function of the volume fractions of 

the constituents while the Poisson’s ratio is assumed to be 

constant in the thickness direction. According to the rule of 

mixture, the effective material properties, P, can be 

expressed as (Simsek and Yurtcu 2013) 

f c c m mV VP P P   (1) 

where Pm, Pc, Vm and Vc are the material properties and the 

volume fractions of the metal and the ceramic constituents 

related by 

1c mV V   (2.a) 

The volume fraction of the ceramic constituent of the 

beam is assumed to be given by 

1
( )

2

P

c

z
V

h
   (2.b) 

Here p is the non-negative variable parameter (power-

law exponent) which determines the material distribution 

through the thickness of the beam. Therefore, from Eqs. (1)-

(2), the effective material properties of the FG nanobeam 

can be expressed as follows 

 
1

( )
2

p

f c m m

z
P z P P P

h

 
    

 
 (3) 

 

 

 
Fig. 1 Geometry and coordinates of functionally 

graded nanobeam 
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According to this material distribution, bottom and top 

surfaces of functionally graded beam are pure metal and 

pure ceramic repectively. 

 

2.2 Kinematic relations 
 

It is well-known that the Euler-Bernoulli beam theory 

always overestimates the natural frequency of free vibration 

due to the fact that the effects of rotary inertia and shear 

deformation are neglected in this theory and Timoshenko 

beam theory presents a more realistic model of the beam. 

Based on Timoshenko beam theory, the displacements of an 

arbitrary point along the x- and z-axes, denoted by ux(x,z,t) 

and uz(x,z,t) respectively, are 

   , , , ( , )xu x z t u x t z x t   (4.a) 

( , , ) ( , )zu x z t w x t  (4.b) 

where u(x,t) and w(x,t) are displacement components in the 

midplane,  is the rotation of the beam cross-section and t is 

the time. Based on the displacement field in Eq. (4), the 

normal strain εxx and shear strain γxz can be expressed as 

follows 

0 0 0 0

xx

( , ) ( , )
, ,xx xx

u x t
zk k

x t

x x
  

 
  

 
 (5) 

xz

w

x
 


 
  

(6) 

where 0

xx and 0k are the extensional strain and bending 

strain respectively. Based on the Hamilton’s principle, 

which states that the motion of an elastic structure during 

the time interval t1<t<t2 is such that the time integral of the 

total dynamics potential is extremum (Tauchert 1974) 

0
( ) 0

t

extU T W dt     
(7) 

where U is strain energy, T is kinetic energy and Wext is 

work done by external forces. The first variation of the 

strain energy can be calculated as 

( )ij ij xx xx xz xz
v v

U dV dV              (8) 

Substituting Eqs. (5) and (6) into Eq.(8) yields 

0 0

0
( ( ) ( ) ( ))

L

xx xzkU N M Q dx         (9) 

where N, M are the axial force and bending moment, 

respectively and Q is the shear force. These stress resultants 

used in Eq. (9) are defined as 

, ,xx xx s xz
A A A

N dA M zdA Q K dA        (10) 

where Ks is the shear correction factor. The kinetic energy 

for Timoshenko beam can be written as 

2 2

0

1
( )( ( ) ( ) )

2

L
x z

A

u u
T z dAdx

t t


 
 

    (11) 

And the first variation of the Eq. (11) can be obtained as 

0 1 2
0

( ) ( )
L u u w w u u

T I I I dx
t t t t t t t t t t

        


          
               
  

0 1 2
0

( ) ( )
L u u w w u u

T I I I dx
t t t t t t t t t t

        


          
               
  

(12) 

where (I0, I1, I2) are the mass moment of inertias, defined as 

follows 

2

0 1 2( , , ) ( )(1, , )
A

I I I z z z dA   (13) 

The first variation of external forces work of the beam 

can be written as 

 
0

( ) ( )
L

extW f x u q x w dx     (14) 

In which f(x) and q(x) are external axial and transverse 

loads distribution along length of beam, respectively. 

Substituting Eqs. (9), (12) and (14) into Eq. (7) and setting 

the coefficients of δu, δw and δ to zero, the governing 

equations of motion for vibration analysis of FGM beams 

can be written as 

2 2

0 12 2

N u
f I I

x t t

  
  

  
 (15.a) 

2

0 2

Q w
q I

x t

 
 

 
 (15.b) 

2 2

1 22 2

M u
Q I I

x t t

  
  

    

(15.c) 

Also the corresponding boundry conditions are given as 

0N   or  0u     at 0x   and x L  (16.a) 

0Q   or  0w     at 0x   and x L  (16.b) 

0M   or  0     at 0x   and x L  (16.c) 

 

2.3 The Nonlocal Timoshenko beam equations and 
boundary conditions 

 

Based on Eringen’s nonlocal elasticity model (Eringen 

and Edelen 1972), the stress at a reference point x in a body 

is considered as a function of strains of all points in the near 

region. This assumption is agreement with experimental 

observations of atomic theory and lattice dynamics in 

phonon scattering in which for a homogeneous and 

isotropic elastic solid the nonlocal stress-tensor components 

ij at any point x in the body can be expressed as 
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( ) ( , ) ( ) ( )ij ijx x x t x d x  


      
(17) 

where tij(x’) are the components of the classical local stress 

tensor at point x which are related to the components of the 

linear strain tensor εkl by the conventional constitutive 

relations for a Hookean material, i.e. 

ij ijkl klt C   (18) 

The meaning of Eq. (17) is that the nonlocal stress at 

point x is the weighted average of the local stress of all 

points in the neighborhood of x, the size of which is related 

to the nonlocal kernel ),(  xx  . Here xx  is the 

Euclidean distance and   is a constant given by 

0e a

l
   (19) 

which represents the ratio between a characteristic internal 

length, a (such as lattice parameter, C-C bond length and 

granular distance) and a characteristic external one, l (e.g., 

crack length, wavelength) trough an adjusting constant, e0, 

dependent on each material. The magnitude of e0 is 

determined experimentally or approximated by matching 

the dispersion curves of plane waves with those of atomic 

lattice dynamics. According to for a class of physically 

admissible kernel ),(  xx   it is possible to represent 

the integral constitutive relations given by Eq. (17) in an 

equivalent differential form as 

0
2(1 ( ) ) kl kle a t    (20) 

where 2  is the Laplacian operator. Thus, the scale length 

e0a takes into account the size effect on the response of 

nanostructures. For an elastic material in the one 

dimensional case, the nonlocal constitutive relations may be 

simplified as 

2
2

0 2
( ) xx

xx xxe a E
x


 


 


 (21) 

2
2

0 2
( ) xz

xz xze a G
x


 


 

  

(22) 

where  and ε are the nonlocal stress and strain, 

respectively. E is the Young’s modulus, G=E/2(1+v) is the 

shear modulus (where v is the poisson’s ratio). For nonlocal 

Timoshenko FG beam, Eqs. (21) and (22) can be written as 

(Ebrahimi et al. 2016) 

2

2
( )xx

xx xx
E z

x


  


 


 (23) 

2

2
( )xz

xz xz
G z

x


  


 

  

(24) 

where (μ=(e0a)2). Integrating Eqs. (23) and (24) over the 

beam’s cross-section area, we obtain the force-strain and 

the moment-strain of the nonlocal Timoshenko FG beam 

theory can be obtained as follows 

2

2 xx xx

N u
N A B

x x x



  

  
  

 (25) 

2

2 xx xx

M u
M B D

x x x



  

  
  

 (26) 

2

2
( )xz

Q w
Q C

x x
 
 

  
   

(27) 

In the above equations the following cross-sectional 

rigidities are defined 

2( , , ) ( ) (1, , )xx xx xx
A

A B D E z z z dA   (28) 

( )xz s
A

C K G z dA 
 

(29) 

The explicit relation of the nonlocal normal force can be 

derived by substituting for the second derivative of N

from Eq. (15.a) into Eq. (25) as follows 

3 3

0 12 2
( )xx xx

u u f
N A B I I

x x x t x t x

 


    
    

      
 (30) 

Also the explicit relation of the nonlocal bending 

moment can be derived by substituting for the second 

derivative of M from Eq. (15.c) into Eq. (26) as follows 

3 3 2

1 2 02 2 2
( )xx xx

u u w
M B D I I I q

x x x t x t t

 


    
     

      
 

3 3 2

1 2 02 2 2
( )xx xx

u u w
M B D I I I q

x x x t x t t

 


    
     

      
 

(31) 

By substituting for the second derivative of Q from Eq. 

(15.b) into Eq. (27), the following expression for the 

nonlocal shear force is derived 

3

0 2
( ) ( )xz

w w q
Q C I

x x t x
 

  
   

   
 (32) 

The nonlocal governing equations of Timoshenko FG 

nanobeam in terms of the displacement can be derived by 

substituting for N, M and Q from Eqs. (30)-(32), into Eq. 

(15) as follows 

22 4 2 2

xx xx 0 1 0 12 2 2 2 2

4 2

2 2 2 2
0

u u f u
A B I I I I f

x x t x t x x t t

  

       

        
         

22 4 2 2

xx xx 0 1 0 12 2 2 2 2

4 2

2 2 2 2
0

u u f u
A B I I I I f

x x t x t x x t t

  

       

        
         

22 4 2 2

xx xx 0 1 0 12 2 2 2 2

4 2

2 2 2 2
0

u u f u
A B I I I I f

x x t x t x x t t

  

       

        
         

 

(33.a) 
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2 2 2

0 02

4

2 2 2 2
( ) ( ) 0xz

w

t x x

w q w
C I I q

x x t




  
    

  

 


  
 

2 2 2

0 02

4

2 2 2 2
( ) ( ) 0xz

w

t x x

w q w
C I I q

x x t




  
    

  

 


  
 

(33.b) 

4 2 2

xx xx 2 1 22 2 2

2 2 4

12 2 2 22
( ) ( ) 0xz

u w u u
B D C I I I I

x x x t x t x t t

  
 

      
       

        
4 2 2

xx xx 2 1 22 2 2

2 2 4

12 2 2 22
( ) ( ) 0xz

u w u u
B D C I I I I

x x x t x t x t t

  
 

      
       

        

 

(33.c) 

 

 

3. Solution method 
 
3.1 Implementation of differential transformation 

method 
 
The differential transforms method provides an analytical 

solution procedure in the form of polynomials to solve 

ordinary and partial differential equations with small 

calculation errors and ability to solve nonlinear equations 

with boundary conditions value problems. Using DTM 

technique, the ordinary and partial differential equations can 

be transformed into algebraic equations, from which a 

closed-form series solution can be obtained easily. In this 

method, certain transformation rules are applied to both the 

governing differential equations of motion and the boundary 

conditions of the system in order to transform them into a set 

of algebraic equations. The solution of these algebraic 

equations gives the desired results of the problem. In this 

method, differential transformation of kth derivative function 

y(x) and differential inverse transformation of Y(k) are 

respectively defined as follows (Abdel-Halim Hassan 2002) 

Y(k) =  
1

k!
[

dk

dxk
y(x)]

x=0

 (34) 

y(x) = ∑ xkY(k)

∞

0

 (35) 

In which y(x) is the original function and Y(k) is the 

transformed function. Consequently from Eqs. (34), (35) we 

obtain 

y(x) =  ∑
xk

k!
[

dk

dxk
y(x)]

x=0

∞

k=0

 (36) 

Eq. (36) reveals that the concept of the differential 

transformation is derived from Taylor’s series expansion. In 

real applications the function y(x) in Eq. (36) can be written 

in a finite form as 

y(x) = ∑ xkY(k)
N

k=0
 (37) 

In this calculations y(x) = ∑ xkY(k)∞
n+1  is small enough 

to be neglected, and N is determined by the convergence of 

the eigenvalues. From the definitions of DTM in Eqs. (34)-

(36), the fundamental theorems of differential transforms 

method can be performed that are listed in Table 1 while 

Table 2 presents the differential transformation of 

conventional boundary conditions. According to the basic 

transformation operations introduced in Table 1, the 

transformed form of the governing Eq. (33) around x0=0 may 

be obtained as 

     

1 1

xx xx

2 2 2 2
0 0

1 2 [ 2] 1 2

( 1)( 2) [ 2] ( 1)(
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A k k U k B k k k

I I Ik I kk k k U k



           

      

  

 

     

1 1

xx xx

2 2 2 2
0 0

1 2 [ 2] 1 2

( 1)( 2) [ 2] ( 1)(
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( ) [ ] 02) [ 2] [ ]k k U

A k k U k B k k k
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

           

      

  
 

(38) 

   2 2
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(39) 
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(40) 

 

 

Table 1 Some of the transformation rules of the one-

dimensional DTM (Chen and Ju 2004)  

Original function Transformed function 

y(x) = λφ(x) Y(k) = λΦ(k) 

y(x) = φ(x) ± θ(x) Y(k) = Φ(k) ± Θ(k) 

y(x) =
dφ

dx
 Y(k) = (k + 1)Φ(k + 1) 

y(x) =
d2φ

dx2
 Y(k) = (k + 1)(k + 2)Φ(k + 1) 

y(x) = φ(x)θ(x) Y(k) = ∑ Φ(l)Θ(k − l)

k

l=0

 

y(x) = xm 
Y(k) = δ(k − m)

= {
1       k = m
0       k ≠ 0

 

 

Table 2 Transformed boundary conditions (B.C.) based on 

DTM (Chen and Ju 2004) 

X=1 X=0 

Transformed BC Original BC 
Transformed 

BC 
Original BC 

∑ F[k] = 0

∞

k=0

 f(1)=0 F[0]=0 f(0)=0 

∑ kF[k] = 0

∞

k=0

 
df

dx
(1) = 0 F[1]=0 

df

dx
(0) = 0 

∑ k(k − 1)F[k] = 0

∞

k=0

 
d2f

dx2
(1) = 0 F[2]=0 

d2f

dx2
(0) = 0 

∑ k(k − 1)(k − 2)F[k]

∞

k=0

= 0 

d3f

dx3
(1) = 0 F[3]=0 

d3f

dx3
(0) = 0 
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where U[k], W[k] and [k] are the transformed functions of 

u, w and  respectively. Additionally, the differential 

transform method is applied to various boundary conditions 

by using the theorems introduced in Table 2 and the 

following transformed boundary conditions are obtained. 

• Simply supported-Simply supported 

 

(41.a) 

 

• Clamped-Clamped 

 

(41.b) 

 

• Clamped-Simply supported 

 

(41.c) 

 

• Clamped-Free 

 

(41.d) 

 

By using Eqs. (38)-(40) together with the transformed 

boundary conditions one arrives at the following eigenvalue 

problem 

 
11 12 13

21 22 23

31 32 33

( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) ( )

M M M

M M M C

M M M

  

  

  

 
 


 
  

 (42.a) 

where [C] correspond to the missing boundary conditions at 

x=0. For the non-trivial solutions of Eq. (42.a), it is 

necessary that the determinant of the coefficient matrix set 

equal to zero 

11 12 13

21 22 23

31 32 33

( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) ( )

M M M

M M M

M M M

  

  

  

  (42.b) 

Solution of Eq. (42.b) is simply a polynomial root 

finding problem. In the present study, the Newton-Raphson 

method is used to solve the governing equation of the non-

dimensional natural frequencies. Solving Eq. (42.b), the ith 

estimated eigenvalue for nth iteration ( ( )n

i  ) may be 

obtained and the total number of iterations is related to the 

accuracy of calculations which can be determined by the 

following equation 

( ) ( 1)n n

i i     (43) 

In this study ε=0.0001 considered in procedure of finding 

eigenvalues which results in 4 digit precision in estimated 

eigenvalues. Further a Matlab program has been developed 

according to DTM rule stated above. As mentioned before, 

DTM implies an iterative procedure to obtain the high-order 

Taylor series solution of differential equations. The Taylor 

series method requires a long computational time for large 

orders, whereas one advantage of employing DTM in solving 

differential equations is a fast convergence rate and a small 

calculation error. 

 
3.2 Analytical solution 
 

Here, based on the Navier type method, an analytical 

solution of the governing equations for free vibration of a 

simply supported FG nanobeam is presented. The 

displacement functions are expressed as product of 

undetermined coefficients and known trigonometric 

functions to satisfy the governing equations and the 

conditions at x=0, L. The following displacement fields are 

assumed to be of the form 

1

( , ) cos ( ) ni t

n

n

n
u x t U x e

L





  (44) 

1

( , ) sin ( ) ni t

n

n

n
w x t W x e

L





  (45) 

1

( , ) cos ( ) ni t

n

n

n
x t x e

L


 






 

(46) 

where (Un, Wn, n) are the unknown Fourier coefficients to 

be determined for each n value. Boundary conditions for 

simply supported beam are as Eq. (47) 

(0) 0 , ( ) 0
u

u L
x


 


 

(47) 

(0) ( ) 0 , (0) ( ) 0w w L L
x x

  
   

 
 

Substituting Eqs. (44)-(46) into Eqs. (33.a)-(33.c) 

respectively, leads to Eqs. (48)-(50)  

2 2 2 2

xx 0 xx 1

2 2( ( ) I (1 ( ) ) ) ( ( ) I (1 ( ) ) 0+ )n n n n

n n n n
A U B

L L L L

   
          

2 2 2 2

xx 0 xx 1

2 2( ( ) I (1 ( ) ) ) ( ( ) I (1 ( ) ) 0+ )n n n n

n n n n
A U B

L L L L

   
            

(48) 

2 2 2

xz 0 xz( ( ) I (1 ( ) ) ) ( ) 0n n n

n n n
C W C

L L L

  
        (49) 
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2 2 2

xx

2 2 2

1

2xx xz xz

( ( ) I (1 ( ) ) )

( ( ) I (1 ( ) ) )) ( ) 0

n n

n n n

n n
B U

L L

n n n
D C C W

L L L

 
 

  
  

  

     
 

(50) 

By setting the determinant of the coefficient matrix of 

the above equations, we obtain a quadratic polynomial for 
2

n . By setting this polynomial to zero, we can find ωn. 

 

 

4. Numerical results and discussions 
 

Through this section, a numerical testing of the 

procedure as well as parametric studies are performed in 

order to establish the validity and usefulness of the DTM 

approach. The effect of FG distribution, nonlocality effect 

and thickness ratios on the natural frequencies of the FG 

nanobeam will be figured out. The functionally graded 

nanobeam is composed of steel and alumina (Al2O3) where 

its properties are given in Table 3. The bottom surface of the 

beam is pure steel, whereas the top surface of the beam is 

pure alumina. The beam geometry has the following 

dimensions: L (length)=10,000 nm, b (width)=1000 nm and 

h (thickness)=100 nm. Relation described in Eq. (51) are 

performed in order to calculate the non-dimensional natural 

frequencies 

2ωL ρA / EI   (51) 

 

 

Table 3 Material properties of FGM constituents 

Properties Steel Alumina (Al2O3) 

E  210 (Gpa) 390 (GPa) 

  7800 (kg/m3) 3960 (kg/m3) 

  0.30 0.24 

 

Table 4 Convergence study for the first two natural 

frequencies for simply supported FG nanobeam (L/h=100, 

μ=2*10-12) 

Method k 
p=0 

 
p=0.5 

 
P=2 

 
P=10 

1
 

2
 

1
 

2
 

1
 

2
 

1
 

2
 

DTM 14 9.0181 27.2771  7.0780 21.4091  5.8693 17.7528  5.1871 15.6890 

 15 9.0180 27.9031  7.0780 21.9005  5.8693 18.1603  5.1871 16.0491 

 16 9.0180 30.4655  7.0780 23.9117  5.8692 19.8280  5.1870 17.5228 

 17 9.0180 29.9819  7.0780 23.5321  5.8692 19.5132  5.1870 17.2447 

 18 9.0180 29.4141  7.0780 23.0864  5.8692 19.1437  5.1870 16.9181 

 19 9.0180 29.4441  7.0780 23.1100  5.8692 19.1632  5.1870 16.9353 

 20 9.0180 29.4995  7.0780 23.1535  5.8692 19.1993  5.1870 16.9672 

 21 9.0180 29.4965  7.0780 23.1512  5.8692 19.1973  5.1870 16.9655 

 22 9.0180 29.4912  7.0780 23.1470  5.8692 19.1939  5.1870 16.9625 

 23 9.0180 29.4915  7.0780 23.1472  5.8692 19.1940  5.1870 16.9626 

 24 9.0180 29.4919  7.0780 23.1475  5.8692 19.1943  5.1870 16.9628 

 25 9.0180 29.4919  7.0780 23.1475  5.8692 19.1943  5.1870 16.9628 

 26 9.0180 29.4918  7.0780 23.1475  5.8692 19.1943  5.1870 16.9628 

 27 9.0180 29.4918  7.0780 23.1475  5.8692 19.1943  5.1870 16.9628 

 28 9.0180 29.4918  7.0780 23.1475  5.8692 19.1943  5.1870 16.9628 

Analytical  9.0180 29.4918  7.0779 23.1473  5.8692 19.1940  5.1870 16.9628 

where I=bh3/12 is the moment of inertia of the cross section 

of the beam. Table 4 shows the convergence study of DTM 

method for first two frequencies of nanobeam with various 

gradient indexes. It is found that in DTM method after a 

certain number of iterations eigenvalues converged to a 

value with good precision, so the number of iterations is 

important in DTM method convergence. From results of 

Table 4, high convergence rate of the method may be easily 

observed and it may be deduced that k=26 leads to accurate 

results. As seen in Table 4, second natural frequency 

converged after 26 iterations with 4 digit precision while 

the first natural frequency converged after 16 iterations. 

After looking into the satisfactory results for the 

convergence of frequencies, one may compare the 

nondimensional frequencies of FG nanobeam associated 

with different slenderness ratios and constituent volume 

fraction indexes. To evaluate accuracy of the natural 

frequencies predicted by the present method, natural 

frequencies of simply supported FG nanobeam with various 

volume fraction index and L/h ratios previously analyzed by 

finite element method are reexamined. Tables 5-12 

compares the results of the present study (both analytical 

and DTM-based solution) and the results presented by 

Eltaher et al. (2012) which has been obtained by finite 

element method for FG nanobeam with different FG 

distribution indexes, length-to-thickness ratios and nonlocal 

parameters. The non-dimensional fundamental frequencies 

of simply-supported FG nanobeam is presented in Tables 5-

12, which figures out the effect of nonlocal parameter 

(varying from 0 to 5), material distribution index (varying 

from 0 to 10) and length-to-thickness ratios (varying from 

20 to 100) on the natural frequency characteristics of FG 

nanobeam. One may clearly notice here that the Non-

dimensional fundamental frequency parameters obtained in 

the present investigation are in excellent agreement to the 

results presented by analytical solution and the results 

provided by finite element method (Eltaher et al. 2012) for 

all cases that are used for comparison and validates the 

proposed method of solution. First of all, when the two 

parameters vanish (μ*10-12=0 and p=0) the classical 

isotropic beam theory is rendered. Furthermore, the effects 

of slenderness ratios on the dimensionless frequency are 

presented in these tables. From the results, it can be 

observed that, when the slenderness ratio of FG nanobeam 

decreased (thickness reduces), the frequencies rise. As seen 

in Table 5-12, by fixing the nonlocal parameter and varying 

the material distribution parameter results decreasing in the 

fundamental frequencies, due to increasing in ceramics 

phase constituent, and hence, stiffness of the beam. 

However, the increasing of nonlocal parameter causes the 

decreasing in fundamental frequency, at a constant material 

graduation index. For the case in hand (simply supported 

FG nanobeam), changing the nonlocal parameter from 0 to 

5 results in a decrease in fundamental frequency parameter 

of about 22% for the case of with L/h=20, as can be noted 

from the Tables 5-12. This results indicates that the effect of 

nonlocal small scale parameter soften the nanobeam. A 

qualitative effect of nonlocal parameter and material index 

on the first five dimensionless frequency of simply 

supported FG nanobeam drawn from Tables 5-12 is 
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Table 5 The variation of non-dimensional fundamental 

natural frequencies for different nonlocal parameter and 

slenderness ratios of simply supported beams (b=1000 nm, 

L=10,000 nm, h=100 nm, p=0) 

L/h 
12*10   

FEM  

Eltaher et al.

 (2012) 

Present 

DTM Analytical 

20 0 9.8797 9.8295 9.8295 

 1 9.4238 9.3776 9.3776 

 2 9.0257 8.9828 8.9828 

 3 8.6741 8.6341 8.6341 

 4 8.3607 8.3230 8.3230 

 5 8.0789 8.0433 8.0433 

50 0 9.8724 9.8631 9.8631 

 1 9.4172 9.4097 9.4097 

 2 9.0205 9.0135 9.0135 

 3 8.6700 8.6636 8.6636 

 4 8.3575 8.3514 8.3514 

 5 8.0765 8.0707 8.0707 

100 0 9.8700 9.8679 9.8679 

 1 9.4162 9.4143 9.4143 

 2 9.0197 9.0180 9.0180 

 3 8.6695 8.6678 8.6678 

 4 8.3571 8.3555 8.3555 

 5 8.0762 8.0747 8.0747 

 

Table 6 The variation of non-dimensional fundamental 

natural frequencies for different nonlocal parameter and 

slenderness ratios of simply supported beams (b=1000 nm, 

L=10,000 nm, h=100 nm, p=0.1) 

L/h 
12*10   

FEM 

Eltaher et al. 

(2012) 

Present 

DTM Analytical 

20 0 9.2129 9.1612 9.1611 

 1 8.7879 8.7400 8.7400 

 2 8.4166 8.3721 8.3720 

 3 8.0887 8.0470 8.0469 

 4 7.7964 7.7570 7.7570 

 5 7.5336 7.4964 7.4963 

50 0 9.2045 9.1924 9.1924 

 1 8.7815 8.7698 8.7698 

 2 8.4116 8.4006 8.4006 

 3 8.0848 8.0744 8.0744 

 4 7.7934 7.7835 7.7835 

 5 7.5313 7.5219 7.5219 

100 0 9.2038 9.1969 9.1969 

 1 8.7806 8.7741 8.7741 

 2 8.4109 8.4047 8.4047 

 3 8.0842 8.0784 8.0784 

 4 7.7929 7.7873 7.7873 

 5 7.5310 7.5256 7.5256 

 

Table 7 The variation of non-dimensional fundamental 

natural frequencies for different nonlocal parameter and 

slenderness ratios of simply supported beams (b=1000 nm, 

L=10,000 nm, h=100 nm, p=0.2) 

L/h 
12*10   

FEM 

Eltaher et al. 

(2012) 

Present 

DTM Analytical 

20 0 8.7200 8.6601 8.6600 

 1 8.3175 8.2619 8.2618 

 2 7.9661 7.9141 7.9140 

 3 7.6557 7.6068 7.6067 

 4 7.3791 7.3327 7.3327 

 5 7.1303 7.0863 7.0862 

50 0 8.7115 8.6895 8.6895 

 1 8.3114 8.2900 8.2900 

 2 7.9613 7.9410 7.9410 

 3 7.6520 7.6327 7.6327 

 4 7.3762 7.3577 7.3577 

 5 7.1282 7.1104 7.1104 

100 0 8.7111 8.6938 8.6938 

 1 8.3106 8.2941 8.2941 

 2 7.9607 7.9449 7.9449 

 3 7.6515 7.6364 7.6364 

 4 7.3758 7.3613 7.3613 

 5 7.1279 7.1139 7.1139 

 
Table 8 The variation of non-dimensional fundamental 

natural frequencies for different nonlocal parameter and 

slenderness ratios of simply supported beams (b=1000 nm, 

L=10,000 nm, h=100 nm, p=0.5) 

L/h 
12*10   

FEM 

Eltaher et al. 

(2012) 

Present 

DTM Analytical 

20 0 7.8061 7.7152 7.7149 

 1 7.4458 7.3605 7.3602 

 2 7.1312 7.0506 7.0503 

 3 6.8533 6.7768 6.7766 

 4 6.6057 6.5327 6.5324 

 5 6.3830 6.3131 6.3129 

50 0 7.7998 7.7413 7.7413 

 1 7.4403 7.3854 7.3854 

 2 7.1269 7.0745 7.0745 

 3 6.8500 6.7998 6.7998 

 4 6.6031 6.5548 6.5548 

 5 6.3811 6.3345 6.3345 

100 0 7.7981 7.7451 7.7451 

 1 7.4396 7.3890 7.3890 

 2 7.1263 7.0780 7.0779 

 3 6.8496 6.8031 6.8031 

 4 6.6028 6.5580 6.5580 

 5 6.3808 6.3376 6.3376 
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Table 9 The variation of non-dimensional fundamental 

natural frequencies for different nonlocal parameter and 

slenderness ratios of simply supported beams (b=1000 nm, 

L=10,000 nm, h=100 nm, p=1) 

L/h 
12*10   

FEM 

Eltaher et al. 

(2012) 

Present 

DTM Analytical 

20 0 7.0904 6.9680 6.9676 

 1 6.7631 6.6477 6.6473 

 2 6.4774 6.3678 6.3674 

 3 6.2251 6.1206 6.1202 

 4 6.0001 5.9000 5.8897 

 5 5.7979 5.7018 5.7014 

50 0 7.0852 6.9918 6.9917 

 1 6.7583 6.6703 6.6703 

 2 6.4737 6.3895 6.3895 

 3 6.2222 6.1414 6.1414 

 4 5.9979 5.9202 5.9201 

 5 5.7962 5.7212 5.7211 

100 0 7.0833 6.9952 6.9952 

 1 6.7577 6.6736 6.6736 

 2 6.4731 6.3926 6.3926 

 3 6.2217 6.1444 6.1444 

 4 5.9976 5.9230 5.9230 

 5 5.7960 5.7240 5.7240 

 

Table 10 The variation of non-dimensional fundamental 

natural frequencies for different nonlocal parameter and 

slenderness ratios of simply supported beams (b=1000 nm, 

L=10,000 nm, h=100 nm, p=2) 

L/h 
12*10   

FEM 

Eltaher et al. 

(2012) 

Present 

DTM Analytical 

20 0 6.5244 6.3969 6.3964 

 1 6.2233 6.1028 6.1024 

 2 5.9604 5.8459 5.8455 

 3 5.7283 5.6189 5.6185 

 4 5.5213 5.4164 5.4161 

 5 5.3352 5.2344 5.2340 

50 0 6.5189 6.4192 6.4192 

 1 6.2191 6.1241 6.1240 

 2 5.9571 5.8663 5.8662 

 3 5.7257 5.6385 5.6385 

 4 5.5193 5.4354 5.4353 

 5 5.3338 5.2527 5.2526 

100 0 6.5182 6.4224 6.4224 

 1 6.2185 6.1272 6.1272 

 2 5.9567 5.8692 5.8692 

 3 5.7254 5.6413 5.6413 

 4 5.5190 5.4381 5.4381 

 5 5.3335 5.2553 5.2553 

 

Table 11 The variation of non-dimensional fundamental 

natural frequencies for different nonlocal parameter and 

slenderness ratios of simply supported beams (b=1000 nm, 

L=10,000 nm, h=100 nm, p=5) 

L/h 
12*10   

FEM 

Eltaher et al. 

(2012) 

Present 

DTM Analytical 

20 0 6.0025 5.9174 5.9172 

 1 5.7256 5.6454 5.6452 

 2 5.4837 5.4077 5.4075 

 3 5.2702 5.1977 5.1975 

 4 5.0797 5.0105 5.0102 

 5 4.9086 4.8421 4.8419 

50 0 5.9990 5.9389 5.9389 

 1 5.7218 5.6659 5.6659 

 2 5.4808 5.4274 5.4273 

 3 5.2679 5.2166 5.2166 

 4 5.0780 5.0287 5.0287 

 5 4.9072 4.8597 4.8597 

100 0 5.9970 5.9420 5.9420 

 1 5.7212 5.6689 5.6689 

 2 5.4803 5.4302 5.4302 

 3 5.2675 5.2194 5.2194 

 4 5.0777 5.0313 5.0313 

 5 4.9071 4.8622 4.8622 

 

Table 12 The variation of non-dimensional fundamental 

natural frequencies for different nonlocal parameter and 

slenderness ratios of simply supported beams (b=1000 nm, 

L=10,000 nm, h=100 nm, p=10) 

L/h 
12*10   

FEM 

Eltaher et al. 

(2012) 

Present 

DTM Analytical 

20 0 5.7058 5.6522 5.6521 

 1 5.4425 5.3923 5.3922 

 2 5.2126 5.1653 5.1652 

 3 5.0096 4.9648 4.9647 

 4 4.8286 4.7859 4.7858 

 5 4.6659 4.6250 4.6250 

50 0 5.7001 5.6729 5.6729 

 1 5.4389 5.4121 5.4121 

 2 5.2098 5.1843 5.1843 

 3 5.0074 4.9830 4.9830 

 4 4.8269 4.8035 4.8034 

 5 4.6646 4.6420 4.6420 

100 0 5.7005 5.6759 5.6759 

 1 5.4384 5.4150 5.4150 

 2 5.2094 5.1870 5.1870 

 3 5.0071 4.9856 4.9856 

 4 4.8267 4.8060 4.8060 

 5 4.6644 4.6445 4.6445 
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presented in Figs. 2, 3 and 4. Figs. 2, 3 and 4 demonstrate 

the variation of first five fundamental frequencies of FG 

nanobeam with varying of the material distribution and 

nonlocality parameter at L/h=20, 50 and 100 respectively. 

As can be noted, the first five dimensionless frequency of 

simply supported FG nanobeam decrease acutely as the 

material index parameter increases from 0 to 10. It can be 

observed that, the 1st and 2nd frequency reduce with high 

rate where the power exponent in range from 0 to 5 than 

that where power exponent in range between 5 and 10. 

While the 3rd, 4th and 5th frequencies reduce have high rate 

in range from 0 to 2. Also increasing nonlocal parameter 

from 0 to 5 results in a decrease in all first five fundamental 

frequency parameters of the FG nanobeam. The 1 st 

frequency decreases as the nonlocality parameter increased 

with the same trend. Whereas, in higher frequencies the 

effect of the nonlocality parameter is more obvious when 

increase from 0 to 3*10-12 than that nonlocality parameter in 

interval between 3*10-12 and 5*10-12. Furthermore, the 

power exponent is effective only in the range 0-5 for 3rd, 4th 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 2 The variation of the (a) 1st, (b) 2nd, (c) 3rd, 

(d) 4th and (e) 5th dimensionless frequency of sim

ply supported FG nanobeam with material graduati

on for different nonlocality parameter (L/h=20) 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 3 The variation of the (a) 1st, (b) 2nd, (c) 3rd, 

(d) 4th and (e) 5th dimensionless frequency of sim

ply supported FG nanobeam with material graduati

on for different nonlocality parameter (L/h=50) 

 

 

and 5th frequencies at a constant nonlocal parameter. Figs. 5, 

6 and 7 demonstrate the variation of mode number with 

changing of the nonlocality parameter at slenderness ratios 

(l/h=20, 50 and 100) of FG nanobeam with simply-

supported edge conditions and different material 

distribution respectively. As presented, the influence of 

nonlocality parameter on the nondimensional frequency 

increased as the growing in mode number. Also, it can be 

deduced that, the influence of nonlocality parameter on the 

frequencies unaffected with the material distribution. In 

order to investigate the effects of different boundary 

conditions on FG nanobeam vibration characteristics the 

nondimensional frequencies of nanobeams with different 

edge conditions (clamped- clamped, clamped-simply 

supported and clamped-free) are tabulated in Tables 13-15. 

According to the obtained results using differential 

transform method (DTM), The effects of slenderness ratio, 

material exponent and nonlocal parameter on the first two 

dimensionless frequencies of the FG nanobeam for different 

boundary conditions are presented in Tables 13-15. As it can 
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be seen from Tables, For all boundary conditions(C-C, C-S, 

C-F), the results show a decreasing of about 42%  in first 

two natural frequencies, at a constant slenderness ratio and 

nonlocal parameter. 

From Table 13, by increasing the nonlocal parameter 

from 0 to 5*10-12, at a fixed slenderness ratio and material 

graduation parameter, the first nondimensional frequency 

decreases about 20-22%. Also, it can be noticed that, for a 

constant nonlocal parameter and material graduation 

parameter, by changing slenderness ratio from 20 to 100, the 

1st and 2st nondimensional frequencies increases about 1.6 % 

and 3.6% respectively. 

The effect of nonlocal and material distribution 

parameter and slenderness ratio on the frequencies of 

clamped- simply supported FG nanobeam, is illustrated in 

Table 14. It is observed that, by increasing the nonlocal 

parameter from 0 to 5*10-12, the first natural frequency 

decreases by about 20-22% at a fixed slenderness ratio and 

material graduation parameter. Also, it can be noticed that, 

when the slenderness ratio increases, for a constant nonlocal 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4 The variation of the (a) 1st, (b) 2nd, (c) 3rd, 

(d) 4th and (e) 5th dimensionless frequency of sim

ply supported FG nanobeam with material graduati

on for different nonlocality parameter (L/h=100) 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 5 The effect of nonlocality parameter on dimension

less frequency of FG nanobeam for various mode numb

ers and with different material graduation indexes (p=(a) 

0, (b) 0.1, (c) 0.5, (d) 1, (e) 5, (f) 10) (L/h=20) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6 The effect of nonlocality parameter on dimension

less frequency of FG nanobeam for various mode numb

ers and with different material graduation indexes (p = 

(a) 0, (b) 0.1, (c) 0.5, (d) 1, (e) 5, (f) 10) (L/h=50) 
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(e) 

 
(f) 

Fig. 6 Continued 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7 The effect of nonlocality parameter on dim

ensionless frequency of FG nanobeam for various 

mode numbers and with different material graduati

on indexes (p = (a) 0, (b) 0.1, (c) 0.5, (d) 1, (e) 

5, (f) 10) (L/h=100) 

 

 

parameter and material graduation parameter, the first two 

nondimensional frequencies increases about 1 % and 2% 

respectively. 

From Table 15 for a clamped-free FG nanobeam, by 

increasing the nonlocal parameter from 0 to 5*10-12, the 

first natural frequency increases by about 2-2.5% at a fixed 

slenderness ratio and material graduation parameter. Whereas 

at the same condition, the second frequency decreases about 

24%. It can be noticed that, for a constant nonlocal parameter 

and material graduation parameter, changing slenderness  

Table 13 The variation of the first two nondimensional 

frequencies for different material distributions, nonlocal 

parameter and slenderness ratio for C-C beam  

L/h 

 
12

*10


 

Power-law exponent (p) 

0  1  2  5  10  

1  
2  

1  
2  

1  
2  

1  
2  

1  
2  

20 0 22.0110 59.4339 15.6058 42.1497 14.3190 38.6493 13.2349 35.6863 12.6397 34.0739 

 1 20.7725 49.2094 14.7275 34.8917 13.5136 31.9991 12.4911 29.5522 11.9294 28.2179 

 2 19.7169 42.8781 13.9788 30.4015 12.8270 27.8831 11.8569 25.7535 11.3239 24.5911 

 3 18.8039 38.4798 13.3314 27.2825 12.2332 25.0235 11.3084 23.1135 10.8001 22.0705 

 4 18.0047 35.2001 12.7647 24.9568 11.7134 22.8910 10.8281 21.1445 10.3414 20.1904 

 5 17.2977 32.6347 12.2633 23.1378 11.2535 21.2229 10.4032 19.6042 9.9356 18.7196 

50 0 22.3140 61.3074 15.8184 43.4619 14.5218 39.8948 13.4335 36.8982 12.8315 35.2433 

 1 21.0540 50.6936 14.9251 35.9371 13.7018 32.9886 12.6751 30.5118 12.1071 29.1435 

 2 19.9811 44.1509 14.1646 31.2987 13.0037 28.7311 12.0293 26.5745 11.4902 25.3828 

 3 19.0540 39.6131 13.5073 28.0818 12.4003 25.7782 11.4712 23.8435 10.9572 22.7743 

 4 18.2428 36.2323 12.9322 25.6851 11.8724 23.5782 10.9829 21.8087 10.4908 20.8308 

 5 17.5256 33.5892 12.4238 23.8114 11.4057 21.8583 10.5512 20.2179 10.0784 19.3114 

100 0 22.3584 61.5900 15.8496 43.6605 14.5515 40.0837 13.4626 37.0825 12.8596 35.4212 

 1 21.0952 50.9182 14.9541 36.0952 13.7294 33.1384 12.7021 30.6575 12.1331 29.2841 

 2 20.0198 44.3435 14.1918 31.4345 13.0295 28.8596 12.0546 26.6991 11.5147 25.5031 

 3 19.0906 39.7847 13.5331 28.2028 12.4248 25.8926 11.4951 23.9543 10.9802 22.8813 

 4 18.2777 36.3887 12.9568 25.7954 11.8957 23.6825 11.0056 21.9096 10.5127 20.9282 

 5 17.5590 33.7339 12.4473 23.9134 11.4280 21.9547 10.5729 20.3112 10.0993 19.4013 

 
Table 14 The variation of the first two nondimensional 

frequencies for different material distributions, nonlocal 

parameter and slenderness ratio for C-S beam 

L/h 

 
12

*10


 

Power−law exponent (p) 

0  1  2  5  10  

1  
2  

1  
2  

1  
2  

1  
2  

1  
2  

20 0 15.2719 48.6974 10.8268 34.5262 9.9370 31.6740 9.1888 29.2670 8.7764 27.9486 

 1 14.4625 40.7629 10.2529 28.8998 9.4104 26.5142 8.7021 24.5016 8.3115 23.3983 

 2 13.7674 35.7625 9.7600 25.3542 8.9582 23.2622 8.2840 21.4974 7.9122 20.5295 

 3 13.1622 32.2475 9.3310 22.8620 8.5644 20.9760 7.9200 19.3852 7.5645 18.5124 

 4 12.6293 29.6042 8.9532 20.9880 8.2177 19.2568 7.5995 17.7967 7.2584 16.9955 

 5 12.1556 27.5235 8.6173 19.5127 7.9095 17.9034 7.3145 16.5461 6.9862 15.8012 

50 0 15.3945 49.7555 10.9130 35.2717 10.0190 32.3795 9.2688 29.9512 8.8535 28.6086 

 1 14.5771 41.6242 10.3335 29.5072 9.4869 27.0880 8.7766 25.0570 8.3835 23.9338 

 2 13.8753 36.5089 9.8360 25.8809 9.0302 23.7592 8.3541 21.9779 7.9799 20.9928 

 3 13.2645 32.9163 9.4030 23.3341 8.6327 21.4212 7.9864 19.8153 7.6287 18.9272 

 4 12.7269 30.2161 9.0219 21.4199 8.2829 19.6640 7.6628 18.1899 7.3195 17.3746 

 5 12.2490 28.0911 8.6831 19.9136 7.9718 18.2812 7.3750 16.9108 7.0447 16.1528 

100 0 15.4123 49.9132 10.9255 35.3828 10.0309 32.4848 9.2804 30.0535 8.8647 28.7073 

 1 14.5937 41.7525 10.3452 29.5977 9.4980 27.1736 8.7875 25.1399 8.3939 24.0139 

 2 13.8909 36.6201 9.8470 25.9594 9.0407 23.8333 8.3643 22.0497 7.9897 21.0620 

 3 13.2794 33.0159 9.4135 23.4044 8.6427 21.4876 7.9961 19.8796 7.6380 18.9891 

 4 12.7411 30.3073 9.0319 21.4843 8.2923 19.7248 7.6719 18.2486 7.3283 17.4313 

 5 12.2626 28.1757 8.6927 19.9733 7.9809 18.3375 7.3838 16.9652 7.0531 16.2053 
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Table 15 The variation of the first two nondimensional 

frequencies for different material distributions, nonlocal 

parameter and slenderness ratio for C-F beam 

L/h 12
*10



 

Power-law exponent (p) 

0  1  2  5  10  

1  
2  

1  
2  

1  
2  

1  
2  

1  
2  

20 0 3.5172 21.9147 2.4933 15.5351 2.2892 14.2613 2.1180 13.1916 2.0231 12.6002 

 1 3.5323 20.5407 2.5040 14.5612 2.2990 13.3668 2.1271 12.3635 2.0318 11.8090 

 2 3.5478 19.3596 2.5150 13.7239 2.3091 12.5979 2.1364 11.6518 2.0407 11.1292 

 3 3.5637 18.3286 2.5262 12.9931 2.3194 11.9268 2.1459 11.0308 2.0498 10.5359 

 4 3.5800 17.4173 2.5378 12.3471 2.3300 11.3336 2.1557 10.4819 2.0592 10.0116 

 5 3.5967 16.6035 2.5496 11.7701 2.3409 10.8039 2.1658 9.9918 2.0688 9.5434 

50 0 3.5162 22.0151 2.4925 15.6061 2.2885 14.3281 2.1173 13.2560 2.0225 12.6622 

 1 3.5314 20.6572 2.5033 14.6435 2.2984 13.4442 2.1265 12.4381 2.0313 11.8810 

 2 3.5470 19.4854 2.5144 13.8129 2.3085 12.6816 2.1359 11.7325 2.0402 11.2069 

 3 3.5630 18.4594 2.5258 13.0856 2.3190 12.0138 2.1455 11.1146 2.0494 10.6167 

 4 3.5795 17.5503 2.5374 12.4411 2.3296 11.4221 2.1554 10.5672 2.0589 10.0938 

 5 3.5963 16.7367 2.5493 11.8644 2.3406 10.8926 2.1656 10.0772 2.0686 9.6258 

100 0 3.5160 22.0296 2.4924 15.6164 2.2884 14.3378 2.1172 13.2653 2.0224 12.6712 

 1 3.5313 20.6740 2.5032 14.6554 2.2983 13.4554 2.1264 12.4489 2.0312 11.8914 

 2 3.5469 19.5036 2.5143 13.8257 2.3085 12.6937 2.1358 11.7441 2.0402 11.2182 

 3 3.5629 18.4784 2.5257 13.0990 2.3189 12.0264 2.1455 11.1268 2.0494 10.6284 

 4 3.5794 17.5696 2.5373 12.4547 2.3296 11.4349 2.1554 10.5795 2.0588 10.1057 

 5 3.5963 16.7560 2.5493 11.8780 2.3406 10.9054 2.1655 10.0896 2.0685 9.6377 

 

 

ratio has no considerable effect on the nondimensional 

frequencies of FG nanobeam. 

 

 

5. Conclusions 
 

Vibration analysis of FG nanobeams based on 

Timoshenko beam theory and Eringen nonlocal constitutive 

equations with various boundary conditions is investigated. 

The Navier-based analytical model and a semi analytical 

differential transform method are employed in solving the 

governing equations derived through Hamilton’s principle. 

The good agreement between the results of this article and 

those available in literature validated the presented 

approach. Finally, through some parametric study and 

numerical examples, the effect of different parameters are 

investigated. The effects of small scale parameter, material 

property gradient index, mode number, slenderness ratio 

and boundary conditions on fundamental frequencies of FG 

nanobeams are investigated. Numerical results demonstrate 

that the small scale effects play an important role on the 

vibrational behavior of the FG nanobeam. Thus, the 

nonlocality effects should be reflected in the study of 

dynamic behavior of nanostructures. Also, it is observed 

that the power-law index has an important effect on the 

vibration responses of FG nanobeam, and the dynamic 

behavior can be enhanced by selecting appropriate values of 

the power-law index. 
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