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1. Introduction 
 

The velocity of seismic waves depends on temperature, 

pressure, packing structure, mineral phase and composition 

of the media through which the seismic wave travel. These 

waves travel more quickly through high density medium 

(solid) than a liquid. Seismic waves are slowed down by 

anomalously hot areas. Molten areas slow down Love 

waves within the Earth. The mechanical properties of 

crustal rock change considerably with the change of 

temperature. This concept leads to some new ideas in 

mathematical modeling of thermoelastic behaviour of the 

Earth. The classical thermoelasticity fails to explain some 

important phenomena, large temperature variations, 

involved in the crustal layer. The formulations have been 

developed to explain realistic earth model in numerous 

studies by many authors, which involve the effect of crustal 

layer and surface topography. The Earth is inhomogeneous 

in nature constituting of very hard layers, therefore the 

boundary temperature plays a significant role in the 

propagation of seismic waves. These properties of crustal 

rock motivate us to present a model of propagation of Love-

type surface wave in a crustal layer with temperature 

dependent inhomogeneity. The inhomogeneity of the crustal 

layer has been cosidered as 

   0 01 , 1           , where μ and  is the 

rigidity and mass density respectively,  is temperature, ε is 

constants having dimension that are inverse of temperature. 

It is assumed that the lower and upper boundary of crustal 
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layer is kept at constant temperatures T0 and T1, 

respectively. The upper boundary of the crustal layer is 

assumed to be traction free. The rigidity and density varies 

linearly on temperature in the crustal layer. With this 

assumption, the layer tends to homogeneous behaviour at 

T0=T1. 

The propagation of Love wave and thermal heating 

effects on solids has been discussed by many authors and 

researchers by considering various irregularities, 

inhomogeneities and boundaries of the Earth. Lokajíček et 

al. (2012) discussed the effect of temperature on phase 

velocities in granulate. Sun and Luo (2011) investigated 

propagation of waves in thermal dependent graded 

materials. Tillmann et al. (2008) studied temperature 

dependent properties of solid materials. Lee and Saravanos 

(1998) discussed the influence of temperature on 

piezoelectric materials. Emery and Fadale (1997) presented 

a note on the response of temperature and boundary 

conditions on materials.  Deresiewicz (1962) introduced 

the concept of Love wave propagation in a crust which is 

homogeneous in nature overlying an inhomogeneous 

substratum. Manna et al. (2013) discussed Love wave 

propagation in hetrogeneous elastic half -space and 

piezoelectric layer. Du et al. (2008) discussed the influence 

of initial stress on piezoelectric layered structures loaded 

with viscous liquid under Love wave propagation. Kadian 

and Singh (2010) studied the influence of size of barrier on 

Love wave reflection. Gupta et al. (2013) purposed a 

mathematical model to study Love wave propagation in 

homogeneous and initially stressed hetrogeneous half-

spaces. Kundu et al. (2013) discussed propagation of Love 

wave in porous rigid layer kept over prestressed half space. 

More recently, Chattaraj et al. (2013) discussed Love wave 

propagation in irregular prestressed anisotropic porous 

stratum. Madan et al. (2014) studied propagation of Love 

wave in saturated porous anisotropic layer. Presently, Abo-

Dahad et al. (2016) discussed the rotational effects on 

Rayleigh, Love and Stonely waves propagating in  
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Fig. 1 Geometry of the problem 

 

 

reinforced anisotropic general viscoelastic media of higher 

order.  

 

 

2. Formulation of the problem 
 

We consider an inhomogeneous crustal layer of finite 

thickness H. The z-axis is directed vertically downward and 

the x-axis is assumed to be in the direction of the 

propagation of the wave with velocity c. Let the lower and 

upper boundary of inhomogeneous crustal layer be kept at 

constant temperature T1 and T0. Let (x, y, z) represent the 

cartesian coordinate system such that the layer is located in 

the region ,0 ,x R y H z R     where H>0 is constant 

thickness of the layer. 

For Love waves, the displacement and body forces do 

not depend on y and if (u,v,w) denote the displacement 

components at any point P(x,y,z) of the medium, then we 

have following displacement components in the y-axis only, 

assumed as 

0, 0, ( , , )u w v v x z t           (1) 

The variations of rigidity and density in the layer are 

taken as 

0 0(1 ),      (1 )                    (2) 

where  is temperature, ε is inhomogeneous parameter of 

crustal layer and having dimension that are inverse of 

temperature, μ0 and 0 are constant values of rigidity (μ) 

and mass density ()at the interface respectively. The 

variation of rigidity and mass density in the layer (Eq. (2)) 

on temperature agrees with the experimental results 

investigated by Schreiber et al. (1973). 

 

 
3. Solution of the problem 

 
Keeping in mind the above boundary conditions given 

during the formulation of the problem, the temperature 

distribution in the layer following geometry of the problem 

can be written as  

1 0( , ) ,   ,   0,x y y x R y H          (3) 

where  

1 0
1

H

 
                 (4) 

The anti-plane equation of motion is given by Love 

(1927) 

2

2

yzxz
ss v

x y t


 
 

  
             (5) 

and 

,    xy yz

v v
s s

x z
 

    
    

    
          (6) 

where sxy and syz are the incremental stress components and 

 is the density of the crustal layer.  

Substituting Eq. (6), Eq. (2) and Eq. (3) into Eq. (5) 

yields 

2 2 2

01

2 2 2

0 1 0

v v v v

x y y y t





   
  

     
       (7) 

where  

0 0 1 11 ,                     (8) 

Denoting by  

2 0
0 1 0

0

,   z y c



                (9) 

Eq. (7) can be rewritten as 

2 2 2

2 2 2 2 2 2

1 1 0

1 1 1v v v v

x z z z c t

   
  

     
       (10)  

For propagation of Love wave as per geometry of the 

problem, we assume displacement given as 

( )exp ( )v z i kx t               (11) 

where 1i   , ω=kc, c is phase velocity and k  is wave 

number and ζ(z) is the unknown amplitude of displacement. 

Using Eq. (11) and Eq. (10), we get 

2 2
2

2 2 2

0 1

( ) 1 ( ) 1
( ) 0

d z d z
k z

dz z dz c

  


 
    

 
  (12) 

The solution of Eq. (12) is 

2 2
2 2

0 02 2

1 0 1 0

( )  J Y
iz iz

z k k
c c

 


   
       

    
   

 (13) 

where A and B are arbitrary constants, which are to be 

determined from adequate boundary conditions, J0( ) and 

Y0( ) are Bessel’s functions. 

We assume, the crystal layer is fixed to the rigid base 

and the upper boundary is free of loadings, this gives the 

following boundary conditions 
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( ,0, t) 0,  ( , , t) 0,  x R,  t Ryzv x s x H     (14) 

Returning on the basis of Eq. (9) to the variable z1 in 

ζ(z) given by Eq. (13) and using Eq. (11), Eq. (6), and Eq. 

(14), we get 

2 2
2 20 0

0 02 2

1 0 1 0

A J BY 0
i i

k k
c c

     
      

    
   

 (15) 

   2 2
0 1 0 12 2

1 12 2

1 0 1 0

A J BY 0
i H i H

k k
c c

       
      

    
   

 (16) 

Put 
*0

1

 and H c
k





 


 

in Eqs. (15) and (16), we 

have 

2 2
* *

0 02 2

0 0

A J 1 BY 1 0
c c

i kH i kH
c c

 
   

      
   
   

 (17) 

2 2
* *

1 12 2

0 0

J (1 ) 1 Y (1 ) 1 0
c c

i kH i kH
c c

 
   

         
   
   

 (18) 

where Jv, Yv, v=0; 1, are Bessel’s functions of first and 

second kind. 

Eliminating A and B from Eq. (17) and Eq. (18), we 

have 

2 2
* *

0 02 2

0 0

2 2
* *

1 12 2

0 0

J 1 Y 1

0

J (1 ) 1 Y (1 ) 1

c c
i kH i kH

c c

c c
i kH i kH

c c

 

 

   
    

   
   


   

      
   
   

 (19) 

Solving Eq. (19), we have 

2 2 2 2
* * * *

0 1 1 02 2 2 2

0 0 0 0

J 1 Y (1 ) 1 J (1 ) 1 Y 1 0
c c c c

i kH i kH i kH i kH
c c c c

   
       

              
       
       

 

2 2 2 2
* * * *

0 1 1 02 2 2 2

0 0 0 0

J 1 Y (1 ) 1 J (1 ) 1 Y 1 0
c c c c

i kH i kH i kH i kH
c c c c

   
       

              
       
       

 

(20) 

Eq. (20) can be solved by using bisection method, for 

that we put
2

2

0

1
c

c
    and 1    we get 

       * * * *

0 1 1 0J Y (1 ) J (1 ) Y 0ikH i kH ikH ikH           

       * * * *

0 1 1 0J Y (1 ) J (1 ) Y 0ikH i kH ikH ikH            

(21) 

The knowledge of phase velocity c (numerical analysis) 

allows us to calculate the displacement v, and stress 

components sxz and syz, as a product of unknown constant B 

and well-defined coefficients. From Eqs. (17) and (18), it 

follows that 

 

2
*

0 2

0

2
*

0 2

0

J 1

 

Y 1

c
i kH

c

c
i kH

c





 
 

 
   
 

 
 
 

         (22) 

and the displacement v  given by Eqs. (11) and (13) can be 

written in the form 

       
       

* * * *

0 0 0 0

* * * *

0 0 0 0

-Y J (y ) J Y (y )(x, y, )
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i kH i kH i kH i kHv t
i k t
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       


       

  
 

   

 

       
       

* * * *
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

       

  
 

   

 

       
       
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-Y J (y ) J Y (y )(x, y, )
exp ( x )

J Y (1 ) Y J (1 )
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i k t

i kH i kH i kH i kH

       


       

  
 

   

 

(23) 

where  

* 0

1

1
,   ,   y

x y
x

H H H



  


        (24) 

The stress components sxy and syz can be obtained from 

Eqs. (6), (2), and (3). 

 
 
4. Numerical analysis 

 

To show the effects of inhomogeneity, stress and 

temperature on the Love wave propagation in crustal layer, 

we take following crustal parameters Gubbins (1990).  

10 2 3

0 05.82 10 / ,  4500 / .N m Kg m     

Fig. 2 shows the distribution of dimensionless phase 

velocity 
2

2

0

c

c
 against temperature T1 for different value of 

dimensionless wave number kH=3,5,7,9 at T0=273.15K 

having inhomogeneity factor ε=0.00075K-1. It follows from 

this diagram, as T1 (upper boundary temperature) T0 

(lower boundary temperature), the ratio of phase velocity 
2

2

0

1
c

c
 which implies phase velocity c equals to the shear 

phase velocity c0 for homogeneous space; it means that 

crustal layer is homogeneous in nature. Also, it is observed 

from this diagram, for the same difference of boundary 

temperatures, the dimensionless phase velocity 
2

2

0

c

c
 

increase remarkably along with increasing crustal layer 

thickness. Fig. 3 presents the variation of dimensionless 

phase velocity 
2

2

0

c

c
 against dimensionless wave number kH 

for different value of upper boundary temperature 

T1=273.15K, 373.15K, 473.15K, 573.15K, and T0=273.15K. 

It is quite clear from Fig. 3, as dimensionless wave number 
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kH approaches to 6 i.e., for significant thickness of layer; 

the phase velocity c tends to the shear phase velocity c0. 

The phase velocity 
2

2

0

c

c
 decreases with the decrease of 

dimensionless wave number kH at fixed ratio of boundary 

temperatures. Fig. 4 shows the variation of dimensionless 

phase velocity 
2

2

0

c

c
 against dimensionless wave number kH 

for different value of inhomogeneous pa rameter 

ε=0.00009375K - 1,  0.0001875K -1,  0.000375K - 1 and 

0.00075K-1 for T1=473.15K and T0=273.15K. It can be seen 

that for ε=0.00009375K-1 i.e., the smallest value of 

inhomogeneity factor, the ratio of phase velocity 
2

2

0

1
c

c
 which implies phase velocity c equals to the shear 

phase velocity c0 for homogeneous space; it means that 

crustal layer is homogeneous in nature. The distribution of 

amplitude of stress syz against function of dimensionless 

thickness of the layer y  for different value of temperature 

T1=273.15K, 373.15K, 473.15K, 573.15K at ε=0.000375K-1, 

T0=273.15K and kH=3 is shown in Fig. 5. In Fig. 6, the 

variation of amplitude of stress syz against dimensionless 

thickness of the layer y  for different value of  

 

 

 

Fig. 2 Variation of dimensionless phase velocity 
2

2

0

c

c

 

against temperature T1 for different value of 

dimensionless wave number kH 

 

 

Fig. 3 Variation of dimensionless phase velocity 
2

2

0

c

c
 

against dimensionless wave number kH for different 

value of temperature T1 
 

 

Fig. 4 Variation of dimensionless phase velocity 
2

2

0

c

c
 

against dimensionless wave number kH for different 

value of inhomogeneous parameter ε at T1=473.15K 

and T0=273.15K 

 

 
Fig. 5 Variation of amplitude of stress syz against 

dimensionless thickness of the layer y  for different 

value of temperature T1 at ε=0.000375K-1, T0=273.15K 

and kH=3 

 

 
Fig. 6 Variation of amplitude of stress syz against 

dimensionless thickness of the layer y  for different 

value of inhomogeneous parameter ε at T1=473.15K-1, 

T0=273.15K and kH=3 

 

 

inhomogeneous parameter ε=0.00009375K-1, 0.0001875K-1, 

0.000375K-1, 0.00075K-1 at T1=473.15K, T0=273.15K and 

kH=3 is demonstrated. From the both Figs. 5-6, it is clear 
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the stress amplitude 

0

1
yzs





 for 

1 00 or      for 

homogeneous case. In both figures, the curves become 

linear for 6y  . 

 
 
5. Conclusions 

 

In this model, we have taken crustal layer with linear 

variation of temperature in rigidity and mass density. 

Displacement of Love-type surface wave in this layer is 

derived by using simple mathematical techniques. From 

above numerical analysis, the following conclusions are 

made: 

(1) The layer is assumed to be kept on constant 

temperatures T0 and T1 on the boundary ; and hence the 

thickness dependent properties of the layer are 

investigated  

(2) For the same difference of boundary temperatures, 

the dimensionless phase velocity increases significantly 

along with increasing crustal layer thickness. 

(3) The dimensionless phase velocity decreases with the 

decrease of dimensionless wave number kH at fixed 

ratio of boundary temperatures. 

(4) It has been observed that for homogeneous crustal 

layer 
2

2

0

1
c

c
  for ε=0.00009375K-1. 

(5) It is noted in case of homogeneous half-space, the 

stress amplitude 

0

1
yzs






 for 
1 00 or    . 

(6) In case A1=0 and B1=0, the Eq. (10) reduces to the 

equation for homogeneous layer. 

(7) In the case of homogeneous crustal layer, the Love-

type surface waves do not decay exponentially with 

thickness. This validates the solution discussed by 

Achenbach and Balogun (2010). 

(8) It can be concluded from graphs that the 

inhomogeneity parameter, thickness of the layer and 

boundary temperatures have considerable effect on the 

phase velocity of Love wave. 
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