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Abstract. The axisymmetric buckling delamination of the Piezoelectric/Metal/Piezoelectric (PZT/Metal/PZT) sandwich
circular plate with interface penny-shaped cracks is investigated. The case is considered where open-circuit conditions with
respect to the electrical displacement on the upper and lower surfaces, and short-circuit conditions with respect to the electrical
potential on the lateral surface of the face layers are satisfied. It is assumed that the edge surfaces of the cracks have an
infinitesimal rotationally symmetric initial imperfection and the development of this imperfection with rotationally symmetric
compressive forces acting on the lateral surface of the plate is studied by employing the exact geometrically non-linear field
equations and relations of electro-elasticity for piezoelectric materials. The sought values are presented in the power series form
with respect to the small parameter which characterizes the degree of the initial imperfection. The zeroth and first
approximations are used for investigation of stability loss and buckling delamination problems. It is established that the
equations and relations related to the first approximation coincide with the corresponding ones of the three-dimensional
linearized theory of stability of electro-elasticity for piezoelectric materials. The quantities related to the zeroth approximation
are determined analytically, however the quantities related to the first approximation are determined numerically by employing
Finite Element Method (FEM). Numerical results on the critical radial stresses acting in the layers of the plate are presented and
discussed. In particular, it is established that the piezoelectricity of the face layer material causes an increase (a decrease) in the

values of the critical compressive stress acting in the face (core) layer.
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1. Introduction

Piezoelectric thin samples are used as sensors and
actuators for controlling the working procedures of various
types of elements of construction such as plates and shells.
Under agglutination, debonded zones can arise on these
samples on the face surface of the elements of construction.
Specifically, these debonded zones may be the source of
local buckling of the piezoelectric samples under
compressional electromechanical forces. Consequently,
such situations prevent the piezoelectric sample-plates from
performing properly as sensors and actuators. For
controlling and preventing such buckling delamination it is
necessary to make related theoretical investigations.
However, up to recent years such investigations have been
almost completely absent. However, the study of the
stability loss problems of the piezoelectric plates and beams
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has attracted the attention of many researchers such as Yang
(1998), Jerom and Ganesan (2010) and many others listed
therein. In these investigations it was established that the
piezoelectricity of the plate or beam materials causes an
increase in the values of the mechanical critical forces.
There are also a number investigations on the dynamics,
statics and stability loss of the systems consisting of
piezoelectric and elastic constituents. Some of them are
briefly reviewed below.

The paper by Kakar and Kakar (2016) deals with the
study of the Shear-Horizontal (SH)-waves in the system
comprising a piezomagnetic covering layer and an initially
stressed orthotropic  half-plane. The corresponding
dispersion equation is derived for both magnetically open-
and closed- circuit cases under various types of boundary
conditions on the free face plane of the piezomagnetic layer.
Numerical results illustrating the influence of the
piezomagnetic properties of the covering layer on the
dispersion curves are presented and discussed.

In the paper by Wu and Ding (2015), static analysis of
the simply supported rectangular plate made of functionally
graded piezoelectric material is studied. The open- and
closed- circuit conditions on the upper and lower face
surfaces are considered. The Reissner mixed variational
method is employed for solution of the corresponding 3D
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problems. The refined plate theories with various order are
used for reducing the 3D problems to the corresponding 2D
problems and the finite layer method is employed for
obtaining numerical results. The accuracy of these results is
established through comparison with the corresponding
ones obtained within the scope of the 3D formulation.

In the paper by Arefi and Allam (2015), the von-Karman
type non-linear plate theory is employed for investigation of
the response of the bi-layered circular plate made of
functionally-graded piezoelectric material and resting on a
Winkler-Pasternak foundation. For illustration of the
geometrical non-linearity and other problem parameters on
the static response of the considered system, the
corresponding numerical results are presented and
discussed.

The paper by Jabbary et al. (2013) studies the buckling
of the sandwich circular plate with piezoelectric face and
porous middle layers under radial compression. The
Kirchhoff-Love plate theory within the scope of von-
Karman geometric non-linearity is employed for this
investigation. The virtual work principle is employed for
obtaining the stability loss equations. The analytical
expression for the critical force is obtained and according to
this expression the influence of the problem parameters, as
well as of the piezoelectricity of the covering layer material
is determined. The results obtained in this paper are
acceptable for very thin plates.

The paper by Meng et al. (2010) deals with the study of
elliptically near-surface buckling of the piezoelectric
laminated cylindrical hollow shell under electric and
thermal load. The delaminated part of the shell is called the
sub-shell, while the remaining part is called the base-shell.
Basically, the aforementioned near surface buckling of the
shell is reduced to the stability loss of the sub-shell under
action of the external thermal and electrical load, the action
of which is transmitted to the sub-shell through the base-
shell. The investigations are made within the scope of the
classical theory of shells by employing the Kirchhoff-Love
hypothesis under the use of the geometrical nonlinear
strain-displacement relations. Numerical results on the
critical strain and on the influence of the problem
parameters on this strain are presented and discussed. In
particular, it is established that the effect of the applied
electric field on the critical compression strain is much
larger than that of the temperature changes.

It should be noted that all the foregoing investigations
have been made within the scope of the approximate plate
and shell theories, the accuracy of which depends
significantly on the geometrical and electro-mechanical
properties. Consequently, the order of the accuracy of these
results can be estimated with the use of the corresponding
results obtained within the scope of the 3D exact theories.
For instance, the accuracy of the results related to the
stability loss or buckling delamination problems can be
estimated with the corresponding results obtained within the
scope of the 3D exact linearized theories, the present level
of which has been detailed in the monographs by Guz
(1999, 2004) who made many fundamental contributions to
creating this theory. This theory was also employed for
investigation of the stability loss around cracks contained in

homogeneous and piecewise homogeneous infinite elastic
bodies. A review of the corresponding investigations is
detailed in the paper by Bogdanov et al. (2015).

In the foregoing sense, the first attempt with respect to
the buckling delamination problems related to the system
comprising elastic and piezoelectric constituents was made
in the paper by Akbarov and Yahnioglu (2013). More
precisely, in this paper, the buckling delamination of the
sandwich plate strip with piezoelectric face and elastic core
layers is investigated in the plane-strain state by employing
the three-dimensional linearized theory of electro-elastic
stability. In this investigation it is also assumed that the
plate-strip has two interface inner cracks between the face
and core layers and buckling delamination of the plate takes
place around these cracks.

In another paper by Akbarov and Yahnioglu (2016), the
influence of the initial stresses in the aforementioned
sandwich plate-strip on the total -electro-mechanical
potential energy and energy release rate at the interface
crack tips is investigated.

The present paper deals with the study of the buckling
delamination problem of the sandwich circular plate
consisting of the core elastic-metal and two piezoelectric
face layers. It is assumed that on the interface planes of the
layers there are penny-shaped cracks and their edge surfaces
have initial infinitesimal rotationally = symmetric
imperfections. The development of these imperfections with
compression of the plate in the inward radial direction by
uniformly distributed rotationally symmetric normal forces
is investigated by employing the geometrical non-linear
exact electro-mechanical field equations for piezoelectric
and elastic materials. Numerical results on the values of the
critical stresses and forces for various values of the problem
parameter are presented and discussed. Note that the
corresponding problems for the case where the circular
plate consists of elastic and viscoelastic constituents are
made in the papers by Akbarov and Rzayev (2002) and
Rzayev and Akbarov (2002). The results obtained in these
two papers and other related ones are also detailed in the
monograph by Akbarov (2013).

2. Formulation of the problem

Consider a circular sandwich plate whose geometry is
shown in Fig. 1 and for generality, assume that the materials
of all the layers are piezoelectric ones. We suppose that the
materials of the upper and lower face planes are the same
and between the core and face layers there are penny-
shaped cracks whose locations are also shown in Fig. 1.

We associate with the lower face layer of the plate the

cylindrical coordinate system Oréz (Fig. 1) and the
position of the points of the plate we determine through the
Lagrange coordinates in this system. Thus, according to
Fig. 1, in the selected coordinate system, the plate occupies

the region {0£r$£/2;0$0§27z;0$z£h} and the
penny-shaped cracks occur in {z:h,: 10; OSrSEO/Z}
and in {z=he +hg £0; 0<r</y/2}. Besides all of these,
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we assume that in the initial (natural) state the edge-
surfaces of the cracks have infinitesimal rotationally
symmetric imperfections. In Fig. 1(b) the upper (lower)

edge of the upper and lower cracks is denoted by S (S])

and S/'(S[). respectively. The equations of these surfaces
are given as follows

z=hg £&f(r) for S{ ; z=he +he +&f(r)for
1)

Sﬁ, under 0<r</¢y/2

where & (i.e, 0< ¢ <<1) is a parameter which
characterizes the degree of the imperfectionsand f(r) isa

function which shows the mode of the imperfection.

Thus, within the framework of the foregoing
assumptions, we suppose that the plate is compressed in the
inward radial direction by uniformly distributed rotationally
symmetric normal forces with intensity p acting on the
lateral surface of the circular plate-disc. Below we will
denote the values related to the upper and lower face layers
by upper indices (3) and (1) respectively, whereas the
values related to the core layer are denoted by (2).

X2

B

1

(a)
-
A 3
1] I"ﬂ_l ez .| P
| (T : | 8 |k —
S 4 b _—
. CHA - —_—
he- @ :
—_— + - —
— h[_ I_ [:} = . —_— x5
Mz | fol '
r 2 T 02 L
(b)

Fig. 1 The geometry of the considered circular plate with
two cracks (a) and the cross section of the circular plate
with loading condition and some geometric values (b): r,é@

and z ( x,%X and Xz ) are cylindrical (Cartesian)
coordinates, ¢q/2(¢/2) is a Radius of the penny-shaped
cracks (circular disc-plate), hg (he) is a thickness of the
face (core) layer, S (Sy) and S (S_) upper
(lower) edge surfaces of the upper and lower cracks, p is
an intensity of the compressional force

As we are considering the rotationally axisymmetric
deformation state, we will use the corresponding field
equations related to this case. We write the exact
geometrical non-linear electro-mechanical field equations
which are satisfied within each plate separately.
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In (2)-(4) the following notation is used: oy’ ,...,

agz)and Sﬁ,lf), sz() are the components of the stress
k

M

are the components of the Maxwell stress tensor, 8(()k) is

k)

and Green strain tensors, respectively, Mr('r( )

the permittivity of free space, uﬁ") and u§ are

components of the displacement vector, Dr(k) and ng)
are the components of the electrical displacement vector,

and cl(Jlil), er(llfj) and gr(]lj() are the elastic, piezoelectric

and dielectric constants, respectively.

Note that the piezoelectric material exhibits the
characteristics of orthotropic materials with  the
corresponding elastic symmetry axes and becomes
electrically polarized under mechanical loads or mechanical
deformation placed in an electrical field. According to Yang
(2005), the polled direction of the piezoelectric material
will change according to the position of the material
constants in the constitutive relations. In the present paper,
under numerical calculations, it is assumed that the Oz
axis direction is the polarized direction. Moreover, we
introduce the following notation.
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Thus, the complete geometrically non-linear electro-
mechanical field equations for piezoelectric materials are
the Egs. (2)- (5).

It should be noted that in the classical linear theories of
electro-elasticity the following two particularities: (1) the
difference between the areas of the surface elements and the
difference between the elementary volume taken before and

after deformation, and (II) the rotation of the “materialized”
base vectors as a result of the deformations, are not taken
into consideration either under determination of the stresses
and under obtaining the field equations, or under
formulation of the boundary conditions with respect to the
forces and the electrical displacements. However, in the
case under consideration, i.e., in writing the Egs. (2)-(4), we
assume that the deformations are so small that the I
peculiarity can be neglected, but the Il peculiarity must be
taken into consideration under determination of the stresses,
electrical displacements and obtaining the field equations,
and under formulation of the boundary conditions with
respect to the forces and electrical displacements.

Now we formulate the boundary and contact conditions.
Regarding the cracks’ edges the following can be written
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Note the conditions (6) are satisfied for the region
[0<r</((/2], but for the region [(y/2<r</(/2] the

following complete contact conditions take place between
the layers of the plate
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Moreover, on the upper surface of the upper face layer
and on the lower surface of the lower face layer of the plate
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the following conditions are satisfied

NE)

77
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(8)

We assume that on the lateral surface of the plate the
following conditions are satisfied
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Note that (6) — (9) are written for the mechanical forces
and displacements. For the electrical displacement and
electrical potential we formulate the following conditions:

on the cracks’ edges
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on the upper face of the upper face layer and on the lower
face of the lower face layer

3 _ 1
D =2he +he =0, D§) z:0:0 for 0<r<¢/2 (13)
or
¢ ‘z=2h,:+hc , 0 0 or 0<r</¢/2 (14)

on the lateral surface of the plate

D
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or

¢(k) =0, for k=12,3 under
r=¢/2 (16)

OSZSZhF +hC

The conditions (10), (13) and (15) are called “open—
circuit”, however the conditions (11), (14) and (16) are
called “short—circuit”.

This completes the mathematical formulation of the
problem, according to which it is required to investigate the
development of the initial imperfections of the penny-
shaped cracks’ edges with the compressional uniformly
distributed rotationally symmetric normal forces acting on
the lateral surface of the plate.

3. Method of solution

3.1 Presentation of the sought values in series form
with respect to the small parameter

For the solution of the problem formulated in the
previous section we employ the approach developed in the
monograph by Akbarov (2013) for purely elastic and
viscoelastic materials, according to which, all the sought
values are presented in the series form in the small
parameter & which enters into the expressions in (1):

{6010, DI g0} = 3 oM o, ufOn DI, 60N (17)
n=0

+

Obtaining the expressions for the components n; and

n; of the normal vector to the cracks' edge surfaces in (1)

and representing these expressions also in the series form in
the small parameter ¢, and substituting these and the
expressions in (17) into the foregoing non-linear equations
and relations, and doing some cumbersome mathematical
manipulations, we obtain the corresponding equations and
relations for determination of each approximation in (17).
Here we write these equations and relations only for the
zeroth and first approximations and under consideration of
the zeroth approximation we neglect the non-linear terms.

Thus, the equations and relations for the zeroth
approximations are
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Note that the equations and relations (18)-(30) are
obtained from the Egs. (2), (4), (6)-(16), respectively.

Now we consider the equations and relations obtained
for the first approximation. Under obtaining these equations

and relations we assume that ag)'ozag';)'o:o and
{auﬁk)’o Jor aulO for ou0 /o7

M0 157} << 1and we neglect these terms with respect to

1. Thus, for the first approximation we obtain the following
equations and relations.
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2.0 (37)
SICE I 2 B TG)
Z=h|: 82
Z=h|:
1.0
D{* :-% f(r), for 0<r<¢q/2
z=hc Z 2ohe
or
3),0
T ETeY
Z=h|: +hC aZ
Z:hF +|’t
2),0
@1 - o9 f(r),
Z=h|: +hC 0z Z:hF +hc
(38)
2),0
@1~
Z:hF az Z=h|:
1.0
J0U 9T ) for 0<r<ig/2
Z:hF 82
Z:hF
D@1 _p@2 '
Z:hF +hC Z:hF +hC
2=hg +he 2=hg +he (39)
D@1 —_pdl , (2).1 — @)1
z Z=h|: z Z=h|: ¢ ‘ZZhF ¢ ‘ZZhF
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. for 0g/2<r</4/2

DM =0, p®Y _—g for O<r<v¢/2
7=2hg +he 02 =0 0 / (40)
or
(31 =0, 49| =0 for 0<r<y/2
z=2hg +he ¢ z=0 o / (41)
D =0, for k=123 under
r=¢/2 (42)
0<z< 2h|: + hC
¢(k)'1 =0, for k=1,2,3 under

r=(/2 (43)
0<z< 2h|: + hC

Note that the equations (31)-(43) are obtained from the
Egs. (2), (4), (6)-(16), respectively. Direct verification
shows that the system of Eqgs. (31)-(43) coincides with the
corresponding ones of the three-dimensional linearized
theory of electro-elastic stability which are detailed, for
instance, in the monographs by Yang (2005), Guz (1999),
Akbarov (2013) etc.

It is also necessary to add to the system of equations
related to the =zeroth and first approximations the
corresponding constitutive relations obtained from (3). As
the relations in (3) are linear ones, therefore the constitutive
relations of each approximation are as in (3).

This completes consideration of the equations and
relations related to the zeroth and first approximations in
the series expansion (17). As shown in the monograph by
Akbarov (2013), as well as in related papers, such as
Akbarov and Rzayev (2002) and Rzayev and Akbarov
(2002), for determination of the critical parameters which
determine the buckling delamination of the circular plate
under consideration, the solutions obtained within the scope
of the zeroth and first approximations are enough.

Now we consider determination of the quantities related
to the zeroth and first approximations.

3.2 Determination of the values related to the zeroth
approximation

First of all, we note that the zeroth approximation
corresponds to the case where the plate under consideration
with the cracks without any imperfection on their edge
surfaces, is compressed with a uniformly distributed
rotationally symmetric normal compressive force with
intensity p acting on the lateral surface of the plate in the
inward radial direction. It is known that, according to Saint

Venant’s principle, in the region where 0<r</¢/2—h

the stress-strain state can be taken as homogeneous with
very high accuracy. In other words, in this region we can

assume that

o0 =0,0800 =0,s0 =0,
S,g,lf)'o = Sg;)‘o = consty, (44)
apr()’o = agé)’o = consti

Consequently, in the zeroth approximation in the cases
where /y/2</¢/2—h under the considered type of
external loading, the existence of the cracks does not cause
any stress concentration or any influence on the stress state
given by the relations in (44). Taking this statement into
consideration, under determination of the quantities related
to the first approximation we will use the expressions given
in (44).

As in the present paper, we will analyze the numerical
results related only to the open-circuit case in the planes

z=2hg +hc, hg +he, hg and O, and to the short-

circuit case on the lateral surface r :€/2 of the plate.
Therefore, in the zeroth approximation we obtain that

DO _pMO_g k_123 (45)

Using the constitutive relations in (3), we obtain from
(45) that

oo, gogpe @
where
O ey () (Jlr()eg;z)) SEE;(U(:;) ey |
£11°€33" ~413°¢
- ?‘%’ iti Etielii’)
€11°€33° ~413
(47)
€13°€31" ~ 4117433
© _ gl(|1<) (k) _ (k)el(k)
(k)géli)_gl(lf) (k)
Taking into consideration the relation O'(k)o 0, we

obtain
(k),0: (k) (k),0

(k) (k)

k k) 4 (k
afo &3 31( ) (3)d1( : (48)
k) k), (k k) .(k
oo
Using the relation (48) it is obtained that
of00 = ARSI “)
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AR =) 1) —e0a}) 1 a6l _ a0 _ a(0efl)c(k)
Assuming that
1 2
sP0—s@D0 on 6O 4heo@O=hp  (50)

The following expression is obtained for the stress in the
face layers

h
(1)0 p[ g

Thus, through the expressions (44)-(51) we determine
completely the quantities related to the zeroth
approximation. We recall that these expressions are valid

for the region where (¢/2—h)<r<¢/2 and it is assumed
that the materials of the face layers are the same.

-1
h_cﬁj (5)

3.3 Determination of the values related to the first
approximation

For determination of the first approximation we employ
the FEM method and for this purpose, according to Guz
(1999), Yang (2005), Akbarov (2013) and others, we
introduce the following functional.
H(u'gl),lyu'(Z),l’u$3),l,ugl),lyu§2),1,u§3),l, (/5(1)'1, ¢(2),1’ ¢(3),1) _

1i It (k)lOU() (k)lu() t(k)ylaugk),l+t(k)ylau§k),l+
ar oo " &

2i2 =1 (k)

k1 oufot LD | = ()lnK)L
£{k) —— (DL L gD | rdrdz —
Z

(52)

df
| dr,ﬁ>,ou§1),1‘ rd

h f ﬂy(z)ou(z)l‘ rdr —
=1k

Z—h|:

to/2
o2 of o0y @1

[/O/zdf
[ Sopou® e |
r z=hg +he 0 dr

rdr

z=hg +hc
where
QW ={0<r<(/2,0<z<he —(z=hg +0,0<r <05/2))

QW ={o<r</2hg <z<hg +he—(z=hg +0,0<r<(,/2) -

(53)
(z=hg +hc —0;0<r <0, /2)}

09 ={0<r</2he +he <z2<2h +he —(z=hg +hc —0;0<r <05/2)}

From equating to zero the first variation of the
functional (52), i.e., from the relation

3 3 3
8T = Z 0’7 5(“)1 Z 5 ou ORI Z an 5¢"‘)1 0 (54)

and after well-known mathematical manipulations we
obtain the first three equations in (31). The boundary and
contact conditions in (33)-(42) are given with respect to the
forces and electrical displacements. In this way it is proven
that the first three equations in (31) are the Euler equations

for the functional (53) and the boundary and contact
conditions in (52)-(53) which are given with respect to the
forces and electrical displacements, are the related natural
boundary and contact conditions.

According to FEM modelling, the solution domains
indicated in (53) are divided into a finite number of finite
elements. For the considered problem each of the finite
elements is selected as a standard rectangular Lagrange
family quadratic finite element (i.e., with nine nodes) and
each node has three degrees of freedom, i.e., radial

displacement uﬁk) transverse displacement u(k)1 and
electric potential ()1 . Employing the standard Ritz

technique detailed in many references, for instance, in the
book by Zienkiewicz and Taylor (1989), we determine the
displacements and electrical potential at the selected nodes.
After this determination, by employing the initial
imperfection criterion

u gl),l u §3) 1

Z=h|: +hC
z=0

Z=h|: —>®©

as P= Per (55)
z=0

the values of the critical compressional forces are
determined.

Note that the approach developed in the present paper
can also be applied for buckling delamination problems
related to structures containing time-dependent constituents,
for instance, visco-piezoelectric materials.

This completes the consideration of the method of
solution.

4. Numerical results and discussions

4.1 The selection of the initial imperfection mode and
the layers’ materials

As also noted above, we assume that the initial
imperfection of the cracks’ edges is rotationally symmetric
and according to this assumption, the imperfection can be
selected as follows

ef(r)=slycos [ J Lcos [”rJ :
lo lo (56)
0<r<(y/2, L<<ty, =L
lo

where L is the maximum value of the lift of the initial
imperfection.

As a result of the selected buckling delamination
criterion (55), the values of the critical parameters cannot
depend on the rotationally symmetric initial imperfection
mode, and this statement was also noted in the monograph
by Akbarov (2013).

Note that in the present paper, the piezoelectric
materials PZT -4, PZT -5H and BaTiO3 are taken as the
face layer materials, however the metal materials -
aluminum (Al) and steel (St) are taken as the core layer
materials. The values of the elastic, piezoelectric and
dielectric constants of the selected piezoelectric materials
and the references used are given in Table 1.
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Table 1 The values of the mechanical, piezoelectrical and dielectrical constants of the selected piezoelectric materials:

here cl(f),...,cé%) are elastic constants , eég),..., el(gl) are piezoelectric constants, gl(f) and 53(%) are dielectric
constants
Mater. () () () (r) (r) (r) () (r) () (r) (r)
(Source Ref)  Ci1 C1y Ci3 C33 Cig Ce6 €31 €33 €5 ér €33
(YaigTz_gos) 139 778 740 115 256 306  -52 151 127 0646  0.562
PZT-5H
(Yangooos) 126 791 839 11.7 2.30 2.35 6.5 233 170 1505  1.302
(Kig'%%@ 166 766  7.75 16.2 4.29 4.29 4.4 186 116 1434 1682
x1010 N /m? c/m?2 x1078 C/Vm

Table 2 The values of p / (7PEW +7PE®P) obtained
for various E® /E®W under »® =03, 2hg /¢, =1/8,
(t—10)/(20) =025 and hg /(2¢)=0.03215: here 7
(77(2)) is a volumetric concentration of the matrix

(reinforcing) layers, E(l)(E(Z)) is a modulus of elasticity
of the matrix (reinforcing) layers

Guz and

Rzayev and
@ g® Nzggr;g)ko Akbarov (2002)  Present
1 0.0167 0.0178 0.0171
10 0.0140 0.0154 0.0148
25 0.0126 0.0129 0.0120

According to Guz (2004), the wvalues of Lame’s
constants of the core layer material is selected as follows:
for the Al: 1 =48.1GPa and u=27.1GPa; for the St:

1=92.6GPa and u=77.5GPa.

4.2 Testing of the FEM modelling and PC programs

Under FEM modelling using the symmetry with respect
to the plane Z=hg +hc /2 and the axial symmetry with

respect to the Oz (Fig. 1(a)) axis of the mechanical and
geometrical properties of the plate, we consider only the
region 0 =r =¢/2;0 =z <hg +h, /2§ and this region
is divided into 40 finite elements along the radial direction
and 12 finite elements along the plate’s thickness direction,
resulting in 6038 NDOF Such selection of the finite
elements numbers is established according to the
convergence of the numerical results. All the corresponding
PC programs are composed by the authors of the paper.

Now we consider testing of the aforementioned
algorithm and PC programs and as in the papers by Guz and
Nazarenko (1985) and Akbarov and Rzayev (2002), we
consider the case where the plate material is homogeneous
transverse-isotropic with the Oz symmetry axis and with
effective mechanical constants where the plate material is
multilayered consisting of two alternating isotropic layers

with modulus of elasticity ED and E(Z), Poisson ratio
v® and v@ | and volumetric concentration 77(1) and

77(2). We note that in the paper by Guz and Nazarenko

(1985), the case is considered where the semi-infinite half-
space with a near-surface penny-shaped crack is
compressed in the radial inward direction at infinity and the
corresponding eigenvalue problem is solved by employing
the dual integral equations method. According to physico-
mechanical considerations, in the cases where ¢, <</

the results obtained for the corresponding finite region must
be very near to the corresponding ones obtained in the paper
by Guz and Nazarenko (1985). This fact was also checked
in the paper by Akbarov and Rzayev (2002). Thus, we

compare the results related to P, 1 (pPEW + P EMR)

obtained for various E@ /E® in the foregoing papers

and in the present paper in the case where (2 =03,
2hg /0y =1/8 and (¢/—(y)/(2¢)=0.25. The comparison
of the corresponding results given in Table 2 shows that the
numerical results obtained by employing the present PC
programs are very near to those obtained in the papers by
Guz and Nazarenko (1985) and Akbarov and Rzayev (2002).

We also consider comparison of the results obtained by
employing the present PC and FEM modeling with the
corresponding ones obtained in the paper by Rzayev and
Akbarov (2002) in which the buckling delamination of the
circular sandwich plate with penny-shaped interface cracks
was considered. However, in the paper by Rzayev and
Akbarov (2002) the materials of the layers of the plate are
taken as elastic ones and it is assumed that on the lateral
surface of the plate, not only the displacement ugk)'l but

also the displacement uﬁk)’l is equated to zero.

Consequently, according to this statement the system
considered in the paper by Rzayev and Akbarov (2002)
must be more rigid than the corresponding one considered
in the present paper and as a result of this difference, the
critical values of the compressive forces obtained in the
paper by Rzayev and Akbarov (2002) must be greater than
the corresponding ones obtained in the present paper. These
predictions are proven with the data given in Table 3 which

shows the values of pg, / EW  obtained for various values
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of ({—0g)/(2¢) and hg /¢ under 2hg/ly=1/8

and E(z)/E(l) =50. It should also be noted that the

number of finite elements used in the present approach is
two times greater than that used in the paper by Rzayev and
Akbarov (2002) and this fact may also reduce the values of

Per / E® obtained by employing the present approach. At

the same time, the results given in Table 3 can also be taken
as validation of the numerical results with the finite element
numbers.

Thus, with this we restrict ourselves to consideration of
the validation of the PC programs and FEM modelling used.
Unfortunately we have not found any results of other
authors related to the subject of the present paper in order to
compare corresponding numerical results.

4.3 Discussions of the numerical results
For simplification of the consideration, we introduce the

following notation for the critical radial stresses and critical
compressive forces

0 -oS) . o oS
Per =p/ Cﬁ

Thus, according to (57), we estimate the work carrying
capacity of the plate under consideration with respect to the
buckling delamination by simultaneous use of the values of
three dimensionless critical parameters which are the

dimensionless radial compressive stress a((:%) in the face
piezoelectric layer, the dimensionless radial compressive

stress aérz) in the core metal layer and the dimensionless

intensity Pgr of the external compressive force. Such an

approach for estimation of the buckling delamination allows
us to have more precise information on the influence of the
problem parameters such as the piezoelectricity of the face
layers’ materials, the face layers’ thickness, the cracks'
length (i.e., the radius of the penny-shaped cracks) and the
mechanical properties of the layers' materials.

Thus, we consider the numerical results obtained for the
critical parameters indicated in (57) and detailed above.
Note that these results are given in Tables 4-9 which are
obtained for the PZT-5H/AI/PZT-5H, PZT-4/Al/PZT-4,
BaTiO3/Al/ BaTiO3, PZT-5H/St/PZT-5H, PZT-4/St/PZT-4
and BaTiO3/St/ BaTiO3 plates, respectively. For estimation
of the influence of the face layers’ piezoelectricity on the
values of the critical stresses in the Tables, two types of
results are presented simultaneously, the first of which
(upper number) relates to the case where the values of the
piezoelectric and dielectric constants of the face layer
materials are equated to zero, i.e.,, coupling of the
mechanical and electrical fields is not taken into
consideration. However, under obtaining the second type of
results (lower number) the values of the piezoelectric and
dielectric constants are taken into consideration as given in
Table 1 and the coupling effect between the electrical and
mechanical fields is taken into consideration completely.

In these Tables the values of the critical stresses are also
given for the same whole plate, i.e., the plate which does
not contain any crack. These results are in the far right
column and according to these results, the cases can be
determined where the stability loss of the whole plate takes
place in the early stage of external loading, before buckling
delamination.

Thus, it follows from these Tables, and, as can be
predicted, that the values of all the critical stresses related to
the buckling delamination increase with increasing of the
face-piezoelectric layers’ thickness and with decreasing of
the crack’s radius. At the same time, these Tables show that
in all the considered cases, the piezoelectricity of the face

. . . 1
layers’ materials causes an increase in the values of Gér) :

i.e. in the values of the critical compressive stress acting in
the piezoelectric layer. According to the numerical results,
we can also conclude that the influence of the

piezoelectricity on the values of O'C(?), i.e. on the critical

values of the compressive stress acting in the core-metal
layer, is as follows: for the PZT-5H/AI/PZT-5H and PZT-
5H/St?PZT-5H plates for all the considered cases, the
piezoelectricity of the face layers’ materials causes a

decrease in the values of O'é?), however for the PZT-

4/Al/PZT-4, PZT-4/St/PZT-4, BaTiO3/Al/BaTiO3 and
BaTiO3/St/BaTiO3 plates this conclusion occurs for the
cases where ¢y/¢>0.2.

Table 3 Comparison of the values pg, / E® obtained by
employing the present approach with the corresponding
ones obtained in the paper by Rzayev and Akbarov (2002)
for various values of (¢—/¢y)/(2¢) and hg /¢ under
2hg [0 =1/8 and E(z)/E(l) =50 : here hgz is a
thickness of the face layer, /g (¢) is a radius penny-shaped
crack (plate-disc)

The results
obtained by the
approach The results obtained
developed in the by the approach
(—lyg  hg paper by developed in the
20 _ Rzayev and present paper;
Akbarov (2002); (FE numbers are 40
(FE numbers are and 12 in the radial
20 and 6 in the and thickness
radial and directions,
thickness respectively)
directions,
respectively)
0.10 0.0500 0.2571 0.2260
0.15 0.04375 0.2526 0.2343
0.20 0.0375 0.2509 0.2371
0.25 0.03125 0.2510 0.2380
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Table 4 The values of the critical stresses oY (?) and P, (57) obtained for PZT-5H/AI/PZT-5H in the cases

cr+ Oc

where the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to
the corresponding data given in Table 1 (lower number): here hg is a thickness of the face layer, ¢ is a radius plate-

disc

el G &
© 070 0.60 0.50 0.40 0.30 0.20 0.10 0.00
@ 00162 0.0217 0.0304 0.0454 0.0747 0.1418  0.3375 0.1404
9" 00236 00315 00440 00658 01082 02062 0.5012 0.1927

o025 (@ 00191 00255 00358 00535 00881 01906 03981 0.1656
00161 00216 00301 00451 0.0742 0.1414 0.3438 0.1321
_ 0.0184 0.0246 0.0345 0.0516 0.0847 0.1609  0.3830 0.1593
P 00180 00240 00337 00503 00827 0577 03832 0.1473
L@ 00277 00367 00508 00745 01183 02103 04347 0.1370
° 0.0402 0.0532 0.0736 0.1080 0.1718 0.3081  0.6543 0.2017

0033 @ 00326 00432 00599 00878 01395 02480 0.5127 0.1616
00275 0.0364 00504 0.0740 0.1178 0.2113  0.4488 0.1383
_ 0.0310 0.0411 0.0569 0.0834 0.1324 0.2355  0.4867 0.1534
P 00318 00421 00582 00853 01359 02436 05174 0.1595
@ 00415 00545 00743 01068 0.1640 02751  0.5093 0.1341
% 00602 00790 01078 0.1551 0.2393 04060 0.7752 0.2097

ooz @ 00489 00642 00876 01250 01934 0.3245  0.6007 0.1581
00412 00541 00739 0.1063 0.1641 02785 05317 0.1438
_ 0.0459  0.0602 0.0821 01179 0.1812 0.3039  0.5626 0.1481
P 00492 00645 00881 01267 01954 03316 0.6332 0.1712
@ 00571 00742 00999 01407 0.2094 0.3338  0.5669 0.1316
9 00829 01077 01452 02050 03071 04965 0.8712 0.2169

0050 @ 00673 00875 01178 01659 0.2470  0.3937  0.6687 0.1552
00568 00738 0.0996 0.1406 0.2106 0.3406  0.5976 0.1487
_ 0.0623  0.0809 0.1089 0.1533 0.2282 0.3637 0.6178 0.1435
P 00699 00908 01224 01728 02589 04186 0.7344 0.1829

In the cases where ¢,/¢<0.2, for instance in the case
where ¢q/¢=0.1 the character of the influence of the

piezoelectricity of the face layers depends on their
thickness, i.e. under relatively thick face layers, for example
under hg /£>0.033 for the BaTiO3/Al/BaTiO3 plate, the

piezoelectricity causes an increase in the values of O'((:?) .
Consider also the influence of the face layers’

piezoelectricity on the values of P, for which, according

to Tables 4 — 9, we can make the following conclusion: in
general the character of the influence of the piezoelectricity

on the values of Pg, depends on the values of hg /¢

and (/¢ as well as on the selected materials of the

layers. For instance, for the PZT-4/Al/PZT-4 and
BaTiO3/Al/BaTiO3 plates for all the considered values of

he /0 and (g/0, the piezoelectricity of the face layer

material causes an increase in the values of P, , however,
for the PZT-5H/AI/PZT-5H plate this increase takes place
in the cases where hg/¢>0.042 . For the PZT-
5H/St/PZT-5H, PZT-4/St/IPZT-4 and BaTiO3/St/BaTiO3

plates in the cases where (/¢ <0.4, the values of Pg,

decrease as a result of the piezoelectricity under relatively
thin face layers.

Thus, it follows from the foregoing discussions and
from the numerical results given in Tables 4-8, that the
most sensitive parameter for determination of the influence
of the face layer piezoelectricity on the buckling
delamination of the plate under consideration is the critical

value of the radial compressive stress O'é}) acting in the
piezoelectric face layers.
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Table 5 The values of the critical stresses cré}) , o—éf) and Py (57) obtained for PZT-4/AI/PZT-4 in the cases where

the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to the
corresponding data given in Table 1 (lower number): here hg is a thickness of the face layer, ¢ is a radius plate-disc

Crit. go/g
e/t st 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00
@ 00199 00265 0.0369 00548 0.0890 0.1650  0.3733 0.1572
cr 00263 00350 00489 00729 01191 02250 0.5371 0.1988
0025 @ 0.0163 0.0217 0.0303 0.0450 0.0732 0.1357  0.3070 0.1293
¢ 00146 0.0194 0.0271 0.0404 0.0661 0.1249  0.2982 0.1103
_ 0.0172 0.0230 0.0320 0.0475 0.0771 0.1430 0.3236 0.1363
P 00175 00233 00326 00485 00794 01499 0.3579 0.1325
@ 00338 00445 00611 00887 0.1387 0.2400 0.4717 0.1613
7¢r 00447 00590 00814 0.1189 01880 0.3336 0.6971 0.2132
0033 4@ 0.0278 0.0366 0.0502 0.0729 0.1140 0.1974  0.3880 0.1327
¢ 0.0248 0.0327 0.0451 0.0660 0.1043 0.1852  0.3870 0.1183
_ 0.0298 0.0392 0.0539 0.0782 0.1223 0.2116  0.4159 0.1423
P 00314 00415 00572 00836 01322 02347 04904 0.1500
@ 00502 00655 00886 0.1257 0.1896 0.3088  0.5455 0.1649
e 0.0667 00873 0.1187 0.1700 02604 04374 0.8232 0.2260
0otz @ 0.0412 0.0538 0.0728 0.1034 0.1559 0.2540 0.4487 0.1357
¢ 0.0370 0.0484 0.0659 0.0943 0.1445 0.2428 0.4570 0.1255
_ 0.0450 0.0587 0.0794 0.1127 0.1700 0.2768  0.4891 0.1480
P 00494 00646 00879 01259 01929 03239  0.6096 0.1674
@ 0.0686 00885 01180 0.1638 0.2390 0.3696  0.6018 0.1680
e 00916 01187 0.1594 02238 03329 05328 0.9236 0.2379
0050 4@ 0.0564 0.0728 0.0970 0.1347 0.1966 0.3040  0.4950 0.1381
¢ 0.0508 0.0659 0.0885 0.1242 0.1848 0.2958  0.5128 0.1320
_ 0.0625 0.0806 0.1075 0.1492 0.2178 0.3368  0.5484 0.1531
Po 00712 00923 01239 01740 02588 04143 07182 0.1850

Table 6 The values of the critical stresses aé}), aéf) and g (57) obtained for BaTiO3/Al/BaTiO3 in the cases

where the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to
the corresponding data given in Table 1 (lower number): here hg is a thickness of the face layer, ¢ is a radius plate-

disc

Crit. Lo/t
hF /f Str.
0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00
@ 00166 00221  0.0309 0.0460  0.0747 0.1396 0.3230 0.1163
Ter 0.0178 0.0238 0.0331 0.0494 0.0806 0.1511 0.3553 0.1238
@ 0.0099 0.0131 0.0183 0.0273 0.0444 0.0829 0.1917 0.0690
Ter 0.0095 0.0127 0.0177 0.0264 0.0431 0.0808 0.1899 0.0661

, 0.0116 0.0154 0.0215 0.0320 0.0520 0.0971 0.2246 0.0809
e 0.0116 0.0155 0.0216 0.0322 0.0525 0.0984 0.2313 0.0806

Continued-

0.025
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) 0.0282 0.0373 0.0512 0.0746 0.1172 0.2049 0.4135 0.1245
0.0303 0.0400 0.0552 0.0804 0.1267 0.2231 0.4584 0.1339
0033 5@ 0.0167 0.0221 0.0304 0.0442 0.0696 0.1216 0.2454 0.0739
cr 0.0161 0.0213 0.0295 0.0430 0.0677 0.1192 0.2450 0.0716

— 0.0206 0.0272 0.0374 0.0544 0.0855 0.1494 0.3015 0.0908

0.0209 0.0276 0.0381 0.0555 0.0874 0.1539 0.3161 0.0924
) 0.0422 0.0550 0.0745 0.1061 0.1610 0.2658 0.4833 0.1318

oer 0.0453 0.0591 0.0803 0.1146 0.1748 0.2911 0.5391 0.1429
0082 5@ 0.0250 0.0326 0.0442 0.0630 0.0956 0.1577 0.2869 0.0782
cr 0.0242 0.0316 0.0429 0.0612 0.0934 0.1556 0.2881 0.0763
D 0.0322 0.0420 0.0569 0.0810 0.1229 0.2028 0.3688 0.1006
cr

0.0330 0.0431 0.0585 0.0835 0.1274 0.2121 0.3927 0.1041

) 0.0577 0.0745 0.0996 0.1389 0.2044 0.3208 0.5382 0.1385
0.0620 0.0802 0.1076 0.1505 0.2227 0.3532 0.6033 0.1511
0050 o@ 0.0342 0.0442 0.0591 0.0824 0.1213 0.1905 0.3195 0.0822
cr 0.0331 0.0429 0.0575 0.0804 0.1190 0.1887 0.3224 0.0808

— 0.0460 0.0594 0.0794 0.1107 0.1629 0.2557 0.4289 0.1104

0.0476 0.0616 0.0826 0.1155 0.1709 0.2710 0.4629 0.1160

Table 7 The values of the critical stresses o—éP , oéf) and P, (57) obtained for PZT-4/St/PZT-4 in the cases where

the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to the
corresponding data given in Table 1 (lower number): here hg is a thickness of the face layer, ¢ is a radius plate-disc

Crit. (o]t
hF /f Str.
0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

@ 0.0164 0.0220 0.0309 0.0465 0.0769 0.1473 0.3554 0.1130
oer 0.0239 0.0321 0.0450 0.0677 0.1121 0.2164 0.5365 0.1527

0.0256 0.0705 0.0990 0.1486 0.2458 0.4708 1.1361 0.3612

0.025 4
00445 00596 ~ 0.0837 01259 02084 04022 09972  0.2838
5 00436 00584 00820 01231 0203 03900 09410  0.2992

cr

0.0394 0.0528 0.0741 0.1114 0.1844 0.3558 0.8821 0.2511
o 0.0282 0.0374 0.0520 0.0766 0.1224 0.2198 0.4585 0.0918
0.0411 0.0546 0.0758 0.1118 0.1795 0.3258 0.7038 0.1365
0033 5@ 0.0902 0.1198 0.1664 0.2448 0.3914 0.7024 1.4654 0.2935
cr 0.0764 0.1015 0.1410 0.2079 0.3336 0.6056 1.3082 0.2537

— 0.0696 0.0924 0.1283 0.1888 0.3018 0.5416 1.1298 0.2263

0.0647 0.0859 0.1193 0.1759 0.2823 0.5124 1.1068 0.2147
o 0.0424 0.0558 0.0764 0.1103 0.1706 0.2884 0.5368 0.0758

oer 0.0618 0.0814 0.1116 0.1616 0.2515 0.4318 0.8353 0.1236
0042 @ 0.1356 0.1785 0.2445 0.3526 0.5453 0.9219 1.7157 0.2425
cr 0.1149 0.1513 0.2075 0.3004 0.4674 0.8025 1.5526 0.2298
5 0.0968 0.1274 0.1745 0.2519 0.3892 0.6580 1.2245 0.1731
cr

0.0928 0.1222 0.1676 0.2426 0.3775 0.6481 1.2538 0.1855
Continued-
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0.050

) 0.0585 0.0763 0.1032 0.1459 0.2186 0.3506 0.5963 0.0640
Ter 0.0854 0.1115 0.1511 0.2146 0.3243 0.5297 0.9381 0.1133
©) 0.1872 0.2440 0.3299 0.4666 0.6987 1.1205 1.9060 0.2045
Iar 0.1587 0.2072 0.2808 0.3989 0.6028 0.9846 1.7436 0.2106
— 0.1229 0.1602 0.2166 0.3063 0.4587 0.7356 1.2512 0.1343
Per 0.1221 0.1594 0.2160 0.3068 0.4636 0.7572 1.3409 0.1620

Table 8 The values of the critical stresses

® S

Ocr » Oc

f) and pg (57) obtained for PZT-5H/St/PZT-5H in the cases

where the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to
the corresponding data given in Table 1 (lower number): here hg is a thickness of the face layer, ¢ is a radius plate-

disc
Crit. go/g

he/t su 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00
@ 00202 00270 00377 00563 00920  0.1722 0.3939 0.2326
Ter 0.0267 0.0358  0.0502  0.0752  0.1239 0.2373  0.5788 0.2892

o025  ,(» 00451 00601 00842 01254  0.2050 0.3837 0.8780 0.5184
or 0.0402  0.0539  0.0755  0.1131  0.1865 0.3570 0.8707 0.4350
_ 0.0389  0.0519  0.0726  0.1082  0.1768  0.3309 0.7570 0.1793
Por 0.0369  0.0494  0.0692  0.1037 0.1709  0.3270 0.7978 0.1599
L@ 00344 00455 00628 00916  0.1442 0.2517 0.4975 0.2016
cr 0.0457  0.0607 0.0841  0.1236  0.1973 0.3549 0.7553 0.2681

0033 o 00768  0.1015  0.1401  0.2043  0.3216 05611  1.1088 0.4494
cr 0.0689  0.0914 01265  0.1859  0.2968  0.5339 1.1362 0.4033
_ 0.0627  0.0829  0.1144  0.1668  0.2625 0.4580 0.9050 0.1373
Per 0.0612  0.0812  0.1124  0.1652  0.2637 0.4743  1.0093 0.1340
L@ 00514 00673 00915 01305 01981 0.3247 0.5739 0.1769
cr 0.0686  0.0902 01234  0.1779  0.2752 0.4680 0.8937 0.2504

o2 o 04T 0.1500  0.2039  0.2909  0.4415 0.7238 1.2791 0.3942
cr 0.1033  0.1357 0.1857  0.2676  0.4140  0.7040 1.3445 0.3767
_ 0.0884  0.1156  0.1571  0.2241  0.3401 0.5576 0.9853 0.1055
Per 0.0889  0.1168  0.1598  0.2303  0.3562 0.6057 1.1567 0.1126
@ 00705 0.0913  0.1223  0.1707 0.2505 0.3891  0.6310 0.1573
Ter 0.0947 0.1233  0.1665  0.2354  0.3534  0.5720  1.0022 0.2359

ooso o 01572 02036 02726 03804  0.5582 0.8674 1.4065 0.3506
cr 0.1424  0.1854  0.2504  0.3541  0.5317 0.8605 1.5077 0.3550
_ 0.1139  0.1475  0.1975  0.2756  0.4044 0.6283 1.0188 0.0814
Per 0.1186  0.1544  0.2085  0.2948  0.4426 0.7163 1.2550 0.0947

Comparison of the numerical results given in Tables 4, 5
and 6 with the corresponding ones given in Tables 7, 8 and
9, respectively, shows that the values of the critical stresses

obtained for the plates with the St-core layer are greater ey
. . cr
than those obtained for the plates with the Al-core layer.

This comparison also shows that the values of a&)

depend mainly on the geometrical and electro-mechanical
properties of the face layer material, however the values of

and Pgr depend mainly on the geometrical and
mechanical properties of the core layer material.
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Table 9 The values of the critical stresses aé}), oéf) and g (57) obtained for BaTiO3/St/BaTiO3 in the cases

where the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to
the corresponding data given in Table 1 (lower number): here hg is a thickness of the face layer, ¢ is a radius plate-

disc
Crit. lo/t

hF /f St 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00
@ 00170 00227 00318 00475 00781 01477 0.3482 0.1685
9cr 00182 00244 00342 00511 00842 01603 0.3856 0.1787

0025 (» 00273 00365 00512 00765 01256 02375 0.5600 0.2711
" 0.0264 0.0353 0.0495 0.0741 0.1220 0.2322 0.5585 0.2588
_0.0248 0.0331 00464 00693 0.1138 02151 05071 0.0627
P 00244 00326 00457 00684 01126 02143 05153 0.0610
@ 00290 00384 00532 00779 01233 02184  0.4469 0.1555
¢’ 00312 00414 00572 00840 01337 02388 0.5001 0.1676

0033 » 00468 00619 00855 01254 01984 03512 0.7188 0.2501
o 00452 0.0599 0.0829 01217 0.1936 0.3458 0.7241 0.2428
_ 00409 00541 0.0748 01095 0.1734 0.3070 0.6282 0.0535
P 00406 00538 00744 01092 01737 03102 06495 0.0533
@ 00435 00570 00777 01114 01707 02847 05223 0.1447
9 00467 00614 00838 01206 0.1858 03134 05891 0.1585

004y @ 00700 00917 01251 01792 02745 04579  0.8401 0.2328
o 00677 00889 01214 0.1747 0.2690 0.4539  0.8530 0.2295
_ 00590 0.0773 01054 0.1510 0.2313 0.3858 0.7077 0.0459
P 00600 00775 01058 01522 02344 03954 07431 0.0468
@ 00598 00776 0.1043 01466 02174 03444  0.5803 0.1356
9 00644 00838 01129 01592 02379 03816 0.6588 0.1507

0050 @ Q091 01249 01678 02357 03497 05541 09334 0.2181
o 00933 01213 01636 02305 0.3444 05525 0.9539 0.2182
_ 00780 0.1013 0.1361 0.1912 0.2836 0.4493 0.7569 0.0395
P 00789 01026 01383 01949 02912 04671 0.8064 0.0412

5. Conclusions

Thus, in the present paper within the scope of the three-
dimensional linearized theory of stability for piezoelectric
materials, the axisymmetric buckling delamination of the
PZT/Metal/PZT sandwich circular plate with interface
penny-shaped cracks has been investigated. The case where
open-circuit conditions with respect to the electrical
displacement on the upper and lower surfaces, and short-
circuit conditions with respect to the electrical potential on
the lateral surface of the face layers are satisfied, is
considered. It is assumed that the edge surfaces of the
cracks have an infinitesimal rotationally symmetric initial
imperfection and the development of this imperfection is
studied by employing the exact geometrically non-linear
field equations and relations of electro-elasticity for
piezoelectric materials. The sought values are presented in
the power series form with respect to the small parameter

which characterizes the degree of the initial imperfection.
By use of the corresponding mathematical manipulations,
the corresponding equations and relations are obtained for
the zeroth and first approximations which are enough for
investigating the stability loss and buckling delamination
problems. It is established that the equations and relations
related to the first approximation coincide with the
corresponding ones of the three-dimensional-linearized
theory of electro-elasticity for the piezoelectric materials.
The quantities related to the zeroth approximation are
determined analytically, however, the quantities related to
the first approximation are determined numerically by
employing FEM. For determination of the critical values of
the compressive stresses, the initial imperfection criterion is
used. Numerical results are presented in Tables 4 — 9 for the
PZT-5H/AI/PZT-5H, PZT-4/Al/PZT-4, BaTiO3/Al/
BaTiO3, PZT-5H/St/PZT-5H, PZT-4/St/PZT-4 and
BaTiO3/St/ BaTiO3 plates, respectively. These results
illustrate simultaneously the values of the critical
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dimensionless radial compressive stress a&) acting in the

face piezoelectric layer, the values of the dimensionless

critical compressive radial stress aéf) acting in the core-
metal layer and the values of the dimensionless critical

stress of the intensity P, of the external compressive

forces obtained in the case where the piezoelectricity, i.e.,
the coupling effect, are taken into consideration (lower
number in the Tables) and in the case where the coupling
effect is not taken into consideration (upper number in the
Tables). According to these results, the following concrete
conclusions can be drawn:

- The values of 0'(9) , aéf) and D¢, decrease with
decreasing of the face layer thickness and with increasing of
the crack’s radius;

- For all the considered concrete cases, the piezoelectricity
of the face layer material causes an increase in the values of

O'((:%) and this increase becomes more considerable with

face layer thickness;
- The character of the influence of the face layers’ materials’

piezoelectricity on the values of aé?) and Pgr depends

on the electro-mechanical and geometrical characteristics of
the constituents of the plate: as a rule, for relatively thin
(thick) face layers and for relatively long (short) cracks, as a

result of the piezoelectricity, the values of O'é?) and Per

decrease (increase). However, the magnitude of these
“increases” and “decreases” is significantly less than that

obtained for O'é%) ;

- The values of O'((::P, aé?) and Py obtained for the

plates with St-core layer are greater than the corresponding
ones obtained for the plates with Al-core layer;

- The values of aé}) play a dominant role in the
geometrical and electro-mechanical characteristics of the

face layer, however, the values of O'((;?) and Pgr play a

dominant role in the geometrical and mechanical
characteristics of the core layer material;

- The most sensitive parameter for determination of the
influence of the face layer piezoelectricity on the buckling

delamination of the plate under consideration, is O'éP :
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