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1. Introduction 
 

One of basic relations in continuum mechanics is strain-

displacement relations. For problems with very small 

displacement, one can use infinitesimal strain tensor 

relation that is a linear equation. For problems required 

more accurate results, using the finite or Lagrange strain 

tensor is proposed. This relation due to existence of 

nonlinear terms tends to a nonlinear differential equation. 

Although consideration of nonlinear differential equations 

and solution of that yields more confidential results rather 

than linear results, due to inexistence of a comprehensive 

analytical method for solution of nonlinear problems, the 

researchers and designer prefer to use a linear solution. One 

of the important aims of this study is nonlinear solution of a 

functionally graded sphere. A literature review can express 

necessity of study of this problem. 

Yamanouchi, Koizumi et al. (1990) presented the 

concept of functionally graded materials for the first time in 

Japan. Woo and Meguid (2001) investigated the nonlinear 

analysis of functionally graded plates and shallow shells. 

They proposed an analytical solution for the coupled large 

deflection of FG plates and shallow shells. Tutuntu and 

Ozturk (2001) studied the elastic analysis of functionally 

graded hollow structures. Benjeddou, Deu et al. (2002) 

proposed an exact two-dimensional analytical solution for 

the free-vibration analysis of simply supported piezoelectric 

adaptive plates. Chen, Lu et al. (2002) studied a FG 

piezoceramic hollow sphere by using 3D electro elastic  
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formulation. Jabbari, Sohrabpour et al. (2002) presented 

thermoelastic analysis of a functionally graded cylinder 

under thermal and mechanical loads. They studied the effect 

of different values of non-homogenous index on the radial 

displacement and stress. Transient electro elastic analysis of 

a non-homogenous sphere based on a power function was 

analytically investigated by Ding, Wang et al. (2003). 

The piezo thermoelastic solution of a functionally 

graded hollow cylinder was presented by Ying and Zhi-Fei 

(2005). Thermo-electro-elastic transient analysis of 

functionally graded piezoelectric hollow structures was 

analytically investigated under thermal, mechanical and 

electrical loads by Dai and Wang (2005). Higher order shear 

deformation theory was employed for analysis of the 

problem. Layer wise theory was used for analysis of the 

functionally graded composite plates in the cylindrical 

bending that subjected to thermomechanical loadings by 

Tahani and Mirzababaee (2008). The non-linear strain–

displacement relations were used to study the effect of 

geometric nonlinearity. The equilibrium equations were 

solved exactly by using the perturbation technique. Hojjati 

and Safari (2008) studied elastic solution of a rotating disk 

with non-uniform distribution of thickness and density. 

They used homotopy perturbation and Adomian's 

decomposition method for solving the governing equation. 

These two methods are the adequate tools for solving the 

non-homogenous linear and nonlinear differential 

equations. Allahverdizadeh, Naei et al. (2008a, b) 

investigated the nonlinear behavior of thin circular FG 

plates. The analysis was assumed to be axisymmetric and 

solution was derived based on a semi-analytical approach. 

Banerjee, Deu et al. (2008) presented the analytical and 

numerical solutions for the large deflection analysis of a 

cantilever beam with geometric nonlinearity. Adomian 
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decomposition and shooting methods were employed as 

analytical and numerical methods for analysis of the 

nonlinear system, respectively. The obtained results using 

shooting method were compared with Adomian 

decomposition results. 

Malekzadeh and Vosoughi (2009) investigated the large 

amplitude vibration of composite beams on the nonlinear 

elastic foundation. The foundation was supposed that has 

cubic nonlinearity with shearing layer. Khabbaz, Manshadi 

et al. (2009) investigated the nonlinear analysis of FG plates 

under pressure based on the higher-order shear deformation 

theory. They used the first and higher order shear 

deformation theory to investigate the large deflection of FG 

plate. The effect of the thickness and non-homogenous 

index was investigated on the distribution of the 

displacements and stresses. Khoshgoftar, Arani et al. (2009) 

presented the comprehensive thermoelastic analysis of a 

functionally graded piezoelectric cylindrical shell under 

electrical and mechanical loads. They supposed all 

mechanical and electrical properties to be variable along the 

thickness direction. They considered three different 

materials for those analyses. 

GhannadPour and Alinia (2006) investigated the large 

deflection analysis of a rectangular FG plate. Von Karman 

theory was employed for the large deflection analysis. The 

solution was obtained using minimization of the total 

potential energy. The effect of material non-homogeneity 

was investigated on the stresses and deformations. Hui-

Shen Shen (2007) considered the nonlinear response of a 

FG plate due to heat conduction. It was assumed that the 

plate to be shear deformable. Higher order shear 

deformation theory was employed for analysis of the 

problem. Linear and nonlinear analyses of FG and FGP 

structures have been performed recently by Arefi and 

Rahimi (2011a, b, 2012a, b, 2014), Rahimi, Arefi et al. 

(2012) and Arefi, Rahimi et al. (2012). Arefi and 

Khoshgoftar (2014) studied thermo-piezo-elastic analysis of 

a functionally graded piezoelectric sphere and presented the 

effect of different non-homogenous indexes on the electro 

mechanical responses of the system. The influence of 

piezoelectric materials on the nonlinear behaviour of a 

functionally graded piezoelectric cylinder and sphere has 

been investigated by Arefi (2013) and Arefi and Nahas 

(2014). 

This paper uses the geometric nonlinearity equations to 

present the nonlinear differential equations of a functionally 

graded spherical shell subjected to mechanical and thermal 

loads. After presentation of nonlinear differential equation, 

a nonlinear solution is proposed for differential equation. A 

comparison between linear and nonlinear radial 

displacement can be presented.  

 

 

2. Nonlinear formulation for thermoelastic analysis 

 
The nonlinearity is considered in strain displacement 

relations using the finite or Lagrange strain tensor. The 

strain-displacement relation using finite strain tensor can be 

presented as follows (Lai, Rubin et al. 1999, Arefi and 

Rahimi 2011a, Arefi and Rahimi 2012a, Arefi 2013, Arefi 

and Nahas 2014) 

*𝜀+ =
1

2
*∇�⃗� + ∇�⃗� 𝑇 + (∇�⃗� )𝑇(∇�⃗� )+          (1) 

in which 𝜀, �⃗�  are strain tensor and displacement vector.  

For symmetric condition, we have radial and 

circumferential strain components as follows (Arefi and 

Rahimi 2011a, Arefi and Rahimi 2012a, Arefi and 

Khoshgoftar 2014) 

𝜀𝑟 =
d𝑢

d𝑟
+

1

2
(
d𝑢

d𝑟
)
2

,     𝜀𝜃 = 𝜀𝜙 =
𝑢

𝑟
, (2) 

where 𝑢 is radial displacement. The constitutive equations 

in spherical coordinate system by considering the thermal 

effects have the following form (Tutuncu and Ozturk 2001, 

Arefi and Khoshgoftar 2014) 

𝜎𝑟 =
𝐸

(1+𝜈)(1−2𝜈)
,(1 − 𝜈)𝜀𝑟 + 2𝜈𝜀𝜃- −

𝛼𝑇𝐸

1−2𝜈

𝜎𝜃 = 𝜎𝜙 =
𝐸

(1+𝜈)(1−2𝜈)
,𝜈𝜀𝑟𝑟 + 𝜀𝜃𝜃- −

𝛼𝑇𝐸

1−2𝜈

     (3) 

For a functionally graded material with power function 

distribution, modulus of elasticity, 𝐸, has following form: 

𝐸 = 𝐸0𝑟
𝑛 , where 𝑛  is non-homogenous index. 

Substitution of this gradation and strain components into 

constitutive equations result in (Tutuncu and Ozturk 2001) 

𝜎𝑟 =
𝐸0𝑟

𝑛

(1+𝜈)(1−2𝜈)
[(1 − 𝜈) (

d𝑢

d𝑟
+

1

2
.
d𝑢

d𝑟
/
2
) + 2𝜈

𝑢

𝑟
] −

𝛼𝑇𝐸0𝑟
𝑛

1−2𝜈

𝜎𝜃 = 𝜎𝜙 =
𝐸0𝑟

𝑛

(1+𝜈)(1−2𝜈)
[𝜈 (

d𝑢

d𝑟
+

1

2
.
d𝑢

d𝑟
/
2
) +

𝑢

𝑟
] −

𝛼𝑇𝐸0𝑟
𝑛

1−2𝜈

   (4) 

Substitution of stress components in equilibrium 

equation present final nonlinear differential equations of the 

system as follows (Tutuncu and Ozturk 2001) 

d𝜎𝑟𝑟

d𝑟
+ 2

𝜎𝑟𝑟−𝜎𝜃𝜃

𝑟
= 0          (5) 

or 

d2𝑢

d𝑟2
+ (𝑛 + 2)

1

𝑟

d𝑢

d𝑟
+ 2.

𝑛𝜈

1 − 𝜈
− 1/

𝑢

𝑟2
+ *𝑛 +

2(1 − 2𝜈)

1 − 𝜈
+

1

2𝑟
(
d𝑢

d𝑟
)
2

 

+
d𝑢

d𝑟

d2𝑢

d𝑟2 =
𝛼(1+𝜈)

1−𝜈
.
𝑛𝑇

𝑟
+

d𝑇

d𝑟
/            (6) 

The governing nonlinear differential equations of the 

system can be solved using Adomian's Decomposition 

Method. In this method, the nonlinear differential equation 

must be decomposed into some linear and nonlinear 

operators. In the general state, a nonlinear differential 

equation may be decomposed as follows (Banerjee, 

Bhattacharya et al. 2008) 

𝐿,𝑢- + 𝑁,𝑢- + 𝑅,𝑢- = 𝑔          (7) 

where 𝐿 is the largest linear differential operator, 𝑁  is 

nonlinear operators, 𝑅 is the other operators and 𝑔 is the 

remained functions in nonlinear and non-homogenous 

differential equation. 

By considering the nonlinear differential equation of the 

current problem, we have 

𝐿 ≔
d2(… )

d𝑟2

𝑅 ≔ (𝑛 + 2)
1

𝑟

d(… )

d𝑟
+ 2.

𝑛𝜈

1−𝜈
− 1/

(… )

𝑟2

𝑁 ≔ 0𝑛 +
2(1−2𝜈)

1−𝜈
1

1

2𝑟
.
d(… )

d𝑟
/
2

+
d(… )

d𝑟

d2(… )

d𝑟2

𝑔 ≔
𝛼(1+𝜈)

1−𝜈
.
𝑛𝑇

𝑟
+

d𝑇

d𝑟
/

    (8) 
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Fig. 1 The schematic of a functionally graded spherical 

shell 

 

The solution procedure can be started by evaluation of 

linearized solution as zero'th order solution of the problem. 

By setting 𝑢0 as zero'th order solution, the new solution of 

the problem can be considered by multiplication of 

differential equation with 𝐿−1  and evaluating the 𝑢  as 

follows 

𝑢 = −𝐿−1[𝑁,𝑢- + 𝑅,𝑢-] + 𝑔      (9) 

In a successive approximation manner, we will have 

higher-order solutions as follows 

𝑢𝑞 = −𝐿−1 0𝑁[𝑢𝑞−1] + 𝑅[𝑢𝑞−1]1 + 𝑔 + 𝐶𝑞1𝑟 + 𝐶𝑞2  (10) 

Due to two times integration, in every step, a linear term 

must be considered at the end of solution (𝐶𝑞1𝑟 + 𝐶𝑞2). In 

every step, homogenized boundary conditions must be 

considered for evaluation of the constants of linear term. 

The reason for applying the homogenous boundary 

condition is that main boundary conditions have been 

applied on the zero'th order solution and no longer needs 

them. Final solution of the system is summation of obtained 

solutions in Eq. (10). 

 

 

3. Linear solution 
 

After eliminating the nonlinear terms in nonlinear 

differential equation, Eq. (6), we have 

d2𝑢

d𝑟2 + (𝑛 + 2)
1

𝑟

d𝑢

d𝑟
+ 2.

𝑛𝜈

1−𝜈
− 1/

𝑢

𝑟2 =
𝛼(1+𝜈)

1−𝜈
.
𝑛𝑇

𝑟
+

dT

d𝑟
/   (11) 

Changing the variable of equation from 𝑟  to 𝑠 

simplifies finding the solution. If we consider 𝑟 = e𝑠, we 

will get homogenized linear differential equations of the 

system as follows 

d2𝑢ℎ(𝑠)

d𝑠2 + (𝑛 + 1)
𝑑𝑢ℎ(𝑠)

𝑑𝑠
+ 2.

𝑛𝜈

1−𝜈
− 1/ 𝑢ℎ(𝑠) = 0   (12) 

Linear solution is containing homogenous and particular 

solutions as follows 

𝑢ℎ = 𝐶1e
.−𝜆+√𝜆2−𝜇/𝑠 + 𝐶2e

.−𝜆−√𝜆2−𝜇/𝑠,

𝑢𝑝 =
e
(−𝜆+√𝜆2−𝜇)𝑠

∫𝜓(𝑠)e
(𝜆−√𝜆2−𝜇)𝑠

d𝑠−e
(−𝜆−√𝜆2−𝜇)𝑠

∫𝜓(𝑠)e
(𝜆+√𝜆2−𝜇)𝑠

d𝑠

2√𝜆2−𝜇

  (13) 

where 

λ =
𝑛+1

2
,     𝜇 = 2 .

𝑛𝜈

1−𝜈
− 1/ ,     𝜓(𝑠) =

𝛼(1+𝜈)

1−𝜈
e𝑠 .𝑛𝑇 +

dT

d𝑠
/ (14) 

In order to find particular solution of the problem, 

solution of heat transfer equation is required. Symmetric 

and steady state heat transfer equation in spherical 

coordinate system has the following form (Jabbari, Bahtui 

et al. 2002). 

1

𝑟2

d

d𝑟
.𝑘𝑟2 d𝑇(𝑟)

d𝑟
/ = 0         (15) 

This differential equation can be solved analytically by 

employing the boundary conditions. With constant 

temperatures at inner and outer radii and power function of 

thermal conductivity coefficient as 𝑘 = 𝑘0𝑟
𝑚  (Arefi 

2015), we will have the following form of solution 

𝑇(𝑟) = 𝐶1
𝑇𝑟−(𝑚+1) + 𝐶2

𝑇         (16) 

where 𝐶1
𝑇 and 𝐶2

𝑇 are constants that determined from the 

boundary conditions at the inner (𝑇(𝑟𝑖) = 𝑇𝑖 ) and outer 

(𝑇(𝑟𝑜) = 𝑇𝑜) surfaces of the sphere. They are 

𝐶1
𝑇 =

𝑇𝑜−𝑇𝑖

𝑟𝑜
−(𝑚+1)

−𝑟𝑖
−(𝑚+1) ,     𝐶2

𝑇 =
𝑇𝑖𝑟𝑜

−(𝑚+1)
−𝑇𝑜𝑟𝑖

−(𝑚+1)

𝑟𝑜
−(𝑚+1)

−𝑟𝑖
−(𝑚+1)    (17) 

Using thermal conductivity equation, we will have 

particular solution as follows 

𝑢𝑝 =
𝛼(1+𝜈)

1−𝜈
.

𝑛−𝑚−1

𝜇+𝑚2−2𝑚𝜆
𝐶1

𝑇e−𝑚𝑠 +
𝑛

1+𝜇+2𝜆
𝐶2

𝑇e𝑠/   (18) 

We can suppose particular solution as summation of two 

terms as follows 

𝑢𝑝 = 𝐷1e
−𝑚𝑠 + 𝐷2e

𝑠          (19) 

The substitution of above solution in differential 

equation of the system yields constants of particular 

solution (𝐷1, 𝐷2) as follows 

𝐷1 =
𝛼(1+𝜈)(𝑛−𝑚−1)

(1−𝜈)(𝜇+𝑚2−2𝑚𝜆)
𝐶1

𝑇 ,     𝐷2 =
𝛼𝑛(1+𝜈)

(1−𝜈)(1+𝜇+2𝜆)
𝐶2

𝑇   (20) 

After performing a thermal analysis, a complete 

thermoelastic analysis can be performed. We recall 

homogenous and particular solutions from Eqs. (13) and 

(19) as follows 

𝑢 = 𝐶1𝑟
𝛽1 + 𝐶2𝑟

𝛽2 + 𝐷1𝑟
−𝑚 + 𝐷2𝑟               (21) 

where 𝛽1,2 = −𝜆 ± √𝜆2 − 𝜇. By employing the required 

boundary conditions for a pressure vessel subjected to 

internal pressure and with no outer pressure, we will have 

𝜎𝑟|𝑟=𝑟𝑖
= −𝑃,     𝜎𝑟|𝑟=𝑟𝑜 = 0     (22) 

Calling the linearized linear stress from Eq. (4)1 and 

substitution of radial displacement in radial stress yields 

𝜎𝑟 =
𝐸0𝑟

𝑛

(1 + 𝜈)(1 − 2𝜈)
{,𝛽1(1 − 𝜈) + 2𝜈-𝐶1𝑟

𝛽1−1

+ ,𝛽2(1 − 𝜈) + 2𝜈-𝐶2𝑟
𝛽2−1 

−,𝑚(1 − 𝜈) + 2𝜈-𝐷1𝑟
−(𝑚+1) + (1 + 𝜈)𝐷2

−𝛼(1 + 𝜈)(𝐶1
𝑇𝑟−(𝑚+1) + 𝐶2

𝑇)
}      (23) 

By employing the required boundary conditions from 

Eq. (22), the constants 𝐶1 and 𝐶2 can be evaluated. After 
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determination of linear results, the process of nonlinear 

analysis can be started using Eqs. (8)-(10). 

 

 

4. Numerical results and discusions 
 

In this stage, the numerical results of linear analysis 

including thermal and mechanical solutions can be 

presented. The temperature distribution along the radial 

direction is plotted in terms of different values of non-

homogenous index in Fig. 2. The inner and outer radii are 

0.6 and 1 and inner and outer temperatures are 250 and 20 

centigrade. One can conclude that with increase of non-

homogeneous index, the temperature is increased. This 

increase is due to decrease of heat conductivity coefficient 

with increase of non-homogeneous index that decrease flux 

of temperature.   

After determination of temperature distribution, the 

elastic results can be presented. Numerical constants are 

considered as 𝐸 = 200 𝐺𝑃𝑎 , 𝜈 = 0.3 . The non-

homogenous index can vary between±2. 

Shown in Fig. 3 is the radial distribution of radial 

displacement for different values of non-homogenous index 

using a linear analysis. As observed in this figure, the radial 

displacement increases with increasing the non-

homogenous index. This increasing is due to decrease of 

modulus of elasticity based on power function distribution 

and consequently decrease of stiffness of spherical shell. 

After performing a linear analysis and using the results 

of them, at this stage we can evaluate the nonlinear results. 

Nonlinear radial displacement along the radial direction for 

different values of non-homogenous index is plotted in Fig. 

4. 

Shown in Figs. 5 and 6 are the radial distributions of 

radial and circumferential stresses along the thickness 

direction of sphere for various values of non-homogeneous 

index of functionally graded materials. It is observed with 

increase of non-homogeneous index, the radial stress is 

increased. 

 

 

 

Fig. 2 The radial distribution of temperature for different 

values of non-homogeneous index 

 

 

 

 
Fig. 3 The radial distribution of radial displacement for 

different values of non-homogeneous based on a linear 

analysis 

 

 

 

Fig. 4 The radial distribution of radial displacement for 

different values of non-homogeneous index based on a 

nonlinear analysis 

 

 

 

Fig. 5 The radial distribution of radial stress for different 

values of non-homogeneous index based on a linear 

analysis 
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Fig. 6 The radial distribution of circumferential stress for 

different values of non-homogeneous index based on a 

linear analysis 

 

 

 

Fig. 7 The improvement of radial displacement for 

different values of non-homogeneities using a nonlinear 

analysis 

 

 

 

Fig. 8 The radial distribution of radial stress for different 

values of non-homogeneous index based on the linear 

and nonlinear analyses 

 

 

We can conclude that with increase of non-

homogeneous index, the displacement and strain are 

increased and consequently the radial stress is increased. 

In order to better presentation and discussion on the 

difference between linear and nonlinear results, a figure 

showing the percentage of difference between linear and 

nonlinear results is required. Shown in Figure 7 is the 

percentage of improvement of radial displacement using a 

nonlinear analysis rather than a linear analysis. The 

obtained results indicate that with increasing the non-

homogenous index, the percentage of difference increases. 

Maximum improvement can be obtained for 𝑛 = 2. 

Shown in Fig. 8 is the comparison between linear and 

nonlinear radial stresses along the radial direction for 

𝑛 = 2. 

 

 

5. Conclusions 
 

Nonlinear analysis of a functionally graded spherical 

shell under thermomechanical loading has been investigated 

in this paper. Geometric nonlinearity has been considered in 

strain-displacement relations based on the finite strain 

tensor. Material properties have been graded along the 

radial direction using the power function. Most important 

results of this research can be expressed as follows: 

1. Investigation on the radial displacement for different 

values of non-homogenous index indicates that with 

increasing the non-homogeneous index, radial displacement 

increases. This increasing is due to decreasing the stiffness 

of material. 

2. Consideration of a nonlinear analysis and evaluation of 

the improvement of the results using the nonlinear analysis 

gives important conclusions. Investigation on the 

percentage of difference between linear and nonlinear 

shows that with increasing the values of non-homogenous 

index, the percentage of difference increases. 

3. The presented methodology in this paper has capability to 

evaluate the responses of different one and multi fields 

nonlinear differential equations. 
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