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Abstract.    Nowadays, there are two classes of methods for damage detection in structures consisting of 
static and dynamic. The dynamic methods are based on studying the changes in structure's dynamic 
characteristics. The theoretical basis of this method is that damage causes changes in dynamic characteristics 
of structures. The dynamic methods are divided into two categories: signal based and modal based. The 
modal based methods utilize the modal properties consisting of natural frequencies, modal damping and 
mode shapes. As the modal properties are sensitive to changes in the structure, these can be used for 
detecting the damages. In this study, using dynamic method and modal based approach (natural frequencies 
and mode shapes), the objective function is formulated. Then, detection of damages of truss structures is 
addressed by using Simplified Dolphin Echolocation algorithm and solving inverse optimization problem. 
Many scenarios are used to simulate the damages. To demonstrate the ability of the algorithm, different truss 
structures with several multiple elements scenarios are tested using a few runs. The influence of the two 
different levels of noise in the modal data for these scenarios is also considered. The last example of this 
article is investigated using a different mutation. This mutation obtains the exact answer with fewer loops 
and population by limited computational effort. 
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1. Introduction 
 

Structural health monitoring is a process for getting exact information about structure's 
conditions and performance instantaneously. Detecting the structure's unusual behaviors is the 
main purpose of monitoring which shows undesirable conditions. The data obtained from 
monitoring are used for optimizing the performance, maintenance, repair and/or replacing the 
structural components based on reliable and measured data. In the monitoring topic, damage 
means some changes occurring within utilizing the structure; and identifying damage includes all 
the techniques and methods used for detecting the damages and their locations and severity 
(Doebling, Farrar et al. 1996, Sohn et al. 2004). 

Considering the changes that happen in the modal parameters after damage is one of the 
efficient means for detecting damage. There is a complete review of damage detection 
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methodologies based on dynamic parameters in (Doebling, Farrar et al. 1998, Fan and Qiao 2004, 
Carden and Fanning 2004). Villalba and Laier (2012) used a methodology for detecting and 
quantifying damages in trusses by using multi-chromosome genetic algorithm based on changes in 
the natural frequencies and mode shapes. Other damage detection methods can be found in the 
work of Hakim and Abdul Razak (2013), Kaveh and Maniat (2015), Pan, Yu et al. (2016). 

Kaveh and Zolghadr (2015) employed two different objective functions to acquire all the global 
optimal solutions. The first objective function is only based on natural frequencies therefore, if the 
tested structure with this objective function is symmetric, there will be no unique result. They used 
this objective function intentionally to demonstrate the ability of the provided algorithm in finding 
multiple global optimal solutions in few runs. The second objective function which was based on 
natural frequencies and mode shapes was utilized for detecting the exact locations and severity of 
the damages. 

For detecting steel trusses damage, Kaveh and Mahdavi (2016) applied Colliding Bodies 
Optimization (CBO) and Enhanced Colliding Bodies Optimization (ECBO) algorithms, Kaveh 
(2014). Also they employed the dynamic parameters of undamaged structure to formulate the 
objective function in addition to the parameters of the damaged structure. 

Majumdar et al. (2012) used ant colony algorithm to detect truss structures damage based on 
changes in the natural frequencies. They obtained the frequencies of undamaged structure by 
utilizing their own method and the method introduced by Kwon and Bang (2000). Then they 
gained reliable results for detecting damages by comparing these parameters with parameters 
obtained from the ant colony algorithm for the damaged structure. Kaveh and Maniat (2014) 
applied the CSS algorithm to detect damage in a continuous beam, a three-story and three-span 
plane frame, a planar truss and a spatial truss using incomplete data. 

One of the recently developed metaheuristics is Dolphin Echolocation (DE) introduced by 
Kaveh and Farhoudi (2013, 2016). This algorithm has been simplified and modified by Kaveh and 
Hosseini (2014) to introduce the Simplified Dolphin Echolocation (SDE) method. 

The DE algorithm and its simplified version (SDE) are based on dolphin’s hunting technique. 
Dolphins send the voice in different directions and listen to its echo and thereby find the location 
of their baits and move towards them. While approaching the baits, dolphins send waves 
continually and thus the probability of successful hunting increases more and more. The optimal 
solution acts as model's bait in the algorithm. A significant change applied to the SDE algorithm, 
includes the decision making after getting information. As the algorithm progresses further, the 
decision making becomes more conceivable. However, the rate and accuracy of reaching to baits 
increases. 

In this study SDE algorithm is used for detecting damages of truss structures using the 
information on changes in natural frequencies and mode shapes. The remaining of this paper is 
organized as follows: the formulation of the problem is provided in section 2. In section 3, the 
optimization algorithm consisting of the SDE algorithm and a brief overview of the standard DE 
are presented. In section 4, numerical examples are examined. Finally, discussions and concluding 
remarks are presented in section 5. 

 
 

2. Formulation of problem 
 
2.1 Finite element model for undamaged structure 
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For preparing finite element model, first the stiffness and mass matrices are calculated for each 
element. Then stiffness and mass matrices of the structure for undamaged state, denoted by Ks and 
Ms, respectively, are constructed as follows 

1

Ne

s j
j

K k


   (1)

1

Ne

s j
j

M m


   (2)

where kj and mj are the stiffness and mass matrices of the jth element, respectively; Ne is the 
number of elements of the structure. 

 
2.2 Evaluating the dynamic parameters of the undamaged structure  
 
The undamaged dynamic parameters are computed from the following eigenvalue equation 

   2([ ] [ ]) 0 s ju s juK M   (3)

where ωju and φju are the jth natural frequency and mode shape of the undamaged state, 
respectively. It is worth mentioning that the analyzed structure is undamped. 

 
2.3 Simulating the damage by reduction of modulus of elasticity 
 
Damage detection is an inverse optimization problem and applies a set of parameters 

corresponding to damaged elements in the finite element model, to simulate the damaged structure. 
Damage is identified by reduction of the structural properties. In this study, the damage is 
identified using reduction in element’s modulus of elasticity. Therefore, the relationship between 
the two states for the jth element is obtained by 

(1 )  jd j jE E  (4)

in which, Ejd and Ej are the moduli of elasticity of the jth element for the damaged and undamaged 
states, respectively; βj is the modulus of elasticity reduction coefficient being 0 if the element is 
undamaged, and 1 for the completely damaged state. The value of βj varies in different scenarios. 
The reduction in modulus of elasticity causes reduction of stiffness matrix as following 

1

[ ] (1 )[ ]
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d j j
j
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   (5)

 
2.4 Evaluating the dynamic parameters of the damaged structure  

 
where Kd is the stiffness matrix of structure for damaged state. Finally, the damaged dynamic 
parameters are obtained by 

   2([ ] [ ]) 0 d jd s jdK M   (6)
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where ωjd and φjd are the jth natural frequency and mode shape of the damaged state. 
 
2.5 Adding noise to experimental dynamic parameters 
 
Avoiding the noise is impossible in real dynamic tests, and therefore this issue is dealt with 

generating small deviation in experimental dynamic parameter as follows 

 (1 -1,1 )   noise jd frandom Noise   (7)

 , (1 -1,1 )   ijnoise i jd random Noise   (8)

where noise implies a noisy value; Noisef  and Noiseφ  are the deviations of the natural 
frequencies and mode shapes, respectively (Villalba and  Laier 2012, Chen and Nagarajaiah 
2013).. 

 
2.6 Formulating the objective function 
 
In this section, minimization problem is formulated using an objective function which is based 

on natural frequencies and mode shapes as follows 

1 1
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in which, n is the number of the considered vibration modes, and ndof is the number of degrees of 
freedom involved in the objective function; ωj is the jth natural frequency and │φj│ is the absolute 
value of the jth mode shape for the ith degree of freedom. The superscript SDE and m refers to 
results from the finite element model computed by the SDE algorithm and the measured 
(experimental) values, respectively. 

 
 

3. Optimization algorithm 
 

3.1 Simplified Dolphin Echolocation 
 
In this section, the SDE algorithm and its difference with the standard DE algorithm are briefly 

presented. Like many other metaheuristic algorithms, two stages of the SDE are the exploration 
and exploitation stages. In exploration and exploitation stages, the algorithm explores all the 
search space to perform a global search and then focuses on limited domain to search for better 
answers, respectively. When hunting process is started by dolphin, the probability of successful 
hunting increases every instant. PLi is the probability of the ith loop (In the remaining sections of 
this paper, loop means iteration), and determines the two stages of the search and is calculated by 

1 1

1
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where Li and LN are the number of the ith loop and number of loops, respectively; PL1 is the 
probability of the first loop which is usually obtained approximately as 0.1 (10%). This has not 
high impact on the convergence and accuracy of the final results, and can be calculated as follows 
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where N and M are the number of variables and number of locations, respectively; Ci is the modal 
among all answers; Modei is the parametric mode having max iteration for each variable. When PLi 
value is low, the algorithm is in exploration stage but when this parameter increases, the search 
space converts gradually to exploitation stage; and this parameter increases in each loop so that it 
meets one (100%) in the last loop. The search space becomes smaller continuously in every loop, 
and the algorithm changes to local search stage. Using Eq. (11) indicates that the mean value of PL1 
is approximately equal to 10%, and in practice it can be observed that the use of this approximate 
value in place of the exact value does not have a significant effect on the final result. 
The DE algorithm has a power parameter. This parameter specifies the increment of PLi to be 
linear or nonlinear. 

When the value of power equals to one, the desirable accuracy is gained, i.e., the algorithm 
uses a linear function for changing exploration stage to exploitation stage. Power parameter being 
equal to one is equivalent to using a linear increment for the PL1. AC parameter is a new parameter 
introduced for showing the accuracy of every variable in the SDE algorithm; and it displays the 
number of decimal places for each variable. Moreover, the DE algorithm has another parameter 
named R that it has been ignored in the SDE algorithm; and its value is assumed as 1/4 of the total 
search space for each variable. As an example, if a precision of two digits is considered, then the 
value of this parameter will be equal to 2. 

 
3.2 Steps of the SDE algorithm 
 
Step 1. Creating [L]N×M matrix 
 
This matrix is created by random number in the first loop, so that all the numbers are in the 

permissible range; and in the other loops, the L matrix is formed considering pervious loop as 
explained in the following sections. 

 
Step 2. Computing PL1 
 
Either PL1 can be set to 0.1 (10%), or it can be calculated using Eq. (11) after forming the 

matrix L for the first loop and generating Ci and Modei for each variable. 
 
Step 3. Calculating [fitness]N×2 

 

987



 
 
 
 
 
 

Ali Kaveh, Seyed Rohollah Hoseini Vaez, Pedram Hosseini and Narges Fallah 

In order to calculate the fitness, first the L matrix should be ordered, then fitness matrix that 
has two columns should be calculated so that the first column is the number of rows of ordered 
L matrix, and the second column is the fitness relative to every corresponding rows of L matrix. 
Ordering L matrix before calculating fitness is a good idea in this algorithm, because this process 
has a high impact on decreasing the number of loops and increasing the accuracy of the final 
results. This important change applied to the SDE algorithm and further explanations will be 
provided in the next steps. At the end of this step, all variables will be evaluated in few 
processes until the information is obtained for the subsequent loop. 

 
Step 4. Calculating accumulative fitness, AF matrix 
 

Each entry in [L]N×M corresponds to one point in the coordinate system against their own 
fitness. The algorithm assumes a triangle distribution on the left and right part of each variable 
in each location. The length of the distribution is 2×R, where R is the effective radius as shown 
schematically in Fig. 1. 

Overlapping usually happens in some parts of distribution. The more sub-curved area in a part, 
the probability of choosing that part as answer will be more than other parts. Thus 
accumulative fitness being shown by AF is calculated. AF takes overlaps and adds them for 
every alternative. 

Alternatives matrix, which is one of the parameters in this algorithm, is omitted. This matrix 
was applied in the DE algorithm because the entire search space should be numbered. In this 
matrix the entire search space is ordered upwardly and the DE algorithm evaluates L matrix 
numbers by exploring in the Alternatives matrix. Thus numbering will begins from 1 to 
(b-a)/ +1 for each variable, where a and b are the starting and ending points of the interval 
search space, respectively. Therefore, in the SDE algorithm instead of making the Alternative 
matrix, the following equation is utilized 

,
, 1


 i j

i j

L a
A

AC
 (13)

This change makes the burden of calculations to be reduced considerably, because generating 
alternative matrix and finding the elements of L matrix takes a lot of time. Thus, the Alternative 
matrix is omitted from the SDE algorithm. The SDE algorithm performs this process for each 
variable independently. As mentioned, the distributions are triangular. On occasion, some of these 
distributions were out of the range. To solve this problem, the borders were assumed to act as 
mirrors and reflect those parts into the borders. Fig. 2 shows (1) and (2) distributions reflected 
inward as (1) ʾ  and (2) ʾ . Therefore, the algorithm adds these values to primary values of the AF. Thus, 
the SDE algorithm finds the row of L matrix which has the most fitness. In fact, this answer is the 
best one among the search space on that loop. AF is equaled to PLi for this location and the 
probability of 1−PLi is divided between the parts of the search space. This step is a repetitive 
process for the all variables. Sometimes, there is more than one maximum, including in the last 
loops. The SDE algorithm has predicted this issue and dispenses the PLi among them in proportion 
to their repetitions. 
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1
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(15)

However, there is no guarantee for sub-curved area to be one with equation. 
 
Step 6. Creating [L]N×M matrix for the next loop 
 
In this section, the algorithm should generate L matrix for the next loop as an answer for the 

existing loop. There are different ways to perform this and the SDE algorithm has chosen a simple 
way for it. As the sub-curved area is one, the algorithm generates new locations by increasing the 
sub-curved area for a given percent value. This given value is 100% ⁄ M. As this value increases, 
the SDE algorithm chooses a new member from AFAreaij. Performing this process, all the 
locations will be chosen. As mentioned in step 3, after performing all the steps independently for 
each variable, the algorithm should start some process for integrating variables. In fact the 
integrating action is for putting the best answers together that are selected from AFAreaij for every 
variable. It is not expected the appropriate answers to lie beside each other in one location; this 
can be modeled in dolphin's brain. Receiving the information, the dolphin thinks about them and 
then decides on next movement. Therefore, the L matrix should be ordered, and this ordering is 
the most important change on DE algorithm. Before calculating the fitness, the SDE algorithm 
uses some simple ways for ordering the L matrix as follows: 

For the jth variable, constant values are considered for other variables and then fitness is 
calculated. Thus the jth variable is obtained according to the fitnesses ordered upwardly. This 
process is performed for all the variables. Now, the last location is the appropriate answer in the 
search space. Besides, the algorithm uses another way alongside with this one in which it 
combines different locations together randomly and makes some new combinations. Also, the 
algorithm is given a mutation ability, which means that the L matrix is allocated an allowed 
random number in 30% of time. It is preferred the ordering operation to be done in the first loop 
of L matrix too to increase the rate of convergence. These steps are repeated from step 1 to step 
6 according to the loops numbers. For further clarity the flow chart of the algorithm is provided in 
Fig. 3. 

 
 

4. Numerical examples 
 
In this section four numerical examples and their results are provided. To demonstrate the 

ability of the algorithm four planar and spatial trusses with some single and multiple scenarios are 
studied. The scenarios are selected by increasing the number of free noise damaged elements and 
changing severity of the damages in the scenarios until the exact answer is not reached within the 
number of loops considered for one scenario. Then the scenarios obtained are tested by applying 
two different noises. For the first noise, Noisef and Noiseφ are 1% and 3%, respectively, and for 
the second noise these are 2% and 5%, respectively. In all of the tables and figures in this paper, * 
and † denote the first and second noise, respectively. In addition, all the scenarios of examples are 
run only few times. The way for obtaining the exact answer for each scenario is illustrated in each 
example. If the exact answer is found in scenarios within few runs, then the loop number in which 
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No 

Yes 

Determine the permissible range for every variable and calculate 
the R parameter. And set the AC parameter to expected accuracy 

Begin

Create the L matrix using random numbers 
with all being in the permissible range.

Compute PL1 using Eq. (11) 

Calculate the fitness for every row of the L 

Show the best 
answer of the 

last loop 

Calculate accumulative fitness for 
every variable according to step 4 

Generate AFAreaij using Eq. (13) 

Create L matrix for the next loop and 
reorder L matrix according to step 6.

t≤LN 

the exact answer is achieved, is presented; otherwise, the result found in the last loop within few 
runs is provided.  
 
 

 

Fig. 3 Flowchart of the SDE 
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For a better understanding of the results, the misidentified elements found are given in all the 
tables. The number of the modes and the degrees of freedom used as input data in each structure 
are very important and should carefully be chosen. The more number of input data, the getting 
correct answer becomes easier by the algorithm. But in that case the rate of program running 
decreases and for obtaining the answer, the algorithm needs more time. It is advisable to generate 
ideal balance for algorithm by selecting an appropriate number of input data. The number of 
modes considered for the structures will be mentioned in each example, meanwhile, the number of 
degrees of freedom in each problem is the total number of degrees of freedom involved in each 
mode. Also, the value of AC algorithm parameter is assumed to be 0.1 (10%). For first, second, 
third and fourth examples, the number of loops are considered as 50, 50, 50 and 130; and the 
population sizes are assumed as 50, 50, 70 and 350, respectively. 

 
4.1 A 10-bar planar truss 
 
The first example is a 10-bar planar truss as shown in Fig. 4. Many researchers (Kaveh and 

Zolghadr (2011, 2012), Pholdee and Bureerat (2014), Lingyun et al. (2005) among others) have 
considered this truss as a benchmark in the field of optimization. This truss has 8 degrees of 
freedom and a non-structural mass of 454.0 kg is added to the free nodes. All of the elements 
in the structure have a modulus of elasticity E = 6.98×1010 N/m2, density ρ = 2770 kg/m3, and 
cross- sectional area A = 0.0025 m2. All of the modes are considered (8 modes). Thirteen free 
noise damage scenarios are obtained for this example as shown in the Table 1. 

All of the scenarios are run only few times and the loop numbers in the table imply the exact 
answer being achieved. Table 2 shows the results of the scenarios that are not reached the exact 
answer for this example. 

 
 
 

Table 1 Damage scenarios of the 10-bar planar truss 
 

Scenario 
Damaged 
element(s) Damage severity (β) Loop number  

   Noise free Noise* Noise† 

1 5 0.15 16 - - 
2 1 0.05 23 - - 
3 1,10 0.05,0.10 40 - - 
4 2,4 0.10,0.05 23 45 27 
5 1,6,10 0.05,0.15,0.10 24 - - 
6 2,4,5 0.10,0.05, 0.15 36 21 - 
7 2,3,4,5 0.10,0.40,0.05,0.15 21 25 - 
8 2,3,4,5 0.10,0.20,0.05,0.15 24 25 21 
9 2,3,4,5,10 0.10,0.20,0.05,0.15,0.10 23 32 - 
10 3,5,8,9,10 0.30,0.12,0.22,0.05,0.20 29 34 - 
11 2,3,4,5,7,9 0.10,0.40,0.05,0.15,0.10,0.15 21 - - 
12 1,3,4,5,7,9 0.10,0.40,0.15,0.15,0.21,0.15 24 - - 
13 2,4,5,6,7,9,10 0.10,0.25,0.15,0.05,0.10,0.15,0.15 -
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Table 10 Results for the 72-bar spatial truss with mutation 

Scenario Damaged element(s) Damage severity (β)
1* 10,69 0.20, 0.01
4* 14,50,51 0.13,0.01,0.07
4† 14,51,68  0.13,0.02,0.01
5* 4,14,36,58 0.10,0.13, 0.01,0.14
5† 4,14,40,58,67  0.08,0.12,0.01,0.13,0.01 
6* 3,16,23,41,56 0.12,0.08,0.01,0.01,0.11 
6† 3,16,33,56   0.12,0.15,0.01,0.14
7 4,14,45,51,58 0.10,0.13,0.13,0.01,0.13 

 
 

Table 11 Results of the 10-bar planar truss corresponding SDE and Kaveh and Mahdavi (2016) 

Scenario  Damaged element (s) Damage severity (β) 
1 Exact 1 0.05 
 SDE (best and mean) 1 0.05 

 CBO (best) 1 0.05 

 ECBO (best) 1 0.05 

 CBO (mean) 1 0.04916 

 ECBO (mean) 1 0.04977 

2 Exact 2,4 0.10,0.05 
 SDE (best and mean) 2,4 0.10,0.05 

 CBO (best) 2,4 0.10,0.051 

 ECBO (best) 2,4 0.10,0.05 

 CBO (mean) 2,4 0.0811,0.0598 

 ECBO (mean) 2,4 0.10,0.0499 

 
 

Table 12 Results of the 15-bar planar truss corresponding SDE and Villalba and Laier (2012) 

Scenario  Damaged element (s) Damage severity (β) 
1 Exact 7 0.18 
 SDE 7 0.18 

 multi-chromosome GA 7,8 0.174,0.039 

2 Exact 13 0.33 
 SDE 13 0.33 

 multi-chromosome GA 13 0.333 

3 Exact 1,7,13 0.47,0.25,0.30 
 SDE 1,7,13 0.47,0.25,0.30 

 multi-chromosome GA 1,7,13  0.472,0.253,.309 

4 Exact 2,6,11 0.16,0.20,0.20 
 SDE 2,6,11 0.16,0.20,0.20 

 multi-chromosome GA 2,6,11 0.168,0.20,0.203 
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Table 13 Results of the 72-bar spatial truss corresponding SDE and Kaveh and Mahdavi (2016) 

Scenario  Damaged element(s) Damage severity (β) 
1 Exact 55 0.15 
 SDE (best and mean) 55 0.15 

 CBO (best) 55 0.15 

 ECBO (best) 55 0.15 

 CBO (mean) 55 0.1348 

 ECBO (mean) 55 0.1457 

2 Exact 4,58 0.10,0.15 
 SDE (best and mean) 4,58 0.10,0.15 

 CBO (best) 4,58 0.0989,0.15 

 ECBO (best) 4,58 0.10,0.15 

 CBO (mean) 4,58 0.0916,0.1515 

 ECBO (mean) 4,58 0.1017,0.1515 

 
 

5. Conclusions 
 
5.1 Comparison of the algorithm efficiency with other works 
 
The scenarios shown in Tables 11 to 13 are selected in order to compare the efficiency of the present 

algorithms with the two studies mentioned for three examples including the 10-bar planar truss, the 
15-bar planar truss and the 72-bar spatial truss. Thus the scenarios mentioned are simulated in 
accordance with the details of the studies and the results obtained by the SDE are exact for all of the 
scenarios. 

 
5.2 Discussion on noise free condition 
 
The scenarios are selected by increasing the number of damaged elements and changing the 

severity of damaged elements in the scenarios until finding the exact answer within the assumed 
number of loops and a few runs becomes impossible. In other words, the number of loops and 
running only a few times are two important conditions here. This means the answer presented 
for the last scenario in each example is not the real answer, because considering these conditions 
the algorithm has been unable to get the exact answer. Therefore it is impossible to claim that 
the algorithm has trapped in a local minimum. On the other hand, given the results of these 
scenarios, the locations of damaged elements are detected correctly and only few misidentified 
elements are found which in fact are not real, because if the algorithm was given enough chance or 
the number of runs or assumed population were higher, it would have been possible to achieve 
the exact detection. 
 

5.3 Discussion on added noise condition 
 
The errors in the computation of damage severity for the real damaged elements were 0.02, 

0.02 and 0.01 in scenarios of first, second and last trusses, respectively; and for the last truss 
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with mutation, this error was 0.08 in scenario 4† that is rather high, but this value was reduced to zero 
after three other runs. There were maximums 7, 3 and 2 misidentified elements with damage 
severity less than or equal to 0.03 among scenarios of the first, second and fourth examples, 
respectively. For the last example with mutation, there were maximum 2 misidentified elements 
with damages equal to 0.01 in scenarios 5† and 6*. Generally, simulating identical damage scenarios 
with two different noise levels showed that the errors in the damage severity of real damage 
elements and the number and extent damage of misidentified elements were increased as the noise 
increased. 

 
5.4 Conclusion 
 
In this paper the application of the Simplified Dolphin Echolocation to the damage detection 

problem is investigated. The objective function is formulated based on natural frequencies and 
mode shapes. Therefore, detection of damage in truss structures was addressed by solving inverse 
optimization problem. By examining different truss structures, it is found that the algorithm is 
capable of detecting damage of different multiple scenarios with and without noise in a few runs. 
Also, a new mutation is proposed for damage detection problem in the last example which uses 
this mutation with smaller size population and a much shorter computational time leading to 
better result in a few runs. Incorporating this mutation with other algorithms like PSO, ACO, ICA, 
CSS, CBO etc. for damage detection in different truss structures may also lead to desirable results 
with a smaller population size and less number of loops with a shorter computational time. 
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