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1. Introduction  
 

Structural elements such as the nano-scale beams have 

attracted attention of scientific community in solid-state 

physics, materials science, and nano-electronics due to their 

superior mechanical, chemical and electronic properties. 

Conducting experiments with nano-scale size specimens is 

both expensive and difficult. Hence, development of 

appropriate mathematical models for nanostructures is an 

impor tant  i s sue  concerning the  app l ica t io n of 

nanostructures. The nanostructures is modeled into three 

main categories using atomistic (Ball 2001, Baughman et 

al. 2002), hybrid atomistic-continuum mechanics (Bodily 

and Sun 2003, Li and Chou 2003a,b) and continuum 

mechanics (Eringen 1972, Eringen and Edelen 1972). 

Continuum mechanics approach is less computationally 

expensive than the former two approaches. Further, it has 

been found that continuum mechanics results are in good 

agreement with those obtained from atomistic and hybrid  
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approaches. Further, it has been found that continuum 

mechanics results are in good agreement with those 

obtained from atomistic and hybrid approaches. Due to the 

presence of small scale effects at the nano scale, size-

dependent continuum mechanics models such as the strain 

gradient theory (Nix and Gao 1998), couple stress theory 

(Hadjesfandiari and Dargush 2011), modified couple stress 

theory (Asghari and Ahmadian 2010, Ma and Reddy 2008, 

Reddy 2011), and nonlocal elasticity theory (Eringen 1972, 

Eringen and Edelen 1972, Eringen 1983) are used. Among 

these theories, the nonlocal elasticity theory initiated by 

Eringen (1983) is widely used.  

Introduced by Eringen (1983), nonlocal elasticity can 

successfully account for the scale effect in elasticity and has 

been shown to effectively simulate many complex 

phenomena in multi-scale mechanics including lattice 

dispersion of elastic waves, wave propagation in 

composites, dislocation mechanics, fracture mechanics and 

surface tension effects in fluids. Peddieson et al. (2003) first 

applied the nonlocal Eringen elasticity theory (Eringen 

1983) to nanotechnology and derived expressions for the 

static deformations of beam structures based on a simplified 

nonlocal beam model. Subsequently, based on the nonlocal 

constitutive relation of Eringen, numerous studies have 
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Abstract.  In this paper, size dependent bending and free flexural vibration behaviors of functionally graded (FG) nanobeams 

are investigated using a nonlocal quasi-3D theory in which both shear deformation and thickness stretching effects are 

introduced. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the 

present model to become effective in the analysis and design of nanostructures. The present theory incorporates the length scale 

parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation 

and thickness stretching effects by virtue of a hyperbolic variation of all displacements through the thickness without using shear 

correction factor. The material properties of FG nanobeams are assumed to vary through the thickness according to a power law. 

The neutral surface position for such FG nanobeams is determined and the present theory based on exact neutral surface position 

is employed here. The governing equations are derived using the principal of minimum total potential energy. The effects of 

nonlocal parameter, aspect ratio and various material compositions on the static and dynamic responses of the FG nanobeam are 

discussed in detail. A detailed numerical study is carried out to examine the effect of material gradient index, the nonlocal 

parameter, the beam aspect ratio on the global response of the FG nanobeam. These findings are important in mechanical design 

considerations of devices that use carbon nanotubes. 
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appeared which have developed nonlocal beam models for 

predicting the responses of nanostructures. These 

investigations include static analysis (Wang and Liew 2007, 

Pijaudier-Cabot and Bazant 1987, Lim and Wang 2007, 

Reddy and Pang 2008), buckling calculations (Zhang et al. 

2004, Zhang et al. 2006, Wang et al. 2006, Tounsi et al. 

2013 a, b, Semmah et al. 2014, Zidour et al. 2014, Chemi et 

al. 2015), vibration modelling (Yoon et al. 2003, Zhang et 

al. 2005 a, b, Rakrak et al. 2016), wave propagation 

simulations (Lu et al. 2007, Tounsi et al. 2008, Heireche et 

al. 2008, Song et al. 2010, Narendar and Gopalakrishnan, 

2011) and thermo-mechanical (Mustapha and Zhong, 

2010a, Maachou et al. 2011, Zidour et al. 2012, Bensattalah 

et al. 2016) computations of nanostructures. Recently, 

Mustapha and Zhong (2010b) investigated the free vibration 

of an axially-loaded non-prismatic single-walled carbon 

nanotube embedded in a two-parameter elastic medium 

with a Bubnov–Galerkin method. Roque et al. (2011) used 

the nonlocal elasticity theory of Eringen to study bending, 

buckling and free vibration of Timoshenko nanobeams with 

a meshless numerical method. Reddy (2007) implemented a 

range of different beam theories including those of Euler–

Bernoulli, Timoshenko, Levinson (1981) and Reddy (1984) 

to simulate bending, buckling and vibration of nonlocal 

beams. Benguediab et al. (2013) proposed a comprehensive 

nonlocal shear deformation beam theory for bending, 

buckling and vibration analysis of homogeneous nanobeams 

founded on Eringen‟s nonlocal elasticity theory. Berrabah et 

al. (2013) presented a unified nonlocal shear deformation 

theory to study bending, buckling and free vibration of 

nanobeams. Recently, Eltaher et al. (2016) studied the static 

stability of nonlocal nanobeams using higher-order beam 

theories. 

With the development of the material technology, 

functionally graded materials FGM are extensively used. 

The mechanical and thermal response of such materials 

with spatial gradients in composition and microstructure is 

of considerable interest in numerous technological areas 

such as tribology, optoelectronics, biomechanics, 

nanotechnology and high temperature technology. In the 

last few years, a great deal of researches in explanation 

simple and FGM plates using higher order theories have 

been presented (Bouderba et al. 2013, Tounsi et al. 2013c, 

Ait Amar Meziane et al. 2014, Zidi et al. 2014, Ait Yahia et 

al. 2015, Attia et al. 2015, Ait Atmane et al. 2015, Beldjelili 

et al. 2016, Bouderba et al. 2016, Boukhari et al. 2016, 

Bousahla et al. 2016, Houari et al. 2016, Tounsi et al. 

2016). These studies have tried to demonstrate various 

behaviors in considering bending, linear vibration, buckling 

as well as wave propagation. In recent years, the application 

of FGMs has broadly been spread in micro-and nano-scale 

devices and systems such as thin films (Fu et al. 2003, Lu et 

al. 2011), atomic force microscopes (Rahaeifard et al. 

2009), micro- and nano-electro-mechanical systems 

(MEMS and NEMS) (Witvrouw and Mehta 2005, Lee et al. 

2006). In such applications, size effects have been 

experimentally observed (Fleck et al. 1994, Stolken and 

Evans 1998, Chong et al. 2001, Lam et al. 2003), and 

conventional beam models based on classical continuum 

theories do no account for such size effects due to lack of 

material length scale parameters. So far, only a few works 

have been reported for functionally graded (FG) nanobeams 

based on the nonlocal elasticity theory. Janghorban and 

Zare (2011) investigated nonlocal free vibration axially FG 

nanobeams by using differential quadrature method. Eltaher 

et al. (2012) studied free vibration of FG nanobeam based 

on the nonlocal Euler–Bernoulli beam theory. Eltaher et al. 

(2014) analyzed the vibration of nonlinear graduation of 

nano-Timoshenko beam considering the neutral axis 

position. Belkorissat et al. (2015) examined vibration 

properties of FG nano-plate using a new nonlocal refined 

four variable model. Larbi Chaht et al. (2015) analyzed the 

bending and buckling response of size-dependent nanoscale 

FG beams including the thickness stretching effect. 

Ebrahimi and Salari (2016) examined the thermal loading 

effects on electro-mechanical vibration behavior of 

piezoelectrically actuated size-dependent Timoshenko FG 

nanobeams. Ebrahimi and Barati (2016a) presented an 

analytical solution for nonlocal buckling characteristics of 

higher-order inhomogeneous nanosize beams embedded in 

elastic medium. Ehyaei et al. (2016) discussed the nonlocal 

vibration analysis of FG nanobeams with different 

boundary conditions. Ebrahimi and Barati (2016a) studied 

the buckling response of embedded piezo- electro-

magnetically actuated nanoscale beams. Bounouara et al. 

(2016) employed a nonlocal zeroth-order shear deformation 

theory for free vibration of FG nanoscale plates resting on 

elastic foundation. Ahouel et al. (2016) investigated the 

size-dependent mechanical behavior of FG trigonometric 

shear deformable nanobeams including neutral surface 

position concept. 

In this paper, size-dependent functionally graded higher 

order beam model is developed to account for the size 

effect, so-called „„stretching effect‟‟, and material variation 

through the thickness of the beam. The axial and transverse 

displacements are supposed to be hyperbolic variation 

through the thickness according to the same assumptions 

considered by Hebali et al. (2014) and Belabed et al. 2014). 

The material properties of the FG nanobeam are assumed to 

vary in the thickness direction. Since, the material 

properties of FG beam vary through the thickness direction, 

the neutral plane of such plate may not coincide with its 

geometric middle plane (Yahoobi and Feraidoon 2010). In 

addition, Ould Larbi et al. (2013), Bouremana et al. (2013), 

Said et al. (2014), Khalfi et al. (2014) and Bousahla et al. 

(2014) show that the stretching – bending coupling in the 

constitutive equations of an FG structures does not exist 

when the coordinate system is located at the physical 

neutral surface of the structure. Therefore, the governing 

equations for the FG beam can be simplified. Based on the 

present nonlocal shear and normal deformation theory and 

the exact position of neutral surface together with the 

Hamilton‟s principle, the equations of motion of the FG 

nanobeams are obtained. Analytical solutions for the static 

bending and free vibration problems are presented for a 

simply supported beam to bring out the effects of both 

material length scale parameter and the thickness stretching 

on the deflection and frequency. Since most nanoscale 

devices involve beam-like elements that may be 

functionally graded and undergo moderately large rotations, 
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the newly developed beam models can be used to capture 

the size effects in functionally graded nanobeams. 

 

 

2. Mathematical formulations 
 

2.1 Material properties 
 

Consider a uniform FG nanobeam of thickness h , 

length L , and width b  made by mixing two distinct 

materials (metal and ceramic). The coordinate x  is along 

the longitudinal direction and z  is along the thickness 

direction. For such beams, the neutral axis may not coincide 

with its geometric mid-axis (Ould Larbi et al. 2013, 

Yahoobi and Feraidoon 2010, Bourada et al. 2015, Al-

Basyouni et al. 2015, Mouaici et al. 2016, Bellifa et al. 

2016) as shown in Fig. 1. Indeed, since in FG beams the 

condition of mid-axis symmetry does not exist, the 

stretching and bending equations are coupled. But, if the 

origin of the coordinate system is suitably selected in the 

thickness direction of the FG beam so as to be the neutral 

axis, the analysis of the FG beams can easily be treated with 

the homogenous isotropic beam theories, because the 

stretching and bending equations of the beam are not 

coupled. 

Here, two different datum axes are employed for the 

measurement of z , namely, msz  and nsz  measured 

from the middle surface, and the neutral surface of the 

beam, respectively (Fig. 1). The volume-fraction of ceramic 

CV  is expressed based on  msz  and nsz  coordinates 

(Fig. 1) as 
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where tP  and bP  are the corresponding material 

property at the top and bottom surfaces of the nanoscale 

beam. k  is the material distribution parameter which takes 

the value greater or equal to zero 

The position of the neutral axis of the FG nanoscale 

beam is determined to satisfy the first moment with respect 

to Young‟s modulus being zero as follows (Ould Larbi et al. 

2013)  
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Fig. 1 The position of middle surface and neutral surface for 

a functionally graded beam 

 

 

2.2 Kinematics 
 

In order to incorporate both shear deformation and 

thickness stretching effects, the axial and transverse 

displacements are supposed to be hyperbolic variation 

through the thickness (Soldatos 1992, Bessaim et al. 2013, 

Hamidi et al. 2015, Meradjah et al. 2015, Bennoun et al. 

2016): 

Based on the assumptions made above, the displacement 

field of the present theory can be obtained as 

),,(),(),(),,(

)(),(),,( 0

tzxwtxwtxwtzxw

x

w
zf

x

w
ztxutzxu

nsstsbns

s
ns

b
nsns













 

(4a) 

 

(4b) 

where 0u  is the axial displacement along the midplane of 

the nanoscale beam; bw , sw  and stw  are the bending, 

shear and stretching components of transverse displacement 

along the midplane of the beam. Furthermore 
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The component due to the stretching effect stw  can be 

given as 

),( )(),,( txzgtzxw nsnsst   (4d) 

The additional displacement   accounts for the effect 

of normal stress is included and )( nszg  is given as follows 
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The nonzero strains of the considered beam theory are 
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2.3 Nonlocal theory and constitutive relations 
 

Behavior of materials at the nanoscale is different from 

those of their bulk counterparts. In the theory of nonlocal 

elasticity Eringen (1983), the stress at a reference point x  

is supposed to be a functional of the strain field at every 

point in the body. For example, in the non – local elasticity, 

the uniaxial constitutive law is written as (Eringen 1983) 
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and 2

0 )( ae  is a nonlocal coefficient revealing the 

nanoscale influence on the behaviour of nanoscale beams, 

0e  is a constant appropriate to each material and a  is an 

internal characteristic length. In general, a conservative 

estimate of the nonlocal parameter is 0.20 ae nm for a 

single wall carbon nanotube (Wang 2005, Benzair et al. 

2008, Heireche et al. 2008 a, b, c, Tounsi et al. 2008, Tounsi 

et al. 2013 b, c, d, Berrabah et al. 2013, Benguediab et al. 

2014 a, b, Zidour et al. 2014, Semmah et al. 2014). 

 

2.4 Equations of motion 
 

In this section, the equations of motion are determined 

by employing Hamilton‟s principle as (Reddy 2002, 

Draiche et al. 2014, Nedri et al. 2014, Mahi et al. 2015, 

Bourada et al. 2016) 
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where t  is the time; 
1t  and 2t  are the initial and end 

time, respectively; U   is the virtual variation of the 

strain energy; V   is the variation of work carried out by 

the applied forces; and K   is the virtual variation of the 

kinetic energy. The variation of the strain energy of the 

beam can be expressed as 
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where N , bM , sM , 
zN  and Q  are the stress 

resultants defined as 
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The variation of work carried out by externally 

transverse loads q  can be expressed as 

  

L

sb dxwwqV
0

   (11) 

The variation of the kinetic energy can be expressed as 
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where dot-superscript convention denotes the differentiation 

with respect to the time variable t ; and ( iI , iJ , iK ) are 

mass inertias expressed by 
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Substituting the relations for U  , V  , and K   

from Eqs. (9), (11), and (12) into Eq. (8) and integrating by 
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parts, and collecting the coefficients of 0 u , bw  , 

sw   and   , the following equations of motion of the 

FG beam are found 
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(14d) 

By virtue of Eqs. (5), (7), and (10), the force–strain and 

the moment–strain relations of the present nonlocal beam 

theory can be obtained as follows 
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By using Eqs. (15) and (14), the nonlocal governing 

equations can be written in terms of displacements ( 0u , bw

, sw ,  ) as 
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The equations of motion of local beam theory can be 

deduced from Eq. (17) by setting the nonlocal parameter 

  equal to zero. 

 

 

3. Analytical solution 
 

The above equations of motion are analytically solved 

for bending and free vibration problems. The Navier 

solution technique is employed to obtain the analytical 

solutions for a simply supported FG nanobeam. The 

solution is assumed to be of the form 
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where mU , bmW , smW  and stm  are arbitrary 

parameters to be determined,   is the eigenfrequency 

associated with m th eigenmode, and Lm /  . The 

transverse load q  is also expanded in the Fourier sine 

series as 
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The Fourier coefficients nQ  associated with some 

typical loads are given 

0qQn  ,  1n    for sinusoidal load (20a) 

 

n

q
Qn

04
 ,  .....5,3,1n  for uniform load (20b) 
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2
sin

2 0 n

L

q
Qn  , ....3,2,1n  for point 

load 0Q  at the midspan, 

(20c) 

Substituting Eqs. (18) and (19) into Eq. (17), the 

analytical solutions can be obtained by 
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where 
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4. Numerical results 
 

Numerical results presented in this section demonstrate 

the influence of the thickness stretching, nonlocal parameter, 

the material distribution parameter, and slenderness ratio on 

deflections and frequencies of FG nanobeams.  

In the following investigation, two FG nanobeams are 

examined. The first FG nanobeam has the following 

material properties: TPa  25.0tE , TPa 1bE , 

3.0 bt   (Zemri et al. 2015). The second FG 

nanobeam is composed of steel and alumina (Al2O3). The 

bottom surface of the beam is pure steel, whereas the top 

surface of the beam is pure alumina. The material properties 

are as follows: GPa  390tE , GPa  210bE , 

3kg/m  3960t , 3kg/m 7800b , 3.0 bt   

(Eltaher et al. 2012). For convenience, the following 

nondimensionalizations are employed 
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The results of reference are illustrated and discussed, to 

evaluate accuracy of deflection and frequencies predicted 

by the present theoretical formulation, the non-dimensional 

deflections and natural frequencies of simply supported FG 

nanobeam with various nonlocal scale parameters 

previously analyzed by Navier method are reexamined. 

Table 1 compares the non-dimensional maximum 

deflections w  predicted by the present nonlocal quasi-3D 

theory and the results presented by Zemri et al. (2015) 

which have been obtained by a refined nonlocal shear 

deformation theory with different nonlocal scale parameter, 

material distribution parameter, and slenderness ratio. It 

should be pointed out that the thickness stretching effect is 

neglected in analytical formulation presented by Zemri et al. 

(2015). Consequently, it is observed from Table 1 that the 

present model without the thickness stretching effect 

( 0z ), provides identical results to those of Zemri et al. 

(2015) for all values of thickness ratio, L/h, material 

distribution parameter k  and nonlocal scale parameter 

( ae0 ). However, the results of the present model with the 

thickness stretching effect ( 0z ) demonstrate that the 

inclusion of the thickness stretching effect leads to a 

reduction in the magnitudes of deflection of FG nanobeams. 

Thus, with the thickness stretching effect incorporated, FG 

nano-scale beams exhibit greater stiffness, and this 

characteristic is particularly important in applications. 

Table 2 documents the values for the computed non-

dimensional frequencies. The present computations are 

benchmarked with the earlier results of Zemri et al. (2015) 

and good correlation is observed with the present model 

without the thickness stretching effect ( 0z ). The results 

obtained by utilizing the present neutral axis-based model 

with the thickness stretching effect ( 0z ) show that the 

inclusion of the thickness stretching effect manifests in an 

enhancement in the frequencies. According to this table, 

frequencies diminish with increasing nonlocal scale 

parameter ( ae0
). In addition, the increase of the material 

distribution parameter k  leads to a decrease of frequencies. 

Figs. 2 and 3 demonstrate the influence of slenderness 

ratio on the non-dimensional deflection and the frequency 

of the FG nanobeam. The local and nonlocal results are 

provided for ae0
= 0 and ae0

= 1 nm, respectively. The 

material distribution parameter is assumed to be constant 

i.e., k=1. In these examples, the aspect ratio varies from 

L/h=10 to L/h=50. It is found that deflections predicted by 

the nonlocal theory exceed in magnitude those calculated 

with the classical theory ( 00 ae ). On the other hand, the 

nonlocal solution of the frequency is lower in magnitude 

than the ferquency due to the nonlocality effects. Also, it 

can be observed that the inclusion of the thickness 

stretching effect leads to a significant reduction in 

nanobeam deflection and an increase in frequency values 

for FG nanobeams. These results effectively prove that the 

incorporation of nonlocal scale parameter softens the 

nanobeam, whereas the incorporation of thickness 

stretching effect makes it stiffer. As such both nonlocality 

and thickness stretching influences exert a significant effect 

on nanobeam structural performance. 
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(a)
 Taken from Zemri et al. (2015) 

 

 

 

The effect of both nonlocal scale parameter and 

slenderness ratio on the non-dimensional deflection and the 

frequency of the FG nanobeam, are illustrated in Figs. 4 and 

5. The results in these figures are obtained by employing 

the present nonlocal quasi-3D theory. The material 

distribution parameter is assumed to be constant (i.e., k=1). 

These results demonstrate that the nanobeam has a 

nonlinear behaviour under the effect of the nonlocality, 

especially for small slenderness ratio. It can be concluded 

that FG nanobeam responses are slenderness ratio-

dependent based on nonlocal elasticity.     

To examine the effect of the material distribution 

parameter k on the bending and vibration responses of FG 

nanobeams, the transverse deflection w , and frequency 

 , respectively are plotted in Figs. 6 and7, respectively. It 

can be observed that increasing the material distribution 

parameter k , leads to a decrease in deflections and 

frequencies.  

 

 

 

 

 

5. Conclusions 
 

Bending and vibrational response of the FG nanoscale 

beams are studied on the basis of nonlocal elasticity 

formulation in conjunction with Navier analytical procedure. 

Eringen‟s theory of nonlocal elasticity together with a 

quasi-3D hyperbolic theory are employed to model the 

nanoscale beam. The position of neutral surface is found 

and the nonlocal hyperbolic shear and normal deformation 

theory based on neutral surface is adopted to determine the 

equations of motion of FG nanoscale beams. Exactitude of 

the results is examined via available data in the literature. It 

is concluded that the scale parameter, the material 

distribution parameter, and slenderness ratio play important 

roles in bending and dynamic response of FG nanoscale 

beams. 

 

 

 

 

 

 

Table 1 Dimensionless transverse deflections ( w ) of the FG nanobeam for uniform load 

hL  k  

Nonlocal scale parameter,  nmae0
 

0 0.5 1 1.5 2 

Ref(a) 
Present 

0zz  

Present 

0zz  Ref(a) 
Present 

0zz  
Present 

0zz  Ref(a) 
Present 

0zz  

Present 

0zz  
Ref(a) 

Present 

0zz  

Present 

0zz  Ref(a) 
Present 

0zz  

Present 

0zz  

10 

0 5.3383 5.3383 5.3269 5.4659 5.4659 5.4543 5.8487 5.8487 5.8364 6.4867 6.4867 6.4732 7.3799 7.3799 7.3649 

0.3 3.2181 3.2181 3.1871 3.2951 3.2950 3.2632 3.5258 3.5258 3.4918 3.9104 3.9104 3.8728 4.4488 4.4488 4.4062 

1 2.4194 2.4194 2.3893 2.4773 2.4773 2.4464 2.6509 2.6508 2.6179 2.9401 2.9401 2.9037 3.3452 3.3451 3.3037 

3 1.9234 1.9234 1.9086 1.9694 1.9694 1.9543 2.1074 2.1075 2.0913 2.3375 2.3375 2.3197 2.6595 2.6595 2.6394 

10 1.5790 1.5790 1.5738 1.6168 1.6168 1.6115 1.7301 1.7301 1.7244 1.9189 1.9189 1.9127 2.1831 2.1832 2.1762 

30 

0 5.2228 5.2228 5.2215 5.2367 5.2367 5.2354 5.2785 5.2785 5.2771 5.3481 5.3481 5.3467 5.4455 5.4455 5.4452 

0.3 3.1475 3.1475 3.1219 3.1559 3.1559 3.1302 3.1811 3.1811 3.1552 3.2230 3.2230 3.1968 3.2818 3.2818 3.2550 

1 2.3732 2.3732 2.3471 2.3795 2.3795 2.3534 2.3985 2.3985 2.3721 2.4302 2.4301 2.4034 2.4744 2.4744 2.4472 

3 1.8892 1.8892 1.8780 1.8943 1.8943 1.8830 1.9094 1.9094 1.8980 1.9346 1.9346 1.9231 1.9698 1.9698 1.9581 

10 1.5488 1.5488 1.5467 1.5529 1.5529 1.5508 1.5653 1.5653 1.5632 1.5860 1.5860 1.5838 1.6149 1.6149 1.6127 

100 

0 5.2096 5.2096 5.2095 5.2109 5.2109 5.2107 5.2146 5.2146 5.2145 5.2209 5.2209 5.2207 5.2296 5.2296 5.2295 

0.3 3.1395 3.1395 3.1145 3.1403 3.1402 3.1152 3.1425 3.1425 3.1174 3.1463 3.1463 3.1212 3.1515 3.1516 3.1264 

1 2.36794 2.3679 2.3423 2.3685 2.3685 2.3429 2.3702 2.3702 2.3445 2.3731 2.3731 2.3474 2.3770 2.3770 2.3513 

3 1.8854 1.8854 1.8745 1.8858 1.8858 1.8750 1.8872 1.8872 1.8763 1.8894 1.8894 1.8786 1.8926 1.8926 1.8817 

10 1.5454 1.5454 1.5436 1.5458 1.5457 1.5440 1.5469 1.5469 1.5451 1.5487 1.5487 1.5469 1.5513 1.5513 1.5495 
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 (a)

 Taken from Zemri et al. (2015) 
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Fig. 2 Effect of the aspect ratio on dimensionless deflection 

( w ) for uniform load with 1k  and 10 ae nm 
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Fig. 3 Effect of the aspect ratio on dimensionless frequency 

( ) with 1k  and 10 ae nm 

 

Table 2 Dimensionless fundamental frequency ( ) of the FG nanobeam 

hL  k  

Nonlocal parameter,  nmae0  

0 0.5 1 1.5 2 

Ref(a) 
Present 

0zz  

Present 

0zz  
Ref(a) 

Present 

0zz  

Present 

0zz  
Ref(a) 

Present 

0zz  

Present 

0zz  
Ref(a) 

Present 

0zz  

Present 

0zz  
Ref(a) 

Present 

0zz  

Present 

0zz  

10 

0 9.7075 9.7075 9.6837 9.5899 9.5899 9.5664 9.2612 9.2612 9.2385 8.7813 8.7813 8.7598 8.2197 8.2197 8.1995 

0.3 8.1709 8.1709 8.1557 8.0719 8.0719 8.0569 7.7952 7.2704 7.7807 7.3913 7.3913 7.3775 6.9185 6.9185 6.9057 

1 6.8814 6.8814 6.8744 6.7981 6.7981 6.7911 6.5651 6.5651 6.5583 6.2249 6.2249 6.2185 5.8267 5.8267 5.8208 

3 6.0755 6.0755 6.0663 6.0019 6.0019 5.9929 5.7962 5.7962 5.7875 5.4959 5.4958 5.4876 5.1443 5.1444 5.1366 

10 5.5768 5.5768 5.5624 5.5092 5.5092 5.4950 5.3204 5.3204 5.3067 5.0447 5.0447 5.0317 4.7221 4.7221 4.7099 

30 

0 9.8511 9.8511 9.8506 9.8376 9.8376 9.8371 9.7975 9.7975 9.7970 9.7318 9.7318 9.7313 9.6419 9.6419 9.6414 

0.3 8.2902 8.2902 8.2929 8.2788 8.2789 8.2816 8.2451 8.2451 8.2478 8.1898 8.1898 8.1925 8.1141 8.1141 8.1168 

1 6.9832 6.9833 6.9923 6.9737 6.9737 6.9828 6.9452 6.9453 6.9543 6.8987 6.8987 6.9076 6.8349 6.8350 6.8439 

3 6.1712 6.1712 6.1795 6.1627 6.1627 6.1710 6.1376 6.1376 6.1458 6.0964 6.0964 6.1046 6.0401 6.0401 6.0482 

10 5.6655 5.6655 5.6676 5.6578 5.6578 5.6599 5.6347 5.6347 5.6368 5.5969 5.5969 5.5990 5.5452 5.5452 5.5473 

100 

0 9.8679 9.8679 9.8680 9.8667 9.8667 9.8668 9.8631 9.8631 9.8631 9.8570 9.8570 9.8571 9.8485 9.8485 9.8486 

0.3 8.3042 8.3042 8.3073 8.3032 8.3032 8.3063 8.3001 8.3001 8.3032 8.2950 8.2950 8.2981 8.2878 8.2878 8.2910 

1 6.9952 6.9952 7.0047 6.9943 6.9943 7.0038 6.9917 6.9917 7.0012 6.9874 6.9874 6.9969 6.9814 6.9814 6.9909 

3 6.1824 6.1824 6.1912 6.1817 6.1817 6.1905 6.1794 6.1794 6.1882 6.1756 6.1756 6.1844 6.1703 6.1703 6.1790 

10 5.6759 5.6759 5.6786 5.6752 5.6752 5.6779 5.6731 5.6731 5.6758 5.6697 5.6697 5.6723 5.6648 5.6648 5.6674 
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Fig. 4 Effect of nonlocal parameter on dimensionless 

deflection ( w ) for uniform load with 1k  
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Fig. 5 Effect of nonlocal parameter on dimensionless 

frequency ( ) with 1k  
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Fig. 6 Effect of the material distribution parameter on 

dimensionless deflection ( w ) for uniform load with 

10/ hL  
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Fig. 7 Effect of the material distribution parameter on 

dimensionless frequency ( ) with 10/ hL  
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