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1. Introduction 
 

The railgun is an attractive electromagnetic gun due to its 

apparent simple design. The muzzle velocities up to 2.5 km/s 

for masses of several hundred grams have been demonstrated 

experimentally (Fair 2007, Shvetsov, Rutberg et al. 2007, 

Lehmann, Peter et al. 2001). The railgun includes two parallel 

copper rails across which an armature makes electrical contact 

(see Fig. 1). The rails are copper strips h×b and length L. The 

distance between the two rails is d. A large current I pass 

through the rails and the armature (projectile), and the 

projectile current interacts with the strong magnetic fields 

generated by the rails and the armature. It produces a strong 

force to accelerate the armature together with the projectile 

along the rails. Meanwhile, a mutually repulsive force occurs 

between the two rails.  

The dynamics behavior of the railgun is of great 

importance for the system’s performance. In the railgun, the 

mechanical response of the rail to the transient magnetic load 

may lead to disturbances of the projectile trajectory because 

the armature performance is very sensitive to variations of 

normal forces at the contact interface.  Therefore, the 

evaluation of the dynamics performance of railgun is a 

mandatory task for the railgun system. For the dynamic 

behavior of the electromagnetic railguns, the first model is to 

take the rail as one-dimensional beam on an elastic foundation  
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(Fryba 1977). The dynamic response of the railgun to the 

moving magnetic excitation was investigated (Tzeng 2003, 

Tzeng and Sun 2007). The axis-symmetric shell and two-

dimensional solid models were used to simulate the railgun 

and numerically study the transient resonance at critical 

velocities of the projectile (Nechitailo and Lewis 2006). The 

transient elastic waves in electromagnetic launchers and their 

influence on armature contact pressure were studied (Johnson 

and Moon 2006, 2007). A 2D plane stress finite element 

model resting upon discrete elastic supports was developed 

and the transient analysis for a set of constant loading 

velocities was performed (Tumonis, Liudas et al. 2009). 

Equations for the forced responses of the rail to constant 

velocity load and the acceleration load were developed and 

the dynamic displacements of the rail under the running 

electromagnetic forces for various accelerations were studied 

(Xu and Geng 2012).  

 

 

 

Fig. 1 Schematic of railgun 
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For the railgun, a generalized dynamic stiffness method 

for analysis was proposed and three characteristic speeds 

(critical, shear, and bar speeds) were analyzed. Here, 

Timoshenko beam model is used and bending deformation 

plus shearing deformation can be considered. Using the 

model, the influences of cross-sectional warpings on these 

characteristic speeds were investigated (Pai, Frank et al. 

2012). The vibration experiment of a railgun with discrete 

supports was done (Schuppler, Christian et al. 2013). The rails 

of rectangular electromagnetic rail gun were simplified as a 

double layer elastic foundation beam, and the dynamic 

response of the rails was investigated (He and Bai 2013). 

In railgun, the electromagnetic field can cause an essential 

change of the dynamics behaviors of the railgun. The linear 

electromechanical coupled effects were considered, and the 

natural frequencies of the railgun were investigated (Geng 

2013). In operation, the rail current is quite large which 

causes the strong electromagnetic nonlinearity in the railgun 

system. So, the electromechanical coupled nonlinear free 

vibration of the railgun system was studied (Xu, Zheng et al. 

2015). However, there are two shortcomings in above 

analysis: (1). the nonlinear electromagnetic force is only 

expressed as a function of the distance between the two rails. 

It ignores some main parameters. The effects of these 

parameters on the electromechanical coupled nonlinear free 

vibration of the railgun system can not be considered. (2). the 

rail current is taken as the nonlinear parameter which is not 

convenient because the rail current is variable during the 

railgun operation. Besides it, the electromechanical nonlinear 

coupled response of the railgun to the electromagnetic 

excitation has not been investigated yet. 

In this paper, the nonlinear electromechanical coupled 

dynamics equations for the railgun were deduced. Using the 

equations, the nonlinear free vibration frequency of the 

railgun and the nonlinear forced responses of the railgun to 

the electromagnetic excitation were investigated. Compared 

to other research work, the effects of the distance between 

two rails, the thickness and the width of the rail on the 

nonlinear dynamics performance of the railgun were 

considered. Here, the ratio of the rail thickness to the distance 

between the two rails is taken as the nonlinear parameter 

which is convenient to study the nonlinear forced responses of 

the railgun to the electromagnetic excitation. We obtain some 

novel results as below:  

(1) As the nonlinearity of the railgun system is considered, the 

vibration frequencies of the railgun system increase. As the 

current in the rail grows, the difference between the natural 

frequencies and the nonlinear vibration frequencies grows 

significantly.   

(2) The railgun system is a natural frequency changing system 

caused by the nonlinear electromagnetic force and the 

armature moving on the rail. For large armature position, the 

nonlinearity of the railgun system is more significant.  

(3) The nonlinearity of the railgun system is more obvious for 

small distance between the two rails, small rail thickness, and 

small stiffness of the elastic foundation. 

(4) As the rail current or the rail position coordinate grows, 

the unstable frequency range increases obviously. As the 

distance between two rails, the rail thickness, the rail width or 

the stiffness of the elastic foundation drop, the unstable 

frequency range increases obviously as well.   

(5) When the armature runs to the exit, the vibrating 

amplitude of the forced responses of the rail to the 

electromagnetic load is the largest.    

The results can be used to design dynamics performance 

of the railgun system. 

 

 

2. Nonlinear electromagnetic force on the rail 
 

When the current flows in the rails, a magnetic flux is 

produced between the rails and in the armature. It interacts 

with the current flowing in the projectile to cause Lorentz 

force which accelerates the armature and the projectile. 

Meanwhile, a nonlinear magnetic force occurs between the 

two rails. The nonlinear magnetic force per unit length 

between the two rails is (Geng (2013), here, only 

electromagnetic force between the two rails is considered. The 

current densities in the two rails are considered to be uniform) 
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(2) 

where 
0  is the permeability, I  is the current intensity in 

the rail, l is the running position of the armature, x is the 

position coordinate in the direction of the rail length, b is the 

thickness of the rail, h is the width of the rail, d is the distance 

between the two rails, 
'( ', ')P z y  is one point on the left rail, 

( , )P z y  is one point on the right rail. 

Using Eqs. (1) and (2), we can calculate electromagnetic 

force applied to the rail. Results show: 

When x=[l, L], the electromagnetic force is zero. When 

x=[0, l], the electromagnetic force is distributed uniformly on 

this part of the rail. Only near to x=0 or x=l, the 

electromagnetic force reduce to zero rapidly. The local force 

decrease has little effects on the rail elastic displacement. It 

mainly depends on almost uniform electromagnetic force. For 

simplifying calculation, we can considered that the 

distribution of the electromagnetic force on the rail is 

0     (0 )
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Under this assumption, by means of the regressive 

interpolation, the nonlinear electromagnetic force as a 

function of the distance d , the width h, and the thickness b 

can be given as below 
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(3) 

The calculative results by Eq. (3) are compared with ones 

by Eq. (1) (see Fig. 2). It shows that the two results are in 

agreement with each other. 

Considering the elastic displacement of the rail, the 

nonlinear magnetic force per unit length on the rail can be 

calculated as 
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(4) 

where w0 is the average static elastic displacement of the rail.  

The magnetic force can be expressed in Fourier series 

form as 
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Substituting Eq. (5) into the force balance equation of the 

rail, yields 
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(a) d changes 

 
(b) b changes 

 
(c) h changes 

Fig. 2 Comparison between the results by Eq.(1) and Eq.(3) 

 

where E  is the modulus of elasticity of the rail material, Iz 

is the sectional modular of the rail, k is the stiffness of the 

elastic foundation. 

From Eq. (6), the elastic displacement w of the rail can be 

obtained 
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The average displacement 
0w of the rail can be calculated 

as 
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Combining Eq. (4) with (8), yields 
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(9) 

Eq. (9) can give the average displacement 
0w of the rail. 

Results show that the average displacement 
0w of the rail is 

much smaller than clearance d. At a range of calculated 

parameters in this paper, it is smaller than 0.2 mm. 

 

 

3. Electromechanical coupled nonlinear dynamics 
equations of the rail 

 
The dynamic equation of the rail can be given as 

2 4
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where w  is the dynamic displacement of the rail, 
l  is 

the mass coefficient per unit length of the rail, 
rq  is the 

dynamic electromagnetic force on the rail. 

The dynamic electromagnetic force can be expressed in 

series form as 
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Combining Eq. (4) with (11), yields 
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where 
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 Substituting Eq. (12) into (10), and letting the nonlinear 

parameter b d   for the railgun whose b/d is smaller 

than 1, yields 
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(13) 

Let ( ) ( )w x q t  , substituting it into the first equation 

of Eq. (13), yields 
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Let Eq. (14) equal constant
2 , thus 
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Substituting ( ) ( )w x q t   into the second equation 

of Eq. (13), yields 
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From Eqs. (16) and (17) plus the boundary conditions and 

the continuity conditions of the rail, the natural frequencies 

and the mode functions of the rail can be obtained. 

 

 

4. Electromechanical coupled nonlinear free vibration 
 

Let 
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where n  is the nonlinear vibration frequency of the rail 

considering electromechanical coupled effects. 

Letting tn  , and Eq. (15) can be changed into 

following form 
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Substituting Eqs. (18) and (19) into (20), and then let sum 

of the coefficients with the same order power equal zero, 

following equations can be given 
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Then, solution of zero order equation under above initial 

conditions is 
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Substituting Eqs. (22) and (24) into (21(c)), yields 
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(26) 

Hence, solution of the nonlinear free vibration is 
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(27) 

Equation of the magnitude and frequency relationship is 
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5. Electromechanical coupled forced responses 

 

When the current excitation )cos(   tII em
 (here, 

Im is the magnitude of the excitation current, 
e

  is its 

frequency), the electromagnetic force applied to the rail will 

fluctuate. The dynamic electromagnetic force can be 

expressed as 
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Where 
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Letting the nonlinear parameter b d  , and 

substituting Eq. (29) into (10) (considering damping term, 

here   is the damping factor), yields 
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(30) 

Substituting    tqxw   into the first equation of 

Eq.(30), yields 

 

 

 

 
   

    

     

 

43
2 3

1

0

2.4202 10

2 0.01343 0.02622

q

l l l

K I Iq t q t EI x P x
Qq t Q q t

q t q t d w b q t x

 
 

  

    
     

  

 
(31) 

Let Eq. (31) equal constant , thus 
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Substituting Eq. (18) and these equations into Eq. (32), 

yields 
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The solution of zero order equation under above initial 

conditions is 

cos0 Aq   (34) 

Substituting Eq. (34) into (33(b)), yields 
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In order to remove secular item, let 
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From Eq. (36), we obtain 
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6. Results and discussions 
  

Using above equations, the vibration frequencies of the 

railgun system and their changes along with the system 

parameters are investigated (see Tables 1-6). For a railgun, 

the rail and insulator (typically ceramic or polymer  
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composite) are contained and supported by a containment 

structure. The containment structure is a steel outer cylinder. 

The insulator and containment is just the elastic foundation of 

the rail vibration. The stiffness of the elastic foundation 

depends on the materials and sizes of the insulator and 

containment. When the containment material is steel and the 

insulator material is fiberglass, the stiffness of the elastic 

foundation is about 4x10
8 

N/m
2
-2x10

10 
N/m

2
 for containment 

thickness range 5 mm-40 mm (Tzeng 2003). As smaller 

stiffness of the elastic foundation is not favorable for the 

railgun and can cause stronger nonlinearity, stiffness of the 

elastic foundation is taken as 4x10
8 

N/m
2
-8x10

8 
N/m

2
 in this 

study (see Table 6). Tables 1-6 show: 

(1) When the current in the rail grows, the natural 

frequencies of the railgun system grow because of the effects 

of the electromagnetic force. The larger is the current, the 

larger the effects of the electromagnetic force on the natural 

frequencies. When the current I grows from 0 to 125KA, the 

natural frequency of the railgun grows from 16770 Hz to 

16867 Hz.  

As the nonlinearity of the railgun system is considered, the 

vibration frequencies of the railgun system grow further. 

When the current in the rail grows, the difference between the 

natural frequencies and the nonlinear vibration frequencies 

first becomes large gradually, and then it grows significantly 

after the current larger than 100KA. For the current of 

I=125KA, the difference between the natural frequencies and 

the nonlinear vibration frequencies gets to 42.658%. Here, the 

nonlinear vibration frequency of the railgun is 29414 Hz 

which is much larger than the natural frequency of 16770 Hz 

when the effect of the electromagnetic force is not considered. 

Therefore, the electromagnetic nonlinearity of the railgun 

system should be considered when the rail current is relatively 

large.   

(2) When the armature runs on the rail (l grows), the 

natural frequencies of the railgun system decrease slightly. As 

the nonlinearity of the railgun system is considered, the 

vibration frequencies of the railgun system first drop slightly, 

and then grow significantly with increasing the position l. 

When the armature runs to 3.5 m, the difference between the 

natural frequencies and the nonlinear vibration frequencies 

gets to 10.358%. The results show that the railgun system is a 

natural frequency changing system caused by the nonlinear 

electromagnetic force and the force moving on the rail. For 

large armature position parameter l, the nonlinearity of the 

railgun system is more obvious and should be considered. 

(3) When the distance d between the two rails increases, 

the natural frequencies of the railgun system drop. As the 

nonlinearity of the railgun system is considered, the vibration 

frequencies of the railgun system grow significantly with 

decreasing the distance d. When the distance d between the 

two rails is 0.018 m, the difference between the natural 

frequencies and the nonlinear vibration frequencies gets to 

14.470%. The results show that the nonlinearity of the railgun 

system should be considered for small distance between the 

two rails. 

(4) When the rail thickness b increases, the natural 

frequencies of the railgun system drop. As the nonlinearity of 

the railgun system is considered, the vibration frequencies of 

the railgun system grow. When the rail thickness b drops, the 

difference between the natural frequencies and the nonlinear 

vibration frequencies grows. When the rail thickness b is 

0.006 m, the difference between the natural frequencies and 

the nonlinear vibration frequencies gets to 42.865%. It shows 

that the nonlinearity of the railgun system should be 

considered for small rail thickness b. 

 

 

Table 1 Changes of the vibration frequencies along with the 

current 

 KAI  0 30 50 75 100 125 

ω(Hz) 16770  16772  16782  16802  16829  16867  

ωn(Hz) 16770  16856  17226  17440  18747  29414  

 %0
 0  0.498  2.573  3.657  10.232  42.658  

Here, l=3 m, k=5×10
8
 N/m

2
, L=5 m, d=0.02 m, h=0.02 m, 

b=0.01 m 

 

 

Table 2 Changes of the vibration frequencies with the 

armature position 

l(m) 0 1.5 2.5 3 3.5 

ω(Hz) 16861 16859 16858 16858 16857 

ωn(Hz) 16861 16859.1 16858.3 18644 18806 

 %0
 0 3.77E-07 2.57 E-04 9.575 10.358 

Here, I=125KA, k=5×10
8
 N/m

2
, L=5 m, d=0.02 m, h=0.02 m, 

b=0.01 m 

 

 

Table 3 Changes of the vibration frequencies with the distance 

d 

d(m) 0.018 0.019 0.02 0.021 0.022 0.023 0.024 

ω(Hz) 16867 16861 16856 16851 16846 16842 16838 

ωn(Hz) 19721 18630 18173 17837 17527 17170 16888 

 %0
 14.470 9.494 7.246 5.529 3.882 1.907 0.295 

Here, I=125KA, k=5×10
8
 N/m

2
, L=5 m, l=2.5 m, h=0.02 m, 

b=0.01 m 

 

 

Table 4 Changes of the vibration frequencies along with the 

rail thickness b 

b(m) 0.006 0.007 0.008 0.009 0.010 0.012 

ω(Hz) 21781 20162 18857 17776 16861 15388 

ωn(Hz) 38121 21689 19771 18033 17104 15389 

 %0
 42.865 7.041 4.625 1.429 1.418 0.00119 

Here, I=125KA, k=5×10
8
 N/m

2
, L=5 m, l=2.5 m, h=0.02 m, 

d=0.02 m 
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Table 5 Changes of the vibration frequencies with the rail 

width h 

h(m) 0.018 0.019 0.02 0.021 0.022 0.023 

ω(Hz) 17768 17294 16856 16449 16071 15717 

ωn(Hz) 20602 19010 18173 17484 16840 16154 

 %0
 13.755 9.025 7.246 5.915 4.565 2.702 

Here, I=125KA, k=5×10
8
 N/m

2
, L=5 m, l=2.5 m, b=0.01 m, 

d=0.02 m 

 

Table 6 Changes of the vibration frequencies along with the 

stiffness k 

k(10
8
N/m

2
) 4 5 6 7 8 

ω(Hz) 15093 16852 18444 19909 21273 

ωn(Hz) 16172 17852 19412 20807 22042 

 %0
 6.675 5.605 4.988 4.319 3.491 

Here, I=125KA, h=0.02 m, L=5 m, l=2.5 m, b=0.01 m, 

d=0.02 m 

 

 

(6) When the stiffness k of the elastic foundation increases, 

the natural frequencies of the railgun system grow. As the 

nonlinearity of the railgun system is considered, the vibration 

frequencies of the railgun system grow further. When the 

stiffness k drops, the difference between the natural 

frequencies and the nonlinear vibration frequencies grows. 

When the stiffness k drops from 810
8 

N/m
2
 to 410

8 
N/m

2
, 

the difference between the natural frequencies and the 

nonlinear vibration frequencies grows from 3.491% to 

6.675%. It shows that the nonlinearity of the railgun system 

should be considered for small stiffness k of the elastic 

foundation. 

Using Eq. (28), the amplitude-frequency characteristics of 

the rail system is analyzed (see Figs. 3-7). These figures show: 

(1) As the vibrating amplitudes of the rail grow, its 

vibrating frequencies grow which shows the effects of the 

electromagnetic nonlinearity on the dynamics performance of 

the rail system. For a larger current in the rail, the vibrating 

frequencies of the rail system grow more significantly with 

the vibrating amplitudes. For small rail distance d, the effects 

of the rail current on the amplitude-frequency characteristics 

become more obvious. For the same current, the vibrating 

frequencies of the rail system grow more significantly with 

the vibrating amplitudes when the rail distance d is small.  

(2) For small distance d between two rails, the vibrating 

frequencies of the rail system increase more significantly with 

the vibrating amplitudes of the rail. For the same distance d, 

the vibrating frequencies of the rail system grow more 

significantly with the vibrating amplitudes when the rail 

current is large. It shows that the effects of the 

electromagnetic nonlinearity on the dynamics performance of 

the rail system are more significant for larger rail current and 

small distance d between two rails. 

(3) As the rail thickness b or width h drops, the vibrating 

frequencies of the rail system increase more significantly with 

the vibrating amplitudes of the rail. For small stiffness k of the 

elastic foundation, the vibrating frequencies of the rail system 

increase more significantly with the vibrating amplitudes of 

the rail as well. It shows that the effects of the 

electromagnetic nonlinearity on the dynamics performance of 

the rail system are more significant for small stiffness k of the 

elastic foundation, small rail thickness b or width h. 

In a word, the electromagnetic nonlinearity has effects on 

the magnitude-frequency relation of the rail system. The 

effects of the electromagnetic nonlinearity should be 

considered for small rail thickness, small rail width, small 

distance between the two rails, large rail current, and small 

stiffness k of the elastic foundation. 
The nonlinear forced responses of the rail to the 

electromagnetic excitation are investigated. Fig. 8 shows the 

changes of the nonlinear forced response of the rail with the 

system parameters. 

Fig.8 shows: 

(1) As the exciting frequency is near natural frequency of 

the rail system, the resonance vibration occurs. However, the 

amplitude-frequency curves bend toward the direction of the 

exciting frequency increase which shows that at some exciting 

frequency, the magnitude of vibration will jump from one 

value to another value. This behavior just is well-known jump 

phenomenon which corresponds to an unstable operating 

condition. As the rail current grows, the amplitude-frequency 

curves bend more obviously toward the direction of the 

exciting frequency increase, and the frequency range for 

unstable operating increases obviously. 

 

 

 

(a) d=30 mm 

 
(b) d=20 mm 

Fig. 3 Amplitude-frequency characteristics of the rail for 

various currents) 
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(a) I=120KA 

 
(b) I=100KA 

Fig. 4 Amplitude-frequency characteristics of the rail for 

various d 

 

 

 

(a) I=100KA 

 
(b) I=125KA 

Fig. 5 Amplitude-frequency characteristics of the rail for 

various rail thickness b 

 

 

(a) I=105KA 

 
(b) I=125KA 

Fig. 6 Amplitude-frequency characteristics of the rail for 

various rail width h 

 

 

 

(a) I=100KA 

 
(b) I=125KA 

Fig. 7 Amplitude-frequency characteristics of the rail for 

various stiffness k 
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(a) I changes 

 
(b) l changes 

 
(c) d changes 

 
(d) b changes 

Continued- 

 
(e) h changes 

 
(b) k changes 

Fig. 8 Nonlinear forced frequency responses of the rail to 

the electromagnetic excitation 

 

 

(2) As the rail position coordinate l increases, the 

amplitude-frequency curves bend more obviously toward the 

direction of the exciting frequency increase, and the 

frequency range for unstable operation increases obviously. 

As the distance d between two rails drops, the amplitude-

frequency curves bend more obviously toward the direction of 

the exciting frequency increase. As the rail thickness b drops, 

the amplitude-frequency curves bend more obviously toward 

the direction of the exciting frequency increase as well.  

(3) As the rail width h drops, the amplitude-frequency 

curves bend more obviously toward the direction of the 

exciting frequency increase. As the stiffness k of the elastic 

foundation drops, the amplitude-frequency curves bend more 

obviously toward the direction of the exciting frequency 

increase as well. It increases the frequency range for unstable 

operation obviously.  

In a word, the nonlinear electromechanical coupled forced 

responses of the rail to the electromagnetic excitation are 

influenced by the rail system parameters. In design of the 

railgun system, the distance between two rails, the rail 

current, the rail thickness, the rail width, the rail length, and 

the stiffness of the elastic foundation should be determined 

properly to avoid the unstable operating frequency range. 

The nonlinear forced time responses of the rail to the 

electromagnetic excitation are investigated as well (see Fig. 9, 

here l=1 mm, Im=50kA). Fig. 9 shows: 

 (1) When the exciting frequency 
e

  is near the first 

order of the natural frequency 
1

  of the rail gun, the 

221



 

Lizhong Xu and Dewen Wu 

unstable periodic vibration occurs in the rail. It is because 

the effects of the multiple frequency components occur.  

(2) As the armature runs, after the armature (from 0 to 1 

m), the vibrating amplitude of the forced responses of the rail 

to the electromagnetic load is much larger than that in front of 

armature (from 1 to 5 m). It means that the undesirable 

dynamics state of the rail system occurs when the armature 

runs to the exit. So, the design of the dynamics performance 

of the rail gun system should be done for this situation. 

 

 

7. Conclusions 
 

In this paper, the nonlinear electromagnetic force equation 

of the rail for the railgun is given. In the equation, more 

system parameters are considered. Based on the equation, the 

nonlinear electromechanical coupled dynamic equations for 

the rail are proposed. Using the equations, the nonlinear free 

vibration frequency of the rail-gun is investigated and the 

effects of the system parameters on them are analyzed. The 

nonlinear forced responses of the rail to the electromagnetic 

excitation are investigated. The results show: 

 

 

 

(a) srade /168571   

 

(b) 1 e , x=l 

Fig. 9 Amplitude-frequency characteristics of the rail for 

various d 

 

 

(1) As the nonlinearity of the railgun system is considered, the 

vibration frequencies of the railgun system increase. As the 

current in the rail grows, the difference between the natural 

frequencies and the nonlinear vibration frequencies grows 

significantly. So, the nonlinearity of the railgun system should 

be considered when the rail current is relatively large.   

(2) The railgun system is a natural frequency changing system 

caused by the nonlinear electromagnetic force and the 

armature moving on the rail. For large armature position, the 

nonlinearity of the railgun system is more significant. The 

nonlinearity of the railgun system is more obvious for small 

distance between the two rails, small rail thickness, and small 

stiffness of the elastic foundation. 

(3) As the rail current or the rail position coordinate grows, 

the unstable frequency range increases obviously. As the 

distance between two rails, the rail thickness, the rail width or 

the stiffness of the elastic foundation drop, the unstable 

frequency range increases obviously as well. In design of the 

railgun system, the rail current or the rail length should be 

taken as small values, and the distance between two rails, the 

rail thickness, rail width or the stiffness of the elastic 

foundation should be taken as large values.  

(4) When the armature runs to the exit, the vibrating 

amplitude of the forced responses of the rail to the 

electromagnetic load is largest. So, the design of the dynamics 

performance of the rail gun system should be done for this 

situation.   
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Appendix. Solutions of the linear natural frequencies 
for the railgun system 

 
The mode function is considered as  

 e)(  (A1) 

Substituting (A1) into (16), then 

4 0R    (A2) 

At 0R  (
2

l P   ), the solutions of Eq. (A2) are 

4 R and 
4i R . Then, the general solution of Eq. (16) is 

1 1 2 3 4( ) cos sinmx mxx Ae A e A mx A mx      (A3) 

where 
4m R  

When 0R  (
2

l P   ), the solutions of Eq. (A2) are 

4 42 2

2 2
R i R   and 

4 42 2

2 2
R i R    . 

Then, the general solution of Eq. (16) is 

   1 2

1 1 1 2 1 3 2 4 2( ) cos sin cos sin
n x n xx e A n x A n x e A n x A n x      (A4) 

where  
4

1

2

2
n R   and

4

2

2

2
n R    

Substituting 
 e)(  into (17), then 

4 4 0S    (A5) 

The solutions of Eq. (A5) are S and iS . Then, the 

general solution of Eq. (17) is 

2 5 6 7 8( ) cos sinSx Sxx A e A e A Sx A Sx      (A6) 

The constants )8,7,6,5,4,3,2,1( jA j
 are obtained by 

boundary conditions and the continuity conditions of the rail. 

For the simply supported rail at two ends, the boundary 

conditions are 

1

2

1 0

2

(0) 0

( ) 0

''( ) 0

''( ) 0

x

x L

L

x

x





















 

 (A7) 

The continuity conditions of the rail are 

1 2

1 2

1 2

1 2

( ) ( )

'( ) '( )

''( ) ''( )

'''( ) '''( )

l l

l l

l l

l l

 

 

 

 








 

 (A8) 

At 0R  , substituting Eqs. (A3) and (A6) into (A7) and 

(A8), yields 3 0A   and 
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 (A9) 

where 

2 2 2 2

1

2 2 2 2 2 2 2

3 3 3

1 1 0 0 0 0 0

0 0 0 cos sin
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sin cos sin

cos sin cos
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 1 1 2 4 5 6 7 8

T
X A A A A A A A  

 1 0 0 0 0 0 0 0
T

D   

The condition that non zero coefficients 

( 1,2,4,5,6,7,8)
j

A j   exist is 
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(A10) 

At 0R , substituting Eqs. (A4) and (A6) into (A7) and 

(A8), yields 

 (A11) 

where  

1 1 2

1 1 2

1 1 2

1 1

2

1

2

1 1 2

1 1 1 1 1 1 2 2 2

2 2 2

1 1 1 1 2 2

3 3

1 1 1 1 1 1

1 0 1

0 0 0

0 0

0 0 0

cos sin cos

(cos sin ) (cos sin ) (cos sin )

2 sin 2 cos 2 sin

2 (cos sin ) 2 (cos sin

n l n l n l

n l n l n l

n l n l n l

n l n l

n

C
e n l e n l e n l

n e n l n l n e n l n l n e n l n l

n e n l n e n l n e n l

n e n l n l n e n l n l



  

 

   23

2 2 2) 2 (cos sin )
n l

n e n l n l













 

 

2

2

2

2

2

2

2 2 2 2

2

2 2 2

2 2 2 2 2

2 2

3 3

2 2 2

0 0 0 0 0

0 cos sin

0 0 0 0

0 cos sin

sin cos sin

(cos sin ) sin cos

2 cos cos sin

2 (cos sin )

SL SL

SL SL

n l Sl Sl

n l Sl Sl

n l Sl Sl

n l

e e SL SL

n

S e S e S SL S SL

e n l e e Sl Sl

n e n l n l Se Se S Sl S Sl

n e n l S e S e S Sl S Sl

n e n l n l S











 

   

  

 

  3 3 3sin cosSl Sle S e S Sl S Sl













 

 

 2 1 2 3 4 5 6 7 8

T
X A A A A A A A A  

 2 0 0 0 0 0 0 0 0
T

D   

The condition that non zero coefficients 

( 1,2,3,4,5,6,7,8)
j

A j   exist is 

1 1 2

1 1 2

1 1 2

1 1

2

1

1 1 2

1 1 1 1 1 1 2 2 2

2 2 2

1 1 1 1 2 2

3 3

1 1 1 1 1 1

1 0 1

0 0 0

0 0

0 0 0

cos sin cos

(cos sin ) (cos sin ) (cos sin )

2 sin 2 cos 2 sin

2 (cos sin ) 2 (cos sin ) 2

n l n l n l

n l n l n l

n l n l n l

n l n l

n

e n l e n l e n l

n e n l n l n e n l n l n e n l n l

n e n l n e n l n e n l

n e n l n l n e n l n l

  

 

    23

2 2 2(cos sin )
n l

n e n l n l

 

2

2

2

2

2

2

2 2 2 2

2

2 2 2

2 2 2 2 2

2 2

3 3

2 2 2

0 0 0 0 0

0 cos sin

0 0 0 0

0 cos sin

sin cos sin

(cos sin ) sin cos

2 cos cos sin

2 (cos sin )

SL SL

SL SL

n l Sl Sl

n l Sl Sl

n l Sl Sl

n l

e e SL SL

n

S e S e S SL S SL

e n l e e Sl Sl

n e n l n l Se Se S Sl S Sl

n e n l S e S e S Sl S Sl

n e n l n l S











 

   

  

 

  3 3 3

0

sin cosSl Sle S e S Sl S Sl





 

(A12) 

Eq. (A12) can give linear natural frequencies of the 

railgun system. 

1 1 1C X D

2 2 2C X D
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