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1. Introduction  
 

Piezoelectric thin samples are used as sensors and 

actuators for controlling the working procedures of various 

types of elements of construction such as plates and shells. 

Under agglutination, debonded zones can arise on these 

samples on the face surface of the elements of construction. 

Specifically, these debonded zones may be the source of 

local buckling of the piezoelectric samples under 

compressional electromechanical forces. Consequently, 

such situations prevent the piezoelectric sample-plates from 

performing properly as sensors and actuators. For 

controlling and preventing such buckling delamination it is 

necessary to make related theoretical investigations. 

However, up to recent years such investigations have been 

almost completely absent. However, the study of the 

stability loss problems of the piezoelectric plates and beams  
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has attracted the attention of many researchers such as Yang 

(1998), Jerom and Ganesan (2010) and many others listed 

therein. In these investigations it was established that the 

piezoelectricity of the plate or beam materials causes an 

increase in the values of the mechanical critical forces. 

There are also a number investigations on the dynamics, 

statics and stability loss of the systems consisting of 

piezoelectric and elastic constituents. Some of them are 

briefly reviewed below. 

The paper by Kakar and Kakar (2016) deals with the 

study of the Shear-Horizontal (SH)-waves in the system 

comprising a piezomagnetic covering layer and an initially 

stressed orthotropic half-plane. The corresponding 

dispersion equation is derived for both magnetically open- 

and closed- circuit cases under various types of boundary 

conditions on the free face plane of the piezomagnetic layer. 

Numerical results illustrating the influence of the 

piezomagnetic properties of the covering layer on the 

dispersion curves are presented and discussed.   

In the paper by Wu and Ding (2015), static analysis of 

the simply supported rectangular plate made of functionally 

graded piezoelectric material is studied. The open- and 

closed- circuit conditions on the upper and lower face 

surfaces are considered. The Reissner mixed variational 

method is employed for solution of the corresponding 3D 
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Abstract.  The axisymmetric buckling delamination of the Piezoelectric/Metal/Piezoelectric (PZT/Metal/PZT) sandwich 

circular plate with interface penny-shaped cracks is investigated. The case is considered where open-circuit conditions with 

respect to the electrical displacement on the upper and lower surfaces, and short-circuit conditions with respect to the electrical 

potential on the lateral surface of the face layers are satisfied. It is assumed that the edge surfaces of the cracks have an 

infinitesimal rotationally symmetric initial imperfection and the development of this imperfection with rotationally symmetric 

compressive forces acting on the lateral surface of the plate is studied by employing the exact geometrically non-linear field 

equations and relations of electro-elasticity for piezoelectric materials. The sought values are presented in the power series form 

with respect to the small parameter which characterizes the degree of the initial imperfection. The zeroth and first 

approximations are used for investigation of stability loss and buckling delamination problems. It is established that the 

equations and relations related to the first approximation coincide with the corresponding ones of the three-dimensional 

linearized theory of stability of electro-elasticity for piezoelectric materials. The quantities related to the zeroth approximation 

are determined analytically, however the quantities related to the first approximation are determined numerically by employing 

Finite Element Method (FEM). Numerical results on the critical radial stresses acting in the layers of the plate are presented and 

discussed. In particular, it is established that the piezoelectricity of the face layer material causes an increase (a decrease) in the 

values of the critical compressive stress acting in the face (core) layer. 
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problems. The refined plate theories with various order are 

used for reducing the 3D problems to the corresponding 2D 

problems and the finite layer method is employed for 

obtaining numerical results. The accuracy of these results is 

established through comparison with the corresponding 

ones obtained within the scope of the 3D formulation. 

In the paper by Arefi and Allam (2015), the von-Karman 

type non-linear plate theory is employed for investigation of 

the response of the bi-layered circular plate made of 

functionally-graded piezoelectric material and resting on a 

Winkler-Pasternak foundation. For illustration of the 

geometrical non-linearity and other problem parameters on 

the static response of the considered system, the 

corresponding numerical results are presented and 

discussed.  

The paper by Jabbary et al. (2013) studies the buckling 

of the sandwich circular plate with piezoelectric face and 

porous middle layers under radial compression. The 

Kirchhoff-Love plate theory within the scope of von-

Karman geometric non-linearity is employed for this 

investigation. The virtual work principle is employed for 

obtaining the stability loss equations. The analytical 

expression for the critical force is obtained and according to 

this expression the influence of the problem parameters, as 

well as of the piezoelectricity of the covering layer material 

is determined. The results obtained in this paper are 

acceptable for very thin plates. 

The paper by Meng et al. (2010) deals with the study of 

elliptically near-surface buckling of the piezoelectric 

laminated cylindrical hollow shell under electric and 

thermal load. The delaminated part of the shell is called the 

sub-shell, while the remaining part is called the base-shell. 

Basically, the aforementioned near surface buckling of the 

shell is reduced to the stability loss of the sub-shell under 

action of the external thermal and electrical load, the action 

of which is transmitted to the sub-shell through the base-

shell. The investigations are made within the scope of the 

classical theory of shells by employing the Kirchhoff-Love 

hypothesis under the use of the geometrical nonlinear 

strain-displacement relations. Numerical results on the 

critical strain and on the influence of the problem 

parameters on this strain are presented and discussed. In 

particular, it is established that the effect of the applied 

electric field on the critical compression strain is much 

larger than that of the temperature changes.   

It should be noted that all the foregoing investigations 

have been made within the scope of the approximate plate 

and shell theories, the accuracy of which depends 

significantly on the geometrical and electro-mechanical 

properties. Consequently, the order of the accuracy of these 

results can be estimated with the use of the corresponding 

results obtained within the scope of the 3D exact theories. 

For instance, the accuracy of the results related to the 

stability loss or buckling delamination problems can be 

estimated with the corresponding results obtained within the 

scope of the 3D exact linearized theories, the present level 

of which has been detailed in the monographs by Guz 

(1999, 2004) who made many fundamental contributions to 

creating this theory. This theory was also employed for 

investigation of the stability loss around cracks contained in 

homogeneous and piecewise homogeneous infinite elastic 

bodies. A review of the corresponding investigations is 

detailed in the paper by Bogdanov et al. (2015). 

In the foregoing sense, the first attempt with respect to 

the buckling delamination problems related to the system 

comprising elastic and piezoelectric constituents was made 

in the paper by Akbarov and Yahnioglu (2013). More 

precisely, in this paper, the buckling delamination of the 

sandwich plate strip with piezoelectric face and elastic core 

layers is investigated in the plane-strain state by employing 

the three-dimensional linearized theory of electro-elastic 

stability. In this investigation it is also assumed that the 

plate-strip has two interface inner cracks between the face 

and core layers and buckling delamination of the plate takes 

place around these cracks.   

In another paper by Akbarov and Yahnioglu (2016), the 

influence of the initial stresses in the aforementioned 

sandwich plate-strip on the total electro-mechanical 

potential energy and energy release rate at the interface 

crack tips is investigated. 

The present paper deals with the study of the buckling 

delamination problem of the sandwich circular plate 

consisting of the core elastic-metal and two piezoelectric 

face layers. It is assumed that on the interface planes of the 

layers there are penny-shaped cracks and their edge surfaces 

have initial infinitesimal rotationally symmetric 

imperfections. The development of these imperfections with 

compression of the plate in the inward radial direction by 

uniformly distributed rotationally symmetric normal forces 

is investigated by employing the geometrical non-linear 

exact electro-mechanical field equations for piezoelectric 

and elastic materials. Numerical results on the values of the 

critical stresses and forces for various values of the problem 

parameter are presented and discussed. Note that the 

corresponding problems for the case where the circular 

plate consists of elastic and viscoelastic constituents are 

made in the papers by Akbarov and Rzayev (2002) and 

Rzayev and Akbarov (2002). The results obtained in these 

two papers and other related ones are also detailed in the 

monograph by Akbarov (2013). 

 

 

2. Formulation of the problem 
 

Consider a circular sandwich plate whose geometry is 

shown in Fig. 1 and for generality, assume that the materials 

of all the layers are piezoelectric ones. We suppose that the 

materials of the upper and lower face planes are the same 

and between the core and face layers there are penny-

shaped cracks whose locations are also shown in Fig. 1. 

We associate with the lower face layer of the plate the 

cylindrical coordinate system Or z (Fig. 1) and the 

position of the points of the plate we determine through the 

Lagrange coordinates in this system. Thus, according to 

Fig. 1, in the selected coordinate system, the plate occupies 

the region 0 / 2;0 2 ;0r z h        and the 

penny-shaped cracks occur in  0;Fz h  00 2r   

and in  0;C Fz h h   00 2r  . Besides all of these, 
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we assume that in the initial (natural) state the edge-

surfaces of the cracks have infinitesimal rotationally 

symmetric imperfections. In Fig. 1(b) the upper (lower) 

edge of the upper and lower cracks is denoted by ( )U US S   

and ( )L LS S  , respectively. The equations of these surfaces 

are given as follows 

( )Fz h f r   for LS
 ; ( )C Fz h h f r   for 

US 
,  under  00 2r   

(1) 

where   (i.e, 0< ε <<1) is a parameter which 

characterizes the degree of the imperfections and ( )f r  is a 

function which shows the mode of the imperfection.   

Thus, within the framework of the foregoing 

assumptions, we suppose that the plate is compressed in the 

inward radial direction by uniformly distributed rotationally 

symmetric normal forces with intensity p  acting on the 

lateral surface of the circular plate-disc. Below we will 

denote the values related to the upper and lower face layers 

by upper indices (3) and (1) respectively, whereas the 

values related to the core layer are denoted by (2). 

 

 

 

(a) 

 
(b) 

Fig. 1 The geometry of the considered circular plate with 

two cracks (a) and the cross section of the circular plate 

with loading condition and some geometric values (b): ,r 

and z  ( 1 2,x x and 3x ) are cylindrical (Cartesian) 

coordinates, 0 2 ( 2 ) is a Radius of the penny-shaped 

cracks (circular disc-plate), Fh ( Ch ) is a thickness of the 

face (core) layer, US ( US )  and  LS  ( LS ) upper 

(lower) edge surfaces of the upper and lower cracks, p  is 

an intensity of the compressional force 

As we are considering the rotationally axisymmetric 

deformation state, we will use the corresponding field 

equations related to this case. We write the exact 

geometrical non-linear electro-mechanical field equations 

which are satisfied within each plate separately. 

The equilibrium equations 
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(2) 

The electro-mechanical relations for piezoelectric 

materials 
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1111 1122 1133 111 311

k k k k k kk k k k k
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(3) 

The strain-displacements relations 
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2 2
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(4) 

In (2)-(4) the following notation is used: 
( )k
rr ,…, 

( )k
rz and 

( )k
rrs ,…, 

( )k
rzs  are the components of the stress 

and Green strain tensors, respectively, 
( )k
rrM ,…, 

( )k
rzM  

are the components of the Maxwell stress tensor, 
( )
0
k  is 

the permittivity of free space, 
( )k
ru and 

( )k
zu  are 

components of the displacement vector, 
( )k
rD  and 

( )k
zD  

are the components of the electrical displacement vector, 

and 
( )k
ijklc , 

( )k
nije  and 

( )k
nj  are the elastic, piezoelectric 

and dielectric constants, respectively. 

Note that the piezoelectric material exhibits the 

characteristics of orthotropic materials with the 

corresponding elastic symmetry axes and becomes 

electrically polarized under mechanical loads or mechanical 

deformation placed in an electrical field. According to Yang 

(2005), the polled direction of the piezoelectric material 

will change according to the position of the material 

constants in the constitutive relations. In the present paper, 

under numerical calculations, it is assumed that the Oz  

axis direction is the polarized direction. Moreover, we 

introduce the following notation. 
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k k
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333 33
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(5) 

Thus, the complete geometrically non-linear electro-

mechanical field equations for piezoelectric materials are 

the Eqs. (2)- (5).  

It should be noted that in the classical linear theories of 

electro-elasticity the following two particularities: (I) the 

difference between the areas of the surface elements and the 

difference between the elementary volume taken before and 

after deformation, and (II) the rotation of the “materialized” 

base vectors as a result of the deformations, are not taken 

into consideration either under determination of the stresses 

and under obtaining the field equations, or under 

formulation of the boundary conditions with respect to the 

forces and the electrical displacements. However, in the 

case under consideration, i.e., in writing the Eqs. (2)-(4), we 

assume that the deformations are so small that the I 

peculiarity can be neglected, but the II peculiarity must be 

taken into consideration under determination of the stresses, 

electrical displacements and obtaining the field equations, 

and under formulation of the boundary conditions with 

respect to the forces and electrical displacements.    

Now we formulate the boundary and contact conditions. 

Regarding the cracks’ edges the following can be written 
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(6) 

Note the conditions (6) are satisfied for the region 

 00 2r  , but for the region  0 2 2r    the 

following complete contact conditions take place between 

the layers of the plate 
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(7) 

Moreover, on the upper surface of the upper face layer 

and on the lower surface of the lower face layer of the plate 
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the following conditions are satisfied 

(3)
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(8) 

We assume that on the lateral surface of the plate the 

following conditions are satisfied 
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(9) 

Note that (6) – (9) are written for the mechanical forces 

and displacements. For the electrical displacement and 

electrical potential we formulate the following conditions: 

on the cracks’ edges 
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or 
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(11) 

on the contact regions between the layers 
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on the upper face of the upper face layer and on the lower 

face of the lower face layer 
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2
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0
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z



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on the lateral surface of the plate 
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2
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k
R

r
D


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0 2 F Cz h h    
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or 
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2
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r
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
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0 2 F Cz h h    

(16) 

The conditions (10), (13) and (15) are called “open–

circuit”, however the conditions (11), (14) and (16) are 

called “short–circuit”. 

This completes the mathematical formulation of the 

problem, according to which it is required to investigate the 

development of the initial imperfections of the penny-

shaped cracks’ edges with the compressional uniformly 

distributed rotationally symmetric normal forces acting on 

the lateral surface of the plate. 

 

 

3. Method of solution  

 
   3.1 Presentation of the sought values in series form 
with respect to the small parameter 

 

For the solution of the problem formulated in the 

previous section we employ the approach developed in the 

monograph by Akbarov (2013) for purely elastic and 

viscoelastic materials, according to which, all the sought 

values are presented in the series form in the small 

parameter   which enters into the expressions in (1): 
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
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(17) 

Obtaining the expressions for the components rn  and 

zn  of the normal vector to the cracks' edge surfaces in (1) 

and representing these expressions also in the series form in 

the small parameter  , and substituting these and the 

expressions in (17) into the foregoing non-linear equations 

and relations, and doing some cumbersome mathematical 

manipulations, we obtain the corresponding equations and 

relations for determination of each approximation in (17). 

Here we write these equations and relations only for the 

zeroth and first approximations and under consideration of 

the zeroth approximation we neglect the non-linear terms.  

Thus, the equations and relations for the zeroth 

approximations are 
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Note that the equations and relations (18)-(30) are 

obtained from the Eqs. (2), (4), (6)-(16), respectively.  

Now we consider the equations and relations obtained 

for the first approximation. Under obtaining these equations 

and relations we assume that  
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1. Thus, for the first approximation we obtain the following 

equations and relations. 

( ),1 ( ),1
( ),1( ),11

( ) 0
k k

kkrr zr
rr

t t
t t

r z r 

 
   

 
 , 

( ),1 ( ),1
( ),11

0
k k

krz zz
rz

t t
t

r z r

 
  

 
, 

( ),1 ( ),1
( ),11

0

k k
kR Z

R

D D
D

r r z

 
  

 
, 

( ),1
( ) ( ),1 ( ),0 ( ),1

k
k k k kr

rr rr rr rr

u
t M

r
 


  


, 

( ),1
( ),1 ( ),1 ( ),0 ( ),1

k
k k k kru

t M
r       , 

(31) 

168



 

Buckling delamination of the PZT/Metal/PZT sandwich circular plate-disc with penny-shaped interface cracks 

( ) ( ),1 ( ),1k k k
zr zr zrt M  , 

( ),1
( ),1 ( ),1 ( ),0 ( ),1

k
k k k kz

rz rz rr rz

u
t M

r
 


  


, 

( ),1 ( ),1 ( ),1k k k
zz zz zzt M  ,

( ),1 ( ),1
( ),1 ( ),1 ( ),0 ( ),0

k k
k k k kr r

r r zR

u u
D D D D

r z

 
  

 
, 

( ),1 ( ),1
( ),1 ( ),1 ( ),0 ( ),0

k k
k k k kz z

z z rZ

u u
D D D D

z r

 
  

 
, 

( ),0 ( ),1( ),1 ( ),0 ( ),1 ( ),0 ( ),1k kk k k k k
rr r r z zM E E E E E E    , 

( ),1 ( ),0 ( ),1 ( ),0 ( ),1 ( ),0 ( ),1k k k k k k k
r r z zM E E E E E E     , 

( ),0 ( ),1( ),1 ( ),0 ( ),1 ( ),0 ( ),1k kk k k k k
zz z z r rM E E E E E E     

 

( ),1
( ),1

k
k r

rr

u
s

r





,  

( ),1
( ),1

k
k ru

s
r


,  

( ),1
( ),1

k
k z

zz

u
s

z





, 

( ),1 ( ),1
( ),1 1

2

k k
k r z

rz

u u
s

z r

  
  

   

, 

(3),1 (3),0( )

F C F C
zr rr

z h h z h h

df r
t

dr


   
 , 

(3),1 0
F C

rr
z h h

t
 

 , 

(2),1 (2),0( )

F C F C
zr rr

z h h z h h

df r
t

dr


   
 , 

(32) 

 

(2),1 0
F C

rr
z h h

t
 

 , (2),1 (2),0( )

F F
zr rr

z h z h

df r
t

dr


 
 , 

(2),1 0
F

rr
z h

t


 , 

(1),1 (1),0( )

F F
zr rr

z h z h

df r
t

dr


 
 , 

(1),1 0
F

rr
z h

t


 ,   

for 00 2r   

(33) 

 

(3),1 (2),1

F C F C
zz zz

z h h z h h
t t

   
  , 

(3),1 (2),1

F C F C
zr zr

z h h z h h
t t

   
 , 

(3),1 (2),1

F C F C
z z

z h h z h h
u u

   
 , 

(3),1 (2),1

F C F C
r r

z h h z h h
u u

   
 , 

(2),1 (1),1

F F
zz zz

z h z h
t t

 
 , 

(2),1 (1),1

F F
zr zr

z h z h
t t

 
 , 

(34) 

(2),1 (1),1

F F
z z

z h z h
u u

 
 ,  

(2),1 (1),1

F F
r r

z h z h
u u

 
 , 

for 0 2 2r   

 

(3),1

2
0

F C
zz

z h h
t

 
 , 

(3),1

2
0

F C
zr

z h h
t

 
 , 

(1),1

0
0zz

z
t


 , 

(1),1

0
0zr

z
t


  for 0 2r   

(35) 

 

( ),1

2
0k

rr
r

t


 , 
( ),1

2
0k

z
r

u


 , for 1,2,3k   

under 0 2 F Cz h h    

(36) 

 

(3),0
(3),1

( )
F C

F C

Z
Z

z h h
z h h

D
D f r

z 
 


 


, 

(2),0
(2),1

( )
F C

F C

Z
Z

z h h
z h h

D
D f r

z 
 


 


, 

(2),0
(2),1

( )
F

F

Z
Z

z h
z h

D
D f r

z



 


, 

(1),0
(1),1

( )
C

F

Z
Z

z h
z h

D
D f r

z



 


,  for 00 2r   

(37) 

or 

(3),0
(3),1 ( )

F C
F C

z h h
z h h

f r
z 

 


 




 , 

(2),0
(2),1 ( )

F C
F C

z h h
z h h

f r
z 

 


 




 , 

(2),0
(2),1 ( )

F
F

z h
z h

f r
z




 




 , 

(1),0
(1),1 ( )

F
F

z h
z h

f r
z




 




 , for 00 2r   

(38) 

 

(3),1 (2),1

F C F C
Z Z

z h h z h h
D D

   
 , 

(3),1 (2),1

F C F Cz h h z h h
 

   
 , 

(2),1 (1),1

F F
Z Z

z h z h
D D

 
 , 

(2),1 (2),1

F Fz h z h
 

 


(39) 

169



 

Fazile I. Cafarova, Surkay D. Akbarov and Nazmiye Yahnioglu 
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Note that the equations (31)-(43) are obtained from the 

Eqs. (2), (4), (6)-(16), respectively. Direct verification 

shows that the system of Eqs. (31)-(43) coincides with the 

corresponding ones of the three-dimensional linearized 

theory of electro-elastic stability which are detailed, for 

instance, in the monographs by Yang (2005), Guz (1999), 

Akbarov (2013) etc.  

It is also necessary to add to the system of equations 

related to the zeroth and first approximations the 

corresponding constitutive relations obtained from (3). As 

the relations in (3) are linear ones, therefore the constitutive 

relations of each approximation are as in (3).  

This completes consideration of the equations and 

relations related to the zeroth and first approximations in 

the series expansion (17). As shown in the monograph by 

Akbarov (2013), as well as in related papers, such as 

Akbarov and Rzayev (2002) and Rzayev and Akbarov 

(2002), for determination of the critical parameters which 

determine the buckling delamination of the circular plate 

under consideration, the solutions obtained within the scope 

of the zeroth and first approximations are enough.  

Now we consider determination of the quantities related 

to the zeroth and first approximations. 

 

3.2 Determination of the values related to the zeroth 
approximation 

 

First of all, we note that the zeroth approximation 

corresponds to the case where the plate under consideration 

with the cracks without any imperfection on their edge 

surfaces, is compressed with a uniformly distributed 

rotationally symmetric normal compressive force with 

intensity p acting on the lateral surface of the plate in the 

inward radial direction. It is known that, according to Saint 

Venant’s principle, in the region where 0 2r h    

the stress-strain state can be taken as homogeneous with 

very high accuracy. In other words, in this region we can 

assume that 
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Consequently, in the zeroth approximation in the cases 

where 0 2 2 h   under the considered type of 

external loading, the existence of the cracks does not cause 

any stress concentration or any influence on the stress state 

given by the relations in (44). Taking this statement into 

consideration, under determination of the quantities related 

to the first approximation we will use the expressions given 

in (44). 

As in the present paper, we will analyze the numerical 

results related only to the open-circuit case in the planes 

2 F Cz h h  , F Ch h , Fh  and 0 , and to the short-

circuit case on the lateral surface 2r   of the plate. 

Therefore, in the zeroth approximation we obtain that 
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Taking into consideration the relation 
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Using the relation (48) it is obtained that 

( ),0 ( ) ( ),0k k k
rr r rrA s   , (49) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
11 12 11 1 13 11 1 31 1

k k k k k k k k kk k k k
r zr zr zrA c c e a a c a e b a e c       

Assuming that 

(1),0 (2),0
rr rrs s , 

(1),0 (2),02 f rr C rrh h hp    (50) 

The following expression is obtained for the stress in the 

face layers 

1
(2)

(1),0

(1)
2 CF r

rr

r

hh A
p

h h A



 

  
 
 

 (51) 

Thus, through the expressions (44)-(51) we determine 

completely the quantities related to the zeroth 

approximation.  We recall that these expressions are valid 

for the region where ( 2 ) 2h r    and it is assumed 

that the materials of the face layers are the same. 

 

3.3 Determination of the values related to the first 
approximation 

 

For determination of the first approximation we employ 

the FEM method and for this purpose, according to Guz 

(1999), Yang (2005), Akbarov (2013) and others, we 

introduce the following functional. 
(1),1 (2),1 (3),1 (1),1 (2),1 (3),1 (1),1 (2),1 (3),1( , , , , , , , )r r r z z zu u u u u ,u       

( )

( ),1 ( ),1 ( ),1 ( ),13
( ),1( ),1 ( ),1 ( ),1

1

1

2 k

k k k k
kk k kr r z r

rr rz zr
k

u u u u
t t t t

r r r z



   
   

  
 

 

( ),1
( ),1 ( ),1 ( ),1 ( ),1 ( ),1

k
k k k k kz

zz r r z z
u

t E D E D rdrdz
z


  

   

0 02 2
(1),0 (1),1 (2),0 (2),1

0 0F F
rr r rr r

z h z h

df df
u rdr u rdr

dr dr
 

 
  

 

0 02 2
(2),0 (2),1 (3),0 (3),1

0 0F C F C
rr r rr r

z h h z h h

df df
u rdr u rdr

dr dr
 

   
 

 

(52) 

where 

 (1)
20 2;0 ( 0;0 2)F Fr z h z h r          

 

(1)
20 2; ( 0;0 2)F F C Fr h z h h z h r            

2( 0;0 2)F Cz h h r    
 

 (3)
20 2; 2 ( 0;0 2)F C F C F Cr h h z h h z h h r               

(53) 

 

From equating to zero the first variation of the 

functional (52), i.e., from the relation 

3 3 3
( ),1( ),1 ( ),1

( ),1 ( ),1 ( ),1
1 1 1

0
kk k

r zk k k
k k kr z

u u
u u

  
   

  

  
   

  
  

 
(54) 

and after well-known mathematical manipulations we 

obtain the first three equations in (31). The boundary and 

contact conditions in (33)-(42) are given with respect to the 

forces and electrical displacements. In this way it is proven 

that the first three equations in (31) are the Euler equations 

for the functional (53) and the boundary and contact 

conditions in (52)-(53) which are given with respect to the 

forces and electrical displacements, are the related natural 

boundary and contact conditions.   

According to FEM modelling, the solution domains 

indicated in (53) are divided into a finite number of finite 

elements. For the considered problem each of the finite 

elements is selected as a standard rectangular Lagrange 

family quadratic finite element (i.e., with nine nodes) and 

each node has three degrees of freedom, i.e., radial 

displacement 
( ),1k
ru , transverse displacement 

( ),1k
zu  and 

electric potential ( ),1k . Employing the standard Ritz 

technique detailed in many references, for instance, in the 

book by Zienkiewicz and Taylor (1989), we determine the 

displacements and electrical potential at the selected nodes. 

After this determination, by employing the initial 

imperfection criterion 

(1),1 (3),1

00
F C Fz z h h z z h

zz

u u  


    as crp p  (55) 

the values of the critical compressional forces are 

determined.  

Note that the approach developed in the present paper 

can also be applied for buckling delamination problems 

related to structures containing time-dependent constituents, 

for instance, visco-piezoelectric materials.  

This completes the consideration of the method of 

solution. 

 

 

4. Numerical results and discussions  
 

4.1 The selection of the initial imperfection mode and 
the layers’ materials  

 

As also noted above, we assume that the initial 

imperfection of the cracks’ edges is rotationally symmetric 

and according to this assumption, the imperfection can be 

selected as follows 

2 2
0

0 0

( ) cos cos
r r

f r s L
 


   

    
   

 , 

00 2r  , 0<< L , 

0

L
   

(56) 

where L  is the maximum value of the lift of the initial 

imperfection. 

As a result of the selected buckling delamination 

criterion (55), the values of the critical parameters cannot 

depend on the rotationally symmetric initial imperfection 

mode, and this statement was also noted in the monograph 

by Akbarov (2013). 

Note that in the present paper, the piezoelectric 

materials PZT -4, PZT -5H and BaTiO3 are taken as the 

face layer materials, however the metal materials - 

aluminum (Al) and steel (St) are taken as the core layer 

materials. The values of the elastic, piezoelectric and 

dielectric constants of the selected piezoelectric materials 

and the references used are given in Table 1. 
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Table 2 The values of (1) (1) (2) (2)/ ( )crp E E   obtained 

for various (2) (1)/E E  under (2) 0.3  , 02 / 1/ 8Fh  , 

0( ) / (2 ) 0.25   and / (2 ) 0.03215Fh  : here (1)

( (2) ) is a volumetric concentration of the matrix 

(reinforcing) layers, (1)E ( (2)E ) is a modulus of elasticity 

of the matrix (reinforcing) layers 

 

 

 

According to Guz (2004), the values of Lame’s 

constants of the core layer material is selected as follows: 

for the Al: 48.1GPa   and 27.1GPa  ; for the St: 

92.6GPa   and 77.5GPa  . 

 

4.2 Testing of the FEM modelling and PC programs 
 

Under FEM modelling using the symmetry with respect 

to the plane / 2F Cz h h   and the axial symmetry with 

respect to the Oz  (Fig. 1(a)) axis of the mechanical and 

geometrical properties of the plate, we consider only the 

region { }2/+≤≤0 ;2/≤≤0 CF hhzr   and this region 

is divided into 40 finite elements along the radial direction 

and 12 finite elements along the plate’s thickness direction,  

resulting in 6038 NDOF Such selection of the finite 

elements numbers is established according to the 

convergence of the numerical results. All the corresponding 

PC programs are composed by the authors of the paper.  

Now we consider testing of the aforementioned 

algorithm and PC programs and as in the papers by Guz and 

Nazarenko (1985) and Akbarov and Rzayev (2002), we 

consider the case where the plate material is homogeneous 

transverse-isotropic with the Oz  symmetry axis and with 

effective mechanical constants where the plate material is 

multilayered consisting of two alternating isotropic layers  

 

 

with modulus of elasticity 
(1)E  and 

(2)E , Poisson ratio 

(1)  and 
(2) , and volumetric concentration  

(1)  and 

(2) . We note that in the paper by Guz and Nazarenko 

(1985), the case is considered where the semi-infinite half-

space with a near-surface penny-shaped crack is 

compressed in the radial inward direction at infinity and the 

corresponding eigenvalue problem is solved by employing 

the dual integral equations method. According to physico-

mechanical considerations, in the cases where  <<0   

the results obtained for the corresponding finite region must 

be very near to the corresponding ones obtained in the paper 

by Guz and Nazarenko (1985). This fact was also checked 

in the paper by Akbarov and Rzayev (2002). Thus, we 

compare the results related to 
(1) (1) (2) (2)/ ( )crp E E   

obtained for various 
(2) (1)/E E  in the foregoing papers 

and in the present paper in the case where (2) 0.3  , 

02 / 1/ 8Fh   and 0( ) / (2 ) 0.25  . The comparison 

of the corresponding results given in Table 2 shows that the 

numerical results obtained by employing the present PC 

programs are very near to those obtained in the papers by 

Guz and Nazarenko (1985) and Akbarov and Rzayev (2002).   

We also consider comparison of the results obtained by 

employing the present PC and FEM modeling with the 

corresponding ones obtained in the paper by Rzayev and 

Akbarov (2002) in which the buckling delamination of the 

circular sandwich plate with penny-shaped interface cracks 

was considered. However, in the paper by Rzayev and 

Akbarov (2002) the materials of the layers of the plate are 

taken as elastic ones and it is assumed that on the lateral 

surface of the plate, not only the displacement 
( ),1k
zu  but 

also the displacement 
( ),1k
ru  is equated to zero. 

Consequently, according to this statement the system 

considered in the paper by Rzayev and Akbarov (2002) 

must be more rigid than the corresponding one considered 

in the present paper and as a result of this difference, the 

critical values of the compressive forces obtained in the 

paper by Rzayev and Akbarov (2002) must be greater than 

the corresponding ones obtained in the present paper. These 

predictions are proven with the data given in Table 3 which 

shows the values of 
(1)/crp E  obtained for various values 

Table 1 The values of the mechanical, piezoelectrical and dielectrical constants of the selected piezoelectric materials: 

here 1( )
11

r
c ,…, 1( )

66
r

c are elastic constants , 1( )
31
r

e ,…, 1( )
15

r
e are piezoelectric constants, 1( )

11
r

  and 1( )
33

r
 are dielectric 

constants 

Mater. 

(Source Ref.) 
1( )

11
r

c  1( )
12

r
c  1( )

13
r

c  1( )
33
r

c  1( )
44
r

c  1( )
66
r

c  1( )
31
r

e  1( )
33
r

e  1( )
15

r
e  1( )

11
r

  1( )
33

r
  

PZT-4 

(Yang 2005) 
13.9 7.78 7.40 11.5 2.56 3.06 -5.2 15.1 12.7 0.646 0.562 

PZT-5H 

(Yang 2005) 
12.6 7.91 8.39 11.7 2.30 2.35 -6.5 23.3 17.0 1.505 1.302 

BaTiO3 

(Kuna 2006) 
16.6 7.66 7.75 16.2 4.29 4.29 -4.4 18.6 11.6 1.434 1.682 

    

(2) (1)/E E  

Guz and 

Nazarenko 

(1985) 

Rzayev and 

Akbarov (2002) 
present 

1 0.0167 0.0178 0.0171 

10 0.0140 0.0154 0.0148 

25 0.0126 0.0129 0.0120 

10 210 N m 2C m 810 C Vm
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of 0( ) / (2 )  and /Fh  under 02 / 1/ 8Fh   

and 
(2) (1) 50E E  . It should also be noted that the 

number of finite elements used in the present approach is 

two times greater than that used in the paper by Rzayev and 

Akbarov (2002) and this fact may also reduce the values of 

(1)/crp E  obtained by employing the present approach. At 

the same time, the results given in Table 3 can also be taken 

as validation of the numerical results with the finite element 

numbers. 

Thus, with this we restrict ourselves to consideration of 

the validation of the PC programs and FEM modelling used. 

Unfortunately we have not found any results of other 

authors related to the subject of the present paper in order to 

compare corresponding numerical results. 

 

4.3 Discussions of the numerical results  
 

For simplification of the consideration, we introduce the 

following notation for the critical radial stresses and critical 

compressive forces 

(1)(1) (1),0
. 44cr rr cr c  ,  

(1)(2) (2),0
. 44cr rr cr c  , 

(1)
44/crp p c  

(57) 

Thus, according to (57), we estimate the work carrying 

capacity of the plate under consideration with respect to the 

buckling delamination by simultaneous use of the values of 

three dimensionless critical parameters which are the 

dimensionless radial compressive stress 
(1)
cr  in the face 

piezoelectric layer, the dimensionless radial compressive 

stress 
(2)
cr  in the core metal layer and the dimensionless 

intensity crp  of the external compressive force. Such an 

approach for estimation of the buckling delamination allows 

us to have more precise information on the influence of the 

problem parameters such as the piezoelectricity of the face 

layers’ materials, the face layers’ thickness, the cracks' 

length (i.e., the radius of the penny-shaped cracks) and the 

mechanical properties of the layers' materials. 

Thus, we consider the numerical results obtained for the 

critical parameters indicated in (57) and detailed above. 

Note that these results are given in Tables 4-9 which are 

obtained for the PZT-5H/Al/PZT-5H, PZT-4/Al/PZT-4, 

BaTiO3/Al/ BaTiO3, PZT-5H/St/PZT-5H, PZT-4/St/PZT-4 

and BaTiO3/St/ BaTiO3 plates, respectively. For estimation 

of the influence of the face layers’ piezoelectricity on the 

values of the critical stresses in the Tables, two types of 

results are presented simultaneously, the first of which 

(upper number) relates to the case where the values of the 

piezoelectric and dielectric constants of the face layer 

materials are equated to zero, i.e., coupling of the 

mechanical and electrical fields is not taken into 

consideration. However, under obtaining the second type of 

results (lower number) the values of the piezoelectric and 

dielectric constants are taken into consideration as given in 

Table 1 and the coupling effect between the electrical and 

mechanical fields is taken into consideration completely.   

In these Tables the values of the critical stresses are also 

given for the same whole plate, i.e., the plate which does 

not contain any crack. These results are in the far right 

column and according to these results, the cases can be 

determined where the stability loss of the whole plate takes 

place in the early stage of external loading, before buckling 

delamination. 

Thus, it follows from these Tables, and, as can be 

predicted, that the values of all the critical stresses related to 

the buckling delamination increase with increasing of the 

face-piezoelectric layers’ thickness and with decreasing of 

the crack's radius. At the same time, these Tables show that 

in all the considered cases, the piezoelectricity of the face 

layers’ materials causes an increase in the values of 
(1)
cr , 

i.e. in the values of the critical compressive stress acting in 

the piezoelectric layer. According to the numerical results, 

we can also conclude that the influence of the 

piezoelectricity on the values of 
(2)
cr , i.e. on the critical 

values of the compressive stress acting in the core-metal 

layer, is as follows: for the PZT-5H/Al/PZT-5H and PZT-

5H/St?PZT-5H plates for all the considered cases, the 

piezoelectricity of the face layers’ materials causes a 

decrease in the values of 
(2)
cr , however for the PZT-

4/Al/PZT-4, PZT-4/St/PZT-4, BaTiO3/Al/BaTiO3 and 

BaTiO3/St/BaTiO3 plates this conclusion occurs for the 

cases where 0 0.2 .  

 

 

Table 3 Comparison of the values (1)/crp E  obtained by 

employing the present approach with the corresponding 

ones obtained in the paper by Rzayev and Akbarov (2002) 

for various values of 0( ) / (2 )  and /Fh  under 

02 / 1/ 8Fh   and (2) (1) 50E E  : here Fh  is a 

thickness of the face layer, 0 ( ) is a radius penny-shaped 

crack (plate-disc) 

0

2



 
 

 

Fh
 

 

 

 

The results 

obtained by the 

approach 

developed in the 

paper by 

 Rzayev and 

Akbarov (2002); 

(FE numbers are 

20 and 6 in the 

radial and 

thickness 

directions, 

respectively) 

The results obtained 

by the approach 

developed in the 

present paper; 

 (FE numbers are 40 

and 12 in the radial 

and thickness 

directions, 

respectively) 

0.10 0.0500 0.2571 0.2260 

0.15 0.04375 0.2526 0.2343 

0.20 0.0375 0.2509 0.2371 

0.25 0.03125 0.2510 0.2380 
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In the cases where 0 0.2 , for instance in the case 

where 0 0.1  the character of the influence of the 

piezoelectricity of the face layers depends on their 

thickness, i.e. under relatively thick face layers, for example 

under / 0.033Fh   for the BaTiO3/Al/BaTiO3 plate, the 

piezoelectricity causes an increase in the values of 
(2)
cr . 

Consider also the influence of the face layers’ 

piezoelectricity on the values of crp  for which, according 

to Tables 4 – 9, we can make the following conclusion: in 

general the character of the influence of the piezoelectricity 

on the values of crp  depends on the values of /Fh   

and 0 , as well as on the selected materials of the 

layers. For instance, for the PZT-4/Al/PZT-4 and 

BaTiO3/Al/BaTiO3 plates for all the considered values of 

/Fh  and 0 , the piezoelectricity of the face layer  

 

 

 

material causes an increase in the values of crp , however, 

for the PZT-5H/Al/PZT-5H plate this increase takes place  

in the cases where / 0.042Fh  . For the PZT-

5H/St/PZT-5H, PZT-4/St/PZT-4 and BaTiO3/St/BaTiO3 

plates in the cases where 0 0.4 , the values of crp  

decrease as a result of the piezoelectricity under relatively 

thin face layers.  

Thus, it follows from the foregoing discussions and 

from the numerical results given in Tables 4-8, that the 

most sensitive parameter for determination of the influence 

of the face layer piezoelectricity on the buckling 

delamination of the plate under consideration is the critical 

value of the radial compressive stress  
(1)
cr  acting in the 

piezoelectric face layers.  

 

 

 

 

 

Table 4 The values of the critical stresses (1)
cr , (2)

cr  and crp  (57) obtained for PZT-5H/Al/PZT-5H in the cases 

where the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to 

the corresponding data given in Table 1 (lower number): here Fh  is a thickness of the face layer,  is a radius plate-

disc
 

Fh  
Crit. 

Str. 
0  

0.70  0.60  0.50  0.40  0.30  0.20  0.10  0.00 

0.025 

(1)
cr  

0.0162

0.0236
 

0.0217

0.0315
 

0.0304

0.0440
 

0.0454

0.0658
 

0.0747

0.1082
 

0.1418

0.2062
 

0.3375

0.5012
 

0.1404

0.1927
 

(2)
cr  

0.0191

0.0161
 

0.0255

0.0216
 

0.0358

0.0301
 

0.0535

0.0451
 

0.0881

0.0742
 

0.1906

0.1414
 

0.3981

0.3438
 

0.1656

0.1321
 

crp  
0.0184

0.0180
 

0.0246

0.0240
 

0.0345

0.0337
 

0.0516

0.0503
 

0.0847

0.0827
 

0.1609

0.1577
 

0.3830

0.3832
 

0.1593

0.1473
 

0.033 

(1)
cr  

0.0277

0.0402
 

0.0367

0.0532
 

0.0508

0.0736
 

0.0745

0.1080
 

0.1183

0.1718
 

0.2103

0.3081
 

0.4347

0.6543
 

0.1370

0.2017
 

(2)
cr  

0.0326

0.0275
 

0.0432

0.0364
 

0.0599

0.0504
 

0.0878

0.0740
 

0.1395

0.1178
 

0.2480

0.2113
 

0.5127

0.4488
 

0.1616

0.1383
 

crp  
0.0310

0.0318
 

0.0411

0.0421
 

0.0569

0.0582
 

0.0834

0.0853
 

0.1324

0.1359
 

0.2355

0.2436
 

0.4867

0.5174
 

0.1534

0.1595
 

0.042 

(1)
cr  

0.0415

0.0602
 

0.0545

0.0790
 

0.0743

0.1078
 

0.1068

0.1551
 

0.1640

0.2393
 

0.2751

0.4060
 

0.5093

0.7752
 

0.1341

0.2097
 

(2)
cr  

0.0489

0.0412
 

0.0642

0.0541
 

0.0876

0.0739
 

0.1259

0.1063
 

0.1934

0.1641
 

0.3245

0.2785
 

0.6007

0.5317
 

0.1581

0.1438
 

crp  
0.0459

0.0492
 

0.0602

0.0645
 

0.0821

0.0881
 

0.1179

0.1267
 

0.1812

0.1954
 

0.3039

0.3316
 

0.5626

0.6332
 

0.1481

0.1712
 

0.050 

(1)
cr  

0.0571

0.0829
 

0.0742

0.1077
 

0.0999

0.1452
 

0.1407

0.2050
 

0.2094

0.3071
 

0.3338

0.4965
 

0.5669

0.8712
 

0.1316

0.2169
 

(2)
cr  

0.0673

0.0568
 

0.0875

0.0738
 

0.1178

0.0996
 

0.1659

0.1406
 

0.2470

0.2106
 

0.3937

0.3406
 

0.6687

0.5976
 

0.1552

0.1487
 

crp  
0.0623

0.0699
 

0.0809

0.0908
 

0.1089

0.1224
 

0.1533

0.1728
 

0.2282

0.2589
 

0.3637

0.4186
 

0.6178

0.7344
 

0.1435

0.1829
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Table 5 The values of the critical stresses (1)
cr , (2)

cr  and crp  (57) obtained for PZT-4/Al/PZT-4 in the cases where 

the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to the 

corresponding data given in Table 1 (lower number): here Fh  is a thickness of the face layer,  is a radius plate-disc
 

Fh  
Crit. 

Str. 

 

0  

0.70  0.60  0.50  0.40  0.30  0.20  0.10 0.00 

0.025 

(1)
cr  

0.0199

0.0263
 

0.0265

0.0350
 

0.0369

0.0489
 

0.0548

0.0729
 

0.0890

0.1191
 

0.1650

0.2250
 

0.3733

0.5371
 

0.1572

0.1988
 

(2)
cr  

0.0163

0.0146
 

0.0217

0.0194
 

0.0303

0.0271
 

0.0450

0.0404
 

0.0732

0.0661
 

0.1357

0.1249
 

0.3070

0.2982
 

0.1293

0.1103
 

crp  
0.0172

0.0175
 

0.0230

0.0233
 

0.0320

0.0326
 

0.0475

0.0485
 

0.0771

0.0794
 

0.1430

0.1499
 

0.3236

0.3579
 

0.1363

0.1325
 

0.033 

(1)
cr  

0.0338

0.0447
 

0.0445

0.0590
 

0.0611

0.0814
 

0.0887

0.1189
 

0.1387

0.1880
 

0.2400

0.3336
 

0.4717

0.6971
 

0.1613

0.2132
 

(2)
cr  

0.0278

0.0248
 

0.0366

0.0327
 

0.0502

0.0451
 

0.0729

0.0660
 

0.1140

0.1043
 

0.1974

0.1852
 

0.3880

0.3870
 

0.1327

0.1183
 

crp  
0.0298

0.0314
 

0.0392

0.0415
 

0.0539

0.0572
 

0.0782

0.0836
 

0.1223

0.1322
 

0.2116

0.2347
 

0.4159

0.4904
 

0.1423

0.1500
 

0.042 

(1)
cr  

0.0502

0.0667
 

0.0655

0.0873
 

0.0886

0.1187
 

0.1257

0.1700
 

0.1896

0.2604
 

0.3088

0.4374
 

0.5455

0.8232
 

0.1649

0.2260
 

(2)
cr  

0.0412

0.0370
 

0.0538

0.0484
 

0.0728

0.0659
 

0.1034

0.0943
 

0.1559

0.1445
 

0.2540

0.2428
 

0.4487

0.4570
 

0.1357

0.1255
 

crp  
0.0450

0.0494
 

0.0587

0.0646
 

0.0794

0.0879
 

0.1127

0.1259
 

0.1700

0.1929
 

0.2768

0.3239
 

0.4891

0.6096
 

0.1480

0.1674
 

0.050 

(1)
cr  

0.0686

0.0916
 

0.0885

0.1187
 

0.1180

0.1594
 

0.1638

0.2238
 

0.2390

0.3329
 

0.3696

0.5328
 

0.6018

0.9236
 

0.1680

0.2379
 

(2)
cr  

0.0564

0.0508
 

0.0728

0.0659
 

0.0970

0.0885
 

0.1347

0.1242
 

0.1966

0.1848
 

0.3040

0.2958
 

0.4950

0.5128
 

0.1381

0.1320
 

crp  
0.0625

0.0712
  

0.0806

0.0923
 

0.1075

0.1239
 

0.1492

0.1740
 

0.2178

0.2588
 

0.3368

0.4143
 

0.5484

0.7182
 

0.1531

0.1850
 

Table 6 The values of the critical stresses (1)
cr , (2)

cr  and crp  (57) obtained for BaTiO3/Al/BaTiO3 in the cases 

where the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to 

the corresponding data given in Table 1 (lower number): here Fh  is a thickness of the face layer,  is a radius plate-

disc
 

Fh  
Crit. 

Str. 

 

0  

0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

0.025 

(1)
cr  

0.0166

0.0178
 

0.0221

0.0238
 

0.0309

0.0331
 

0.0460

0.0494
 

0.0747

0.0806
 

0.1396

0.1511
 

0.3230

0.3553
 

0.1163

0.1238
 

(2)
cr  

0.0099

0.0095
 

0.0131

0.0127
 

0.0183

0.0177
 

0.0273

0.0264
 

0.0444

0.0431
 

0.0829

0.0808
 

0.1917

0.1899
 

0.0690

0.0661
 

crp  
0.0116

0.0116
 

0.0154

0.0155
 

0.0215

0.0216
 

0.0320

0.0322
 

0.0520

0.0525
 

0.0971

0.0984
 

0.2246

0.2313
 

0.0809

0.0806
 

Continued- 

175



 

Fazile I. Cafarova, Surkay D. Akbarov and Nazmiye Yahnioglu 

 

 

 

 

 

 

 

 

 

 

 

 

0.033 

(1)
cr  

0.0282

0.0303
 

0.0373

0.0400
 

0.0512

0.0552
 

0.0746

0.0804
 

0.1172

0.1267
 

0.2049

0.2231
 

0.4135

0.4584
 

0.1245

0.1339
 

(2)
cr  

0.0167

0.0161
 

0.0221

0.0213
 

0.0304

0.0295
 

0.0442

0.0430
 

0.0696

0.0677
 

0.1216

0.1192
 

0.2454

0.2450
 

0.0739

0.0716
 

crp  
0.0206

0.0209
 

0.0272

0.0276
 

0.0374

0.0381
 

0.0544

0.0555
 

0.0855

0.0874
 

0.1494

0.1539
 

0.3015

0.3161
 

0.0908

0.0924
 

0.042 

(1)
cr  

0.0422

0.0453
 

0.0550

0.0591
 

0.0745

0.0803
 

0.1061

0.1146
 

0.1610

0.1748
 

0.2658

0.2911
 

0.4833

0.5391
 

0.1318

0.1429
 

(2)
cr  

0.0250

0.0242
 

0.0326

0.0316
 

0.0442

0.0429
 

0.0630

0.0612
 

0.0956

0.0934
 

0.1577

0.1556
 

0.2869

0.2881
 

0.0782

0.0763
 

crp  
0.0322

0.0330
 

0.0420

0.0431
 

0.0569

0.0585
 

0.0810

0.0835
 

0.1229

0.1274
 

0.2028

0.2121
 

0.3688

0.3927
 

0.1006

0.1041
 

0.050 

(1)
cr  

0.0577

0.0620
 

0.0745

0.0802
 

0.0996

0.1076
 

0.1389

0.1505
 

0.2044

0.2227
 

0.3208

0.3532
 

0.5382

0.6033
 

0.1385

0.1511
 

(2)
cr  

0.0342

0.0331
 

0.0442

0.0429
 

0.0591

0.0575
 

0.0824

0.0804
 

0.1213

0.1190
 

0.1905

0.1887
 

0.3195

0.3224
 

0.0822

0.0808
 

crp  
0.0460

0.0476
 

0.0594

0.0616
 

0.0794

0.0826
 

0.1107

0.1155
 

0.1629

0.1709
 

0.2557

0.2710
 

0.4289

0.4629
 

0.1104

0.1160
 

Table 7 The values of the critical stresses (1)
cr , (2)

cr  and crp  (57) obtained for PZT-4/St/PZT-4 in the cases where 

the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to the 

corresponding data given in Table 1 (lower number): here Fh  is a thickness of the face layer,  is a radius plate-disc
 

Fh  
Crit. 

Str. 

 

0  

0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

0.025 

(1)
cr  

0.0164

0.0239
 

0.0220

0.0321
 

0.0309

0.0450
 

0.0465

0.0677
 

0.0769

0.1121
 

0.1473

0.2164
 

0.3554

0.5365
 

0.1130

0.1527
 

(2)
cr  

0.0256

0.0445
 

0.0705

0.0596
 

0.0990

0.0837
 

0.1486

0.1259
 

0.2458

0.2084
 

0.4708

0.4022
 

1.1361

0.9972
 

0.3612

0.2838
 

crp  
0.0436

0.0394
 

0.0584

0.0528
 

0.0820

0.0741
 

0.1231

0.1114
 

0.2036

0.1844
 

0.3900

0.3558
 

0.9410

0.8821
 

0.2992

0.2511
 

0.033 

(1)
cr  

0.0282

0.0411
 

0.0374

0.0546
 

0.0520

0.0758
 

0.0766

0.1118
 

0.1224

0.1795
 

0.2198

0.3258
 

0.4585

0.7038
 

0.0918

0.1365
 

(2)
cr  

0.0902

0.0764
 

0.1198

0.1015
 

0.1664

0.1410
 

0.2448

0.2079
 

0.3914

0.3336
 

0.7024

0.6056
 

1.4654

1.3082
 

0.2935

0.2537
 

crp  
0.0696

0.0647
 

0.0924

0.0859
 

0.1283

0.1193
 

0.1888

0.1759
 

0.3018

0.2823
 

0.5416

0.5124
 

1.1298

1.1068
 

0.2263

0.2147
 

0.042 

(1)
cr  

0.0424

0.0618
 

0.0558

0.0814
 

0.0764

0.1116
 

0.1103

0.1616
 

0.1706

0.2515
 

0.2884

0.4318
 

0.5368

0.8353
 

0.0758

0.1236
 

(2)
cr  

0.1356

0.1149
 

0.1785

0.1513
 

0.2445

0.2075
 

0.3526

0.3004
 

0.5453

0.4674
 

0.9219

0.8025
 

1.7157

1.5526
 

0.2425

0.2298
 

crp  
0.0968

0.0928
 

0.1274

0.1222
 

0.1745

0.1676
 

0.2519

0.2426
 

0.3892

0.3775
 

0.6580

0.6481
 

1.2245

1.2538
 

0.1731

0.1855
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Comparison of the numerical results given in Tables 4, 5 

and 6 with the corresponding ones given in Tables 7, 8 and 

9, respectively, shows that the values of the critical stresses 

obtained for the plates with the St-core layer are greater 

than those obtained for the plates with the Al-core layer.   

 

 

 

 

 

 

 

 

This comparison also shows that the values of 
(1)
cr  

depend mainly on the geometrical and electro-mechanical 

properties of the face layer material, however the values of 

(2)
cr  and  crp  depend mainly on the geometrical and 

mechanical properties of the core layer material. 

 

0.050 

(1)
cr  

0.0585

0.0854
 

0.0763

0.1115
 

0.1032

0.1511
 

0.1459

0.2146
 

0.2186

0.3243
 

0.3506

0.5297
 

0.5963

0.9381
 

0.0640

0.1133
 

(2)
cr  

0.1872

0.1587
 

0.2440

0.2072
 

0.3299

0.2808
 

0.4666

0.3989
 

0.6987

0.6028
 

1.1205

0.9846
 

1.9060

1.7436
 

0.2045

0.2106
 

crp  
0.1229

0.1221
 

0.1602

0.1594
 

0.2166

0.2160
 

0.3063

0.3068
 

0.4587

0.4636
 

0.7356

0.7572
 

1.2512

1.3409
 

0.1343

0.1620
 

Table 8 The values of the critical stresses (1)
cr , (2)

cr  and crp  (57) obtained for PZT-5H/St/PZT-5H in the cases 

where the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to 

the corresponding data given in Table 1 (lower number): here Fh  is a thickness of the face layer,  is a radius plate-

disc
 

Fh  

Crit. 

Str. 

 

0  

0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

0.025 

(1)
cr  

0.0202

0.0267
 

0.0270

0.0358
  

0.0377

0.0502
 

0.0563

0.0752
 

0.0920

0.1239
 

0.1722

0.2373
 

0.3939

0.5788
 

0.2326

0.2892
 

(2)
cr  

0.0451

0.0402
  

0.0601

0.0539
  

0.0842

0.0755
 

0.1254

0.1131
 

0.2050

0.1865
 

0.3837

0.3570
 

0.8780

0.8707
 

0.5184

0.4350
 

crp  
0.0389

0.0369
  

0.0519

0.0494
  

0.0726

0.0692
 

0.1082

0.1037
 

0.1768

0.1709
 

0.3309

0.3270
 

0.7570

0.7978
 

0.1793

0.1599
 

0.033 

(1)
cr  

0.0344

0.0457
 

0.0455

0.0607
 

0.0628

0.0841
 

0.0916

0.1236
 

0.1442

0.1973
 

0.2517

0.3549
 

0.4975

0.7553
 

0.2016

0.2681
 

(2)
cr  

0.0768

0.0689
 

0.1015

0.0914
 

0.1401

0.1265
 

0.2043

0.1859
 

0.3216

0.2968
 

0.5611

0.5339
 

1.1088

1.1362
 

0.4494

0.4033
 

crp  
0.0627

0.0612
 

0.0829

0.0812
 

0.1144

0.1124
 

0.1668

0.1652
 

0.2625

0.2637
 

0.4580

0.4743
 

0.9050

1.0093
 

0.1373

0.1340
 

0.042 

(1)
cr  

0.0514

0.0686
 

0.0673

0.0902
 

0.0915

0.1234
 

0.1305

0.1779
 

0.1981

0.2752
 

0.3247

0.4680
 

0.5739

0.8937
 

0.1769

0.2504
 

(2)
cr  

0.1147

0.1033
 

0.1500

0.1357
 

0.2039

0.1857
 

0.2909

0.2676
 

0.4415

0.4140
 

0.7238

0.7040
 

1.2791

1.3445
 

0.3942

0.3767
 

crp  
0.0884

0.0889
 

0.1156

0.1168
 

0.1571

0.1598
 

0.2241

0.2303
 

0.3401

0.3562
 

0.5576

0.6057
 

0.9853

1.1567
 

0.1055

0.1126
 

0.050 

(1)
cr  

0.0705

0.0947
 

0.0913

0.1233
 

0.1223

0.1665
 

0.1707

0.2354
 

0.2505

0.3534
 

0.3891

0.5720
 

0.6310

1.0022
 

0.1573

0.2359
 

(2)
cr  

0.1572

0.1424
 

0.2036

0.1854
 

0.2726

0.2504
 

0.3804

0.3541
 

0.5582

0.5317
 

0.8674

0.8605
 

1.4065

1.5077
 

0.3506

0.3550
 

crp  
0.1139

0.1186
 

0.1475

0.1544
 

0.1975

0.2085
 

0.2756

0.2948
 

0.4044

0.4426
 

0.6283

0.7163
 

1.0188

1.2550
 

0.0814

0.0947
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5. Conclusions 
 

Thus, in the present paper within the scope of the three-

dimensional linearized theory of stability for piezoelectric 

materials, the axisymmetric buckling delamination of the 

PZT/Metal/PZT sandwich circular plate with interface 

penny-shaped cracks has been investigated. The case where 

open-circuit conditions with respect to the electrical 

displacement on the upper and lower surfaces, and short-

circuit conditions with respect to the electrical potential on 

the lateral surface of the face layers are satisfied, is 

considered. It is assumed that the edge surfaces of the 

cracks have an infinitesimal rotationally symmetric initial 

imperfection and the development of this imperfection is 

studied by employing the exact geometrically non-linear 

field equations and relations of electro-elasticity for 

piezoelectric materials. The sought values are presented in 

the power series form with respect to the small parameter  

 

 

 

which characterizes the degree of the initial imperfection. 

By use of the corresponding mathematical manipulations, 

the corresponding equations and relations are obtained for 

the zeroth and first approximations which are enough for 

investigating the stability loss and buckling delamination 

problems. It is established that the equations and relations 

related to the first approximation coincide with the 

corresponding ones of the three-dimensional-linearized 

theory of electro-elasticity for the piezoelectric materials. 

The quantities related to the zeroth approximation are 

determined analytically, however, the quantities related to 

the first approximation are determined numerically by 

employing FEM. For determination of the critical values of 

the compressive stresses, the initial imperfection criterion is 

used. Numerical results are presented in Tables 4 – 9 for the 

PZT-5H/Al/PZT-5H, PZT-4/Al/PZT-4, BaTiO3/Al/ 

BaTiO3, PZT-5H/St/PZT-5H, PZT-4/St/PZT-4 and 

BaTiO3/St/ BaTiO3 plates, respectively. These results 

illustrate simultaneously the values of the critical 

Table 9 The values of the critical stresses (1)
cr , (2)

cr  and crp  (57) obtained for BaTiO3/St/BaTiO3 in the cases 

where the piezoelectric constants of PZT are equated to zero (upper number), are different from zero, and are equal to 

the corresponding data given in Table 1 (lower number): here Fh  is a thickness of the face layer,  is a radius plate-

disc
 

Fh  
Crit. 

Str. 

 

0  

0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 

0.025 

(1)
cr  

0.0170

0.0182
 

0.0227

0.0244
 

0.0318

0.0342
 

0.0475

0.0511
 

0.0781

0.0842
 

0.1477

0.1603
 

0.3482

0.3856
 

0.1685

0.1787
 

(2)
cr  

0.0273

0.0264
 

0.0365

0.0353
 

0.0512

0.0495
 

0.0765

0.0741
 

0.1256

0.1220
 

0.2375

0.2322
 

0.5600

0.5585
 

0.2711

0.2588
 

crp  
0.0248

0.0244
 

0.0331

0.0326
 

0.0464

0.0457
 

0.0693

0.0684
 

0.1138

0.1126
 

0.2151

0.2143
 

0.5071

0.5153
 

0.0627

0.0610
 

0.033 

(1)
cr  

0.0290

0.0312
 

0.0384

0.0414
 

0.0532

0.0572
 

0.0779

0.0840
 

0.1233

0.1337
 

0.2184

0.2388
 

0.4469

0.5001
 

0.1555

0.1676
 

(2)
cr  

0.0468

0.0452
 

0.0619

0.0599
 

0.0855

0.0829
 

0.1254

0.1217
 

0.1984

0.1936
 

0.3512

0.3458
 

0.7188

0.7241
 

0.2501

0.2428
 

crp  
0.0409

0.0406
 

0.0541

0.0538
 

0.0748

0.0744
 

0.1095

0.1092
 

0.1734

0.1737
 

0.3070

0.3102
 

0.6282

0.6495
 

0.0535

0.0533
 

0.042 

(1)
cr  

0.0435

0.0467
 

0.0570

0.0614
 

0.0777

0.0838
 

0.1114

0.1206
 

0.1707

0.1858
 

0.2847

0.3134
 

0.5223

0.5891
 

0.1447

0.1585
 

(2)
cr  

0.0700

0.0677
 

0.0917

0.0889
 

0.1251

0.1214
 

0.1792

0.1747
 

0.2745

0.2690
 

0.4579

0.4539
 

0.8401

0.8530
 

0.2328

0.2295
 

crp  
0.0590

0.0600
 

0.0773

0.0775
 

0.1054

0.1058
 

0.1510

0.1522
 

0.2313

0.2344
 

0.3858

0.3954
 

0.7077

0.7431
 

0.0459

0.0468
 

0.050 

(1)
cr  

0.0598

0.0644
 

0.0776

0.0838
 

0.1043

0.1129
 

0.1466

0.1592
 

0.2174

0.2379
 

0.3444

0.3816
 

0.5803

0.6588
 

0.1356

0.1507
 

(2)
cr  

0.0961

0.0933
 

0.1249

0.1213
 

0.1678

0.1636
 

0.2357

0.2305
 

0.3497

0.3444
 

0.5541

0.5525
 

0.9334

0.9539
 

0.2181

0.2182
 

crp  
0.0780

0.0789
 

0.1013

0.1026
 

0.1361

0.1383
 

0.1912

0.1949
 

0.2836

0.2912
 

0.4493

0.4671
 

0.7569

0.8064
 

0.0395

0.0412
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dimensionless radial compressive stress 
(1)
cr  acting in the 

face piezoelectric layer, the values of the dimensionless 

critical compressive radial stress 
(2)
cr  acting in the core-

metal layer and the values of the dimensionless critical 

stress of the intensity crp  of the external compressive 

forces obtained in the case where the piezoelectricity, i.e., 

the coupling effect, are taken into consideration (lower 

number in the Tables) and in the case where the coupling 

effect is not taken into consideration (upper number in the 

Tables). According to these results, the following concrete 

conclusions can be drawn: 

- The values of 
(1)
cr , 

(2)
cr  and crp  decrease with 

decreasing of the face layer thickness and with increasing of 

the crack’s radius; 

- For all the considered concrete cases, the piezoelectricity 

of the face layer material causes an increase in the values of 

(1)
cr  and this increase becomes more considerable with 

face layer thickness; 

- The character of the influence of the face layers’ materials’ 

piezoelectricity on the values of 
(2)
cr  and crp  depends 

on the electro-mechanical and geometrical characteristics of 

the constituents of the plate: as a rule, for relatively thin 

(thick) face layers and for relatively long (short) cracks, as a 

result of the piezoelectricity, the values of 
(2)
cr  and crp  

decrease (increase). However, the magnitude of these 

“increases” and “decreases” is significantly less than that 

obtained for 
(1)
cr ; 

- The values of 
(1)
cr , 

(2)
cr  and crp  obtained for the 

plates with St-core layer are greater than the corresponding 

ones obtained for the plates with Al-core layer; 

- The values of 
(1)
cr  play a dominant role in the 

geometrical and electro-mechanical characteristics of the 

face layer, however, the values of 
(2)
cr  and crp  play a 

dominant role in the geometrical and mechanical 

characteristics of the core layer material; 

- The most sensitive parameter for determination of the 

influence of the face layer piezoelectricity on the buckling 

delamination of the plate under consideration, is 
(1)
cr . 
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