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Abstract.  A semi-active algorithm for edgewise vibration control of the spar-type floating offshore wind 
turbine (SFOWT) blades, nacelle and spar platform is developed in this paper. A tuned mass damper (TMD) 
is placed in each blade, in the nacelle and on the spar to control the vibrations for these components. A Short 
Time Fourier Transform algorithm is used for semi-active control of the TMDs. The mathematical 
formulation of the integrated SFOWT-TMDs system is derived by using Euler-Lagrangian equations. The 
theoretical model derived is a time-varying system considering the aerodynamic properties of the blade, 
variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar, mooring 
system and the TMDs, the hydrodynamic effects, the restoring moment and the buoyancy force. The 
aerodynamic loads on the nacelle and the spar due to their coupling with the blades are also considered. The 
effectiveness of the semi-active TMDs is investigated in the numerical examples where the mooring cable 
tension, rotor speed and the blade stiffness are varying over time. Except for excessively large strokes of the 
nacelle TMD, the semi-active algorithm is considerably more effective than the passive one in all cases and 
its effectiveness is restricted by the low-frequency nature of the nacelle and the spar responses. 
 

Keywords:  floating offshore wind turbine; spar-type; edgewise vibration; tuned mass damper; semi-active 

control 

 
 
1. Introduction 
 

Offshore wind power has great potential in near-shore deep-water zones in many countries. In 

deep-water areas, floating wind turbines is considered to be the most cost-effective and a 

reasonable solution that results in installation of larger wind turbines with capacities of 5-10 MW 

to minimize the power generation cost (ISSC 2009). The spar-type floating offshore wind turbine 

(SFOWT) seems to be a suitable concept for deep-water areas because of its lowered center of 

mass, small water plane area and deep-draft (Dinh and Basu 2013). An offshore floating wind 

turbine (FOWT) must safely withstand various environmental impacts including wind and wave 

loads and hydrodynamic effects and mitigation of the vibrations and the effects of such loads is 

extremely important for FOWTs (Lackner and Rotea 2011). 
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 Various measures for vibration control of FOWT blades developed for onshore wind turbines 

include the passive tuned mass damper (PTMD) (Murtagh et al. 2008) and the semi-active TMD 

(Arrigan et al. 2011, Arrigan et al. 2014). A pair of actuators/active tendons mounted inside each 

blade were proposed to control effectively the edgewise vibration of that blade (Staino et al. 2012). 

The in-plane vibrations in rotating wind turbine blades were significantly mitigated by using active 

TMDs (Fitzgerald et al. 2013). Tower responses in offshore fixed-base wind turbines could be 

effectively controlled by a tuned liquid column damper (TLCD) (Colwell and Basu 2009). 

Different algorithms have been proposed to further improve the vibration reduction efficiency. 

Considering both the energy consumption and vibration reduction efficiency, STMD devices seem 

to be a good choice (Huang et al. 2010). STMD devices do not inject mechanical energy into the 

controlled structural system, but can be controlled to optimally reduce the system response. A 

Short Time Fourier Transform (STFT) algorithm to track the dominant frequency of the system 

over time was introduced (Nagarajaiah and Varadarajan 2005). In that algorithm, the structures 

response was split into segments and each segment was analysed in real-time by performing a Fast 

Fourier Transform (FFT) to identify the current dominant frequency in the system. That algorithm 

enabled their STMD to be continuously tuned to the dominant frequency of the structure resulting 

in a significantly improved response than that achieved by a conventional passive TMD. The 

STFT technique has been effectively applied into various structures (Nagarajaiah and Sonmez 

2007, Nagarajaiah 2009). 

In controlling FOWTs, the blade pitch angle and the generator torque approaches suffer from 

some critical drawbacks (Lackner 2009), and so the structural control approaches may be suitable 

alternatives. In this paper, a TMD is therefore placed in each blade, in the nacelle and on the spar 

platform to control the vibrations of these components and the STFT algorithm is used for 

semi-active control. The controlled mathematical model of the integrated SFOWT-TMDs system is 

developed using the Euler-Lagrangian energy formulation. The edgewise vibrations are the focus 

as they are known to be lightly damped and can lead to violent vibrations; the first edgewise mode 

may exhibit a very low or even negative damping under certain conditions.  

The developed SFOWT-TMDs model in this paper is a time-varying MDOF system 

considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, 

gravity, the interactions among the blades, nacelle, spar, mooring system and the TMDs, the 

hydrodynamic effects, the restoring moment and the buoyancy force. The aerodynamic loads on 

the nacelle and the spar due to their coupling with the blades are also considered. The ocean wave 

model and the uncontrolled SFOWT model developed and validated by Dinh et al. (2013), and 

parameters resulting from passive control of SFOWT spar motions by using TMDs (Dinh and 

Basu 2014) are utilized. The effectiveness of the STMD strategy and the STFT algorithm is 

investigated in three numerical examples. In the first two examples, the varying tension of 

mooring cables and the varying rotational speed of the blades are considered, respectively. In the 

last example, the stiffness of a blade, the tension of mooring cables and the rotor speed are all 

varying. 

 

 

2. Theoretıcal model formulatıon of SFOWT-TMD system 
 

In the model proposed in this paper, the spar is assumed to be a rigid body due to its large cross 

section. The displacement and velocity of the FOWT system are assumed to be small. As the spar 

diameter is small compared to its draft and to the wavelength, Morison‟s equation can be used to 
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calculate the hydrodynamic loads. The mooring cables are assumed to be perfectly flexible, 

inextensible, and heavy so that the extended quasi-static model of mooring cable developed by 

Sannasiraj et al. (1998) for moored floating breakwaters can be adopted. A TMD is embedded into 

each blade in order to reduce the edgewise vibration. A TMD is also installed into the nacelle and 

the spar, respectively. All the TMDs are modelled as single degree of freedom (SDOF) systems. 

The proposed coupled model of a three-bladed horizontal-axis SFOWT-TMD is shown in Fig. 

1 and the definitions of other model parameters are given in Table 1. The coupled model aims at 

representing the edgewise vibration responses and the associated coupling of the blades with the 

motions of the tower/nacelle and the spar. In this model, the blades are modeled as Bernoulli–

Euler cantilever beams of length „R‟, with variable bending stiffness and variable mass per unit 

length (r) along the length as shown in Fig. 2. The blades rotate at a speed  (rad/s) and the 

azimuthal angle j(t) of blade „i‟ at the time instant „t‟ is expressed as 

     1

2
1 ,

3
i t t i


       1 t t   , i = 1, 2, 3                 (1) 

 

 

Fig. 1 Edgewise coupled model of SFOWT-TMDs system and parameters 
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Table 1 Notations for edge-wise model of SFOWT-TMDs 

B = Center of buoyancy of the S-FOWT. 

G = Center of gravity of the S-FOWT. 

F = Fairlead position at spar centreline. 

Oyz = Global axes, O at mean water level (MWL) 

uG, vG, G = Absolute sway, heave and roll 

displacement at G. 

ksH, ksV, ks = Horizontal, vertical and roll stiffness 

of mooring system, respectively. 

Mc = Mass of each mooring cable in water. 

M0 = Mass of nacelle + modal mass of tower 

D0 = Diameter of spar above taper. 

D1 = Diameter of spar below taper. 

Ms = Mass of the spar. 

Ms, Is = Moment of inertia of the spar. 

ht = Tower top (yaw bearing) above MWL 

h0 = Depth to top of taper below MWL. 

hc = Height of spar taper 

hs = Height of spar cylinder (from taper bottom to 

spar bottom). 

hd = Depth to spar bottom below MWL. 

hG = Depth of G below MWL. 

hB = Depth of B below MWL. 

hF = Depth of fairleads F. 

r0 = location of damper along the blade 

d0 = Offset position of damper from centreline of the 

blade. 

zd = Depth of spar TMD below MWL. 

0 = Angle at the anchor points Cl and Cr 

C‟, C = Imaginary anchor and real anchor. 

T0  = Initial horizontal tension of each mooring 

cable. 

c = Cable mass per unit length. 

w = Weight per unit length of mooring line in water 

l = Imaginary extension length to make a zero 

contact angle 

ZFC‟, ZFC = Vertical distance between F and C‟ and 

C. 

L = Real length of cable. 

L’ = L + l = Total length of cable. 

YFC’, YFC = Horizontal distances between F and C‟ 

and C. 

yF, yG = Horizontal coordinates of F and G in Oyz 

axes. 

zF, zG = Vertical coordinates of F and G in Oyz axes,  

TC, TF  = Initial cable tensions at C and F. 

 

 

 

Fig. 2 Geometry of blade i and its TMD 
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For simplification in modelling and practical installation, the blade TMDs are assumed to have 

the same distance r0 from the hub, the same mass (md1 = md2 = mn3= md) and the same damping 

ratio (d1 = d2 = d3 = d) but variable stiffness (kdi, i = 1, 2, 3). The constant mass and damping 

ratio and the varying stiffness of the nacelle TMD are mnd, nd and knd, respectively. The mass, 

damping ratio and stiffness of the spar TMD are msd, sd and ksd, respectively. Real-time tuning 

frequencies of the blade TMDs di(t), (i = 1, 2, 3), the nacelle TMD nd(t), and the spar TMD sd(t) 

are provided by the semi-active control scheme presented in the next section. The time-varying 

damping coefficients and stiffness of the blade TMDs, nacelle TMD and spar TMD are 

respectively expressed as 

ddiddi tmtc  )(2)(  ; )(2)( 2 tmtk diddi                       (2a) 

ndndndnd tmtc  )(2)(  ; )(2)( 2 tmtk ndndnd                     (2b) 

sdsdsdsd tmtc  )(2)(  ; )(2)( 2 tmtk sdsdsd                      (2c) 

Only the fundamental edgewise modes of the blades are considered in this paper. The tower is 

modeled as a single degree of freedom (SDOF) system with the generalized stiffness tk . As the 

axial deformations of the spar and the tower are neglected, and the roll displacement of the spar G is 

small, the absolute vertical displacement of the nacelle is approximated as 

  GGaG vhvv  cos1nac                            (3) 

The absolute horizontal displacement nacu  of the nacelle is approximated as 

GaG huuu  nacnac                               (4) 

where ha is the vertical distance between the tower top and the center of gravity, ha = ht + hG.  

The vector of generalized coordinates of the SFOWT-TMDs system is 

  T

sdndGGGddd uuvuuqqqqqqt nac332211q            (5) 

where the degree of freedom qi, i = 1, 2, 3 relates to the fundamental edgewise mode of the blade “i”. 

The relative displacement of the TMD in the ith blade with respect to the blade is denoted as qdi. The 

edgewise displacement along the blade i can be approximated by using its fundamental edgewise 

mode shape 1(r) as ui(r,t) = 1(r)qi(t). The variable unac(t) represents the relative sway displacement 

of the nacelle with respect to the spar sway displacement uG. The term vG is the spar heave 

displacement. The terms und and usd are the relative displacements of the nacelle TMD and the spar 

TMD with respect to the nacelle and the spar, respectively.  

From Fig. 2, the absolute velocity vector of a point r on the blade i at a time t is written as 

       jiv ˆ,sincosˆ,cossin, nacnacnacnac rtruvutruvutr iiiiiibi       (6) 

where î  and ĵ  are the unit vectors along and perpendicular to the blade center line, respectively.  

The absolute velocity vector of the damper in blade i at time t is expressed as  
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    
  j

iv

ˆ,sincos

ˆ,cossin

00nacnac

00nacnac

rqtruvu

dqtruvut

diiii

diiiidi












              (7) 

The total kinetic energy of the whole SFOWT-TMDs system is expressed as 

       

   2222

2

nac
2
nac

2
nacnac

3

1

2
3

1 0

2

2

1

2

1

2

1

2

1

2

1

2

1
,)(

2

1

sdssdGsGGs

ndnd
i

did
i

R

bi

uumIvuM

uumvuMtmdrtrrT







 




 vv

      (8) 

The total potential energy of whole SFOWT-TMDs system is expressed as 

 

2222

22
nac

3

1

22
3

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1
cos

2

1

sdsdGsGsVGsH

ndndt
i

didii
i

giwe

ukkvkuk

ukukqkqKKKV



 








             (9) 

where the parameter Ke is the generalized elastic stiffness of the blade, 
2

2e bK m  with b as the 

fundamental natural frequency of the blade and m2 as the modal mass of the blade. The term Kw is the 

stiffness arising out of gravity effects,    drdgK
R R

rw

2'
10

)(   . The term 0,
2

gg KK   is the 

geometrical stiffness due to centrifugal force on blade in which   ' 2
,0 10

[ ][ ] d
R R

g r
K d r      

(Staino et al 2012, Basu et al 2012). Assuming that the spar roll displacement G  is small, the spar 

horizontal displacement us at the depth zd is approximated as 

    GGdGdss hzuzuu                           (10) 

 

 

Fig. 3 Mooring model 
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Substituting expressions of the system kinetic energy in Eq. (8) and potential energy in Eq. (9) 

into the Euler-Lagrange equations in Eq. (11) 

ext

d T T V
Q

dt

   
   

   
 

q q q
                        (11) 

the aerodynamic and structural portions of the mass, damping and stiffness matrices of the 

SFOWT-TMDs system can be obtained and are expressed in Appendix A. The relative velocities 

and damping of the TMDs also add dissipative forces (non-conservative) to the system. D‟ 

Alembert‟s equation is used to find the additional terms to the system damping matrix. 

The parameters of the mooring system are shown in Fig. 3 and Table 1 and the initial horizontal 

tension T0 is assumed to be constant along the cable length. 

 

 

3. Modellıng of loads 
 
The wind load, gravitational load, hydrostatic load and hydrodynamic effects that excite the 

floating offshore wind turbines are presented in the following sections. 

 

3.1 Aerodynamic load 
 
The wind load acting on the tower is neglected as it is small compared to the load on the rotor. 

The generalized aerodynamic load vector is obtained by differentiating the virtual work done due to 

the wind load acting on the SFOWT system derived by Dinh and Basu (2014) and written as 

 
T

w
G

wwww
b

w
b

w
bw QhQQQQQQt 00000 coupcoupcoupcoup321 Q           (12) 

The resultant aerodynamic load on blade i, and the aerodynamic loads coupling the blade 

edgewise vibrations with the tower/spar sway and heave motions are respectively given as 

     drrtrptQ
R

i
w
b 101 ,  ,  i = 1, 2, 3                     (13) 

  i
i

R

i
w drtrpQ cos,

3

1
0coup 



                         (14) 

  i
i

R

i
w drtrpQ sin,

3

1
0coup 



                         (15) 

where the variable wind load intensity along the blade length in the edgewise direction, pi(r,t) (i = 1, 

2, 3) is calculated by using BEM theory (Hansen 2003, Staino et al. 2012). 

 

3.2 Gravitational load 
 

Differentiating the virtual work done due to the gravity (Dinh and Basu 2014) with respect to the 

generalized coordinates, the generalized gravitational loads on blade i and on the spar are obtained 

and are respectively expressed as 
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  i
g
b gmtQ sin11  ,  i = 1, 2, 3                         (16) 

  







 



3

1
0 0

2sin)(
i

R

si
g

v MMdrrgtQ
G

                     (17) 

 

3.3 Hydrostatic and restoring loads 
 

The magnitude of the buoyancy force and the vertical restoring coefficient acting on the spar are 

respectively expressed as 

swgVF buoy
                             (18) 

0
res

swV gAK                               (19) 

where Vs is the volume of the water displaced by the spar and 42
00 DAs   is the plane water area.  

The roll restoring coefficient is computed as 

  g
D

VhhK wsGB 


 









64

2
0res                         (20) 

where hB is the downward distance from the MWL to the center of buoyancy (assuming that the 

spar center of buoyancy B is always above its center of gravity G) 

BGhh GB                                (21) 

in which BG  is the vertical distance between the spar center of buoyancy B and center of gravity G 

(Dinh et al. 2013, Dinh and Basu 2014). 

Before using Eqs. (18)-(21), the static depth h0 of the taper top below the MWL must be 

re-calculated by using Archimedes‟s principle where the total weight of the wind turbine, spar and 

mooring cables in water is made equal to the weight of the water volume displaced by the spar 

(Dinh and Basu 2014). If the system mass is considerably increased when the TMDs are installed, 

h0 and the related depths such as hd, hF and hG should be re-evaluated. 

 
3.4 Hydrodynamic effects 
 

Hydrodynamics of FOWTs and their mooring systems were successfully modelled by using 

computational software (Flexcom 2015). In this paper, the hydrodynamic effects on the spar are 

calculated by using Morison‟s equation as its diameter is small relative to the wavelength. These 

effects consist of (i) the added mass effects associated with spar acceleration su , (ii) the inertia 

forces associated with fluid acceleration, and (iii) the viscous drag forces due to the squared relative 

velocity of the spar to the fluid. The spar roll velocity is assumed to be small. To account for 

depth-dependence, the strip theory is used where the draft hd is divided into Nz depth intervals zi 

(Dinh and Basu 2014).  

The added mass coefficients in sway motion due to sway acceleration ayy and in sway motion 

due to roll acceleration ay, and the added mass roll moment due to spar roll acceleration a are 

expressed respectively as 
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



zN

i
iiwMyy zzDCa

1

2 )(
4


                           (22) 

 



zN

i
iGiiwMyy zhzzDCaa

1

2 )(
4




                   (23) 

 



zN

i
iGiiwM zhzzDCa

1

22 )(
4




                      (24) 

In Eqs. (22)-(24), CM is the added mass coefficient, CM = 1.0 for circular cylinder (Faltinsen 

1990) and D(zi) is the spar diameter at a discrete depth zi. Using the assumption that the volume of 

the added water under the spar is a half sphere (Waris and Ishihara 2012), the vertical added mass 

coefficient at the base of the spar is expressed as 

12

3
1D

a wzz


                                (25) 

The vertical inertia force due to vertical acceleration ),( thzv df   of fluid particles at the 

spar bottom and the total horizontal inertia fluid force acting on the spar are respectively expressed 

as 

  ),(1)( 1 thzvACtF dfswM
f

z                          (26) 

  



zN

i
ifiiwM

f
y tzuzzDCtF

1

2 ),()(
4

1)( 


                     (27) 

where ),( tzu if  is the horizontal acceleration of fluid particles at depth zi and 42
11 DAs  .  

The viscous drag forces result from the relative velocities of the spar and the fluid and exist 

regardless of the presence of the waves. The vertical drag force normal to the spar bottom due to 

its heave velocity and the total horizontal drag force are respectively expressed as  

1

1
( , ) ( , )

2

Df z n
z D w s sf d f d GF C A h t v h t v     

  
q                    (28) 

   iGiGGifi
n
sf

N

i
iw

y
D

Df
y zhzutzutzzDCF

z

 


  ),(),()(
2

1

1

q              (29) 

where 
z
DC  is the drag coefficient of heave motion  and y

DC  is the hydrodynamic viscous drag 

coefficient of spar sides, y
DC = 0.6 for cylindrical object (Waris and Ishihara 2012). The quantity 

),( tzi
n
sfq  is the amplitude of the relative normal velocity vector and expressed as 

 
2 2

( , ) ( , ) ( , )n
sf f G G G f Gz t u z t u z h v z t v        

  
q                (30) 

in which ),( tzu f  and ),( tzv f  are the fluid horizontal and vertical velocity, respectively. 
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Based on the total drag forces in Eqs. (28) and (29), the hydrodynamic damping  coefficients in 

sway, heave and sway-roll coupling directions are defined respectively as 

),()(
2

1

1

drag tzzzDCC i
n
sfi

N

i
iw

y
Duu

z

G
q 



                       (31) 

  ),()(
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1

1

drag tzzhzzDCC i
n
sfiGi
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i
iw

y
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G
q 




                  (32) 

drag
1

1
( ) ( , )

2G

z n
vv D w s sf dC t C A h t q                        (33) 

The drag loads in the sway and heave directions are defined respectively as 

),(),()(
2

1

1

tzutzzzDCF ifi
n
sf

N

i
iiw

y
D

D
y

z

q


                       (34) 

),(),(
2

1
1 thvthACF dfd

n
sfsw

z
D

D
z  q                      (35) 

The horizontal and vertical velocity (in the drag force terms, Eqs. (28)-(33)) and the horizontal 

and vertical acceleration (in the inertia force terms, Eqs. (26) and (27)) of fluid particles at a depth 

of z (origin at the MWL and positive upward) and horizontal position y are given by 
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respectively. In Eqs. (36)-(39), j, kj and j are the circular frequency, wave number and random 

phase angle of wave component number j, respectively. The random phase angles j are uniformly 

distributed between 0 and 2 . The parameters j and kj are related by the exact linear dispersion 

relationship   gHkk jjj
2tanh   for any water depth H (Sarpkaya and Isaacson 1981). The wave 

amplitude Aj can be obtained from a wave spectrum S() as 

    jj SA 2                               (40) 

in which  is the difference between successive frequencies. The Pierson-Moskowitz (PM) wave 

spectrum (IEC 2006) is used in this paper and its one-sided spectrum has a form 
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where   2pwTc  , Hsw is the significant wave height and Tpw is the spectral period; their unit 

must be meter and second, respectively. 

 

 

 

4. Semi-active control strategy  
 

In this paper, the stiffness of the TMD spring is changed according to the instant dominant 

frequency of the responses and the Short Time Fourier Transform (STFT) is used to evaluate that 

dominant frequency. For the continuous-time case, STFT is the Fourier transform of the signal 

multiplied with a window function which is nonzero for only a short period of time. The Fourier 

transform of the resulting signal is taken as the window is sliding along the time axis, resulting in a 

two-dimensional representation of the signal. Mathematically, this is written as 

        , j tSTFT x t X x t w t e dt  





                      (42) 

where w(t) is the window function, commonly a zero mean Hanning window or Gaussian, and x(t) 

is the signal to be transformed. The Hanning window is used in the simulation. The flowchart of 

the STMD strategy is shown in Fig. 4 which is expanded from the strategy by Huang et al. (2010). 

The frequency selection process is to make sure the frequency change for STMD is gradual. The 

procedure starts by selecting a STFT window and a window length. The response signal is 

convoluted with a window function and then zero padded for the desired frequency resolution. The 

FFT power spectrum of each window is calculated and the dominant frequency of the response finst(t) 

at an instant of time t  is determined by weighting the frequencies within the window by its 

normalized power spectrum value at the corresponding time. If the dominant frequency is within the 

lower and upper bounds, the STMD is tuned to the dominant frequency. If it is not within the bounds, 

STMD is tuned to the optimum passive TMD frequency. For the blades, the upper and lower bounds 

are defined as the limits around the blade natural frequency fb with a deviation of 0.4Hz (as a soft 

constraint) on either side for the examples used in this paper. 

  fff b
b  4.0lowerlim,                          (43)   

  fff b
b  4.0upperlim,                           (44) 

where f is the frequency step. For the nacelle and the spar, the upper and lower bounds are defined 

as 

  fff b
b  4.0upperlim,                          (45) 

 sn
prevTMD

sn fff ,
rat,

,
upperlim, 1                         (46) 

where fTMD, prev is the frequency of the TMD computed in the previous time step. In the examples 
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used in this paper 05.0rat 
nf  for nacelle and 01.0rat 

sf  for spar because the lower dominant 

frequencies of nacelle and spar responses are generally very low and even lower than 0.1 Hz. 

A computer program in MATLAB environment (MATLAB 2011) for the mathematical models 

of the SFOWT-TMDs and the semi-active control strategy are developed in this paper. The 

computer programs for the wave model and the uncontrolled SFOWT model developed and 

validated by Dinh et al. (2013) are used in this paper. 

 

 

5. Numerical examples 

 
The properties of the floating platform, mooring systems and tower of the OC3 SFOWT 

(Jonkman 2010) are used in the numerical examples where ht = 87.6 m, h0 = 4 m, hc = 8 m, hd = 120 

m, hF = 70 m, hG = 89.9155 m, D0 = 6.5 m, D1 = 9.4 m, Ms = 7466.33103 kg, Is = 4229.23106 kg.m2, 

L = 902.2 m, c = 77.7066 kg/m, 0 = 0o, T0 = 108 N, w = 1025 kg/m3 and H = 320 m.  

 

 

 

 

Fig. 4 Flowchart of STMD strategy 
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The aerodynamic, blade, hub and nacelle properties of the NREL 5-MW baseline HAWT 

(Jonkman et al. 2009) are used where R = 61.5 m, the cut-in and rated rotor speeds are 6.9 rpm and 

12.1 rpm, respectively. The mass of each blade, hub mass, nacelle mass, and tower integrated mass 

are 17.74103 kg, 56.78103 kg, 240103 kg, and 249.718103 kg, respectively. The fundamental 

frequencies of the blade and the tower are 6.81 rad/s and 2.87 rad/s, respectively. The modal 

structural damping ratios of the blade and the tower are taken as 0.48% and 1%, respectively 

(Jonkman et al. 2009). The drag coefficient of heave motion 2z
DC   is assumed for the 

externally-smooth cylindrical spar. The values of h0 and hB of the controlled system with various 

values of the TMD mass ratios nd and sd have been re-evaluated by Dinh and Basu (2014); when 

sd  = 0.03 or larger the spar would sink by 7.6 m  or more due to the additional weight of the 

TMDs. 

The wind and wave states at the operating condition are used where the mean wind speed at the 

top of the tower is assumed to be at the rated wind speed as 12 m/s and the turbulence intensity is 

15%. The significant wave height Hsw of 3 m, the wave peak period Tpw of 10 s and the depth interval 

z of 4m are used to simulate the sea profiles. The total simulation time and the time step interval 

and the frequency interval are 200 s and 0.01 s respectively. 

The parameters and results from passive control of SFOWT spar motions by TMDs (Dinh and 

Basu 2014) are utilized in this paper. The spar TMD is located at the mean water level and its mass 

ratio msd is 3%. The stroke constraints for the spar TMD are 80% of the radius of its cross section 

(±0.8×0.5×D1 = ±3.75 m). The control is most effective for nacelle sway and spar roll for all values 

of tuning frequency s and an initial tension T0. The spar TMD is tuned at the wave peak 

frequency wpw = 0.5969 rad/s at which the passive TMD is most effective, especially for nacelle 

sway and spar roll. The initial tension of mooring cable T0 is 108 N. The mass ratios of the nacelle 

TMD and the blade TMDs are mnd = 0.01 and mbd = 0.01 respectively. 

The stroke constraints for the blade TMDs and nacelle TMD are 80% of the blade half chord 

(±0.8×0.5×3.0 = ±1.2 m) and 80% of the nacelle half width (±0.8×0.5×5.0 = ±2.0 m), respectively. 

Initially, the semi-active control scheme is introduced into all TMDs in the three blades, the 

nacelle and the spar. However, these results in excessively large strokes of nacelle TMD and 

instability may occur when the TMD is tuned at low frequency. Thus, the control scheme of the 

nacelle TMD is passive. In order to investigate the effectiveness of the STMD strategy, three 

numerical examples are considered in the following sections: (i) Varying tension of mooring cables 

T0, (ii) Varying rotational speed  and (iii) Stiffness of a blade, tension of mooring cables and 

rotational speed are varying. Notes on Fourier Transform of time history data (Dinh and Basu 2012) 

are considered to improve the accuracy. In the STFT algorithm, the window size is defined as 

50.00 + t and the segment length is defined as round [(window size  t)/t]. 

 
5.1 Varying tension of mooring cables 
 
The tensions in all three mooring cables are assumed to be suddenly dropped from T0 = 108 N to 

T0c = 0.5T0 at a time t1 = 80 s. It should be noted here that the tensions in three cables must be equal 

to ensure stability of the SFOWT. The time histories and Fourier amplitude spectra of the blade 3 

displacement, nacelle sway and spar roll controlled by passive and semi-active TMDs are shown in 

Figs. 5(a)-5(f), respectively where the semi-active scheme are considerably more effective than 

passive scheme, especially since the time t1 = 80 s. This is because at the time instant t1 = 80 s the 

cable tensions drop by one half, the spar sway and roll stiffnesses are consequently reduced and the 
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dominant frequencies of their motions are lowered. Thus the selection of control frequency for the 

passive TMD scheme is less accurate and consequently its effectiveness is reduced. Whereas for the 

STMD, the controlled frequency is re-tuned continuously in real-time and hence is still more 

accurate 

Fig. 5(h) presents the real-time frequency of the spar TMD resulted from the semi-active control. 

The strokes of the spar TMD shown in Fig. 5(g) vary between (-2 m, +2.5 m) that is acceptable to the 

spar diameter. 

 

5.2 Varying rotational speed  
 

The rotor rotational speed  is assumed to be steeply reduced to 0.6  at a time t2 = 100 s. The 

time histories and Fourier amplitude spectra of the blade 3 displacement, nacelle sway and spar roll 

controlled by passive and semi-active TMDs are shown in Figs. 6(a)-6(f), respectively. The 

effectiveness of the semi-active control on all blade displacements, nacelle sway and spar roll are 

larger compared with the case or varying cable tensions in Section 5.1. That difference may be due 

to the cable tension changes result in low frequency responses whose peak frequencies are less 

precisely captured by the STFT scheme. The spar heave in Fig. 5(g) shows that the good heave 

performance of the SFOWT system is maintained when the TMDs are installed. Fig. 5(h) presents 

the spar TMD real-time frequency. 

 

 

 

 

(a) (b) 

 

 

(c) (d) 

Continued- 
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(e) (f) 

 

 

(g) (h) 

Fig. 5 Responses by passive and semi-active controls, T0c = 0.5T0 at 80 s, (a), (b) Blade; (c), (d) Nacelle 

sway; (e), (f) Spar roll; (g) Spar TMD stroke; and (h) Spar TMD real-time frequency 
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Continued- 
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(c) (d) 

 

 

(e) (f) 

 

 

(g) (h) 

Fig. 6 Responses by passive and semi-active controls, c = 0.6 at t= 100 s, (a), (b) Blade; (c), (d) Nacelle 

sway; (e), (f) Spar roll; (g) Spar heave; and (h) Spar TMD real-time frequency 

 

 

 

5.3 Varying blade 3 stiffness, mooring cable tension T0 and rotational speed   
 
This example consider the worst case when the tensions of mooring cable is dropped to T0c = 

0.5T0 at a time t1 = 80 s, then the rotor rotational speed is reduced to c = 0.6 at a time t2 = 100. 

Finally the stiffness of blade 3 is lost 50% resulting in a reduction of its fundamental frequency to 

bc = 0.7b at a time t3 = 120 s. The time histories and Fourier amplitude spectra of the blade 3 

displacement, nacelle sway and spar roll controlled by passive and semi-active TMDs are shown in 

Figs. 7(a)-7(f), respectively. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 7 Responses by passive and semi-active controls, T0c = 0.5T0 at t1 = 80 s, c = 0.6 at t2 = 100 s and bc 

= 0.7b at t3 = 120 s; (a), (b) Blade; (c), (d) Nacelle sway; (e), (f) Spar roll; (g) Blade 3 TMD stroke; and (h) 

Blade 3 TMD real-time frequency 
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The effectiveness of the semi-active control on the blade responses is more profound when the 

blade stiffness is reduced. This is because that control scheme is capable of tracking the real-time 

frequencies as shown in Fig. 5(h). However, the effectiveness of the semi-active control on the 

nacelle sway and spar roll are considerable but less than that of the case of varying rotor speed (in 

Section 5.2). The blade 3 TMD strokes shown in Fig. 5(g) are acceptable as they are within blade 

width.  

 
 
6. Conclusıons 
 

In this paper, a TMD has been placed in each blade, in the nacelle and on the spar of spar-type 

floating wind turbines to control the vibrations at these components. The STFT algorithm has been 

used for semi-active control of the TMDs. The developed model is a time-varying MDOF system 

considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, 

gravity, the interactions among the blades, nacelle, spar, mooring system and the TMDs, the 

hydrodynamic effects, the restoring moment and the buoyancy force. In the numerical examples, 

the varying tension of the mooring cables, the varying rotational speed of the blades, and the 

varying stiffness of a blade have been investigated separately and together. The following 

conclusions have been drawn: 

 Excessive large strokes of nacelle TMD are observed and the instability is occurring when 

the TMD is tuned at low frequency. The nacelle TMD should be passively controlled and 

special attention is needed. 

 The semi-active control scheme is considerably more effective than passive scheme in all 

cases. However, the effectiveness is less than as compared to the results for the fixed-base 

wind turbine cases reported in the literature. This is due to the low-frequency responses 

whose peak frequencies are less precisely captured by the STFT algorithm.  

 The effectiveness of the semi-active control on the blade displacements, nacelle sway and 

spar roll are larger in the case of varying rotational speed as compared with the case of 

varying cable tensions. 

 The effectiveness of the semi-active control on blade responses is especially profound when 

the blade stiffness is reduced as the STMD is capable of tracking the real-time frequencies. 
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Appendix A 
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     ididi
d
i rmmrmmm  coscos 0110111  ;   iddi mm cos            (A5) 

     ididi
d
i rmmrmmm  sinsin 0110111  ;   iddi mm sin

           (A6) 

nddnd mmmm  344 ;   sdsndnsd mMmm  44 ;   dssd mMmm 344      (A7) 

4
2mhIm as  ;       sdGndda

d mhzmmhmm
22 3               (A8) 

    sdGnddau mhzmmhm  3 ;   uau mmhI   4                (A9) 
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Damping matrix: 
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where the term cb is the structural damping coefficient of a blade, 
Guc , 

Gvc and 
G

c are the 

damping coefficients in sway, heave and roll motion of the spar respectively contributed by 

mooring system. The term cnt is defined as tnt ccc  nac  in which cnac and ct are the structural 

damping associated with the nacelle and the tower, respectively. 

 

Stiffness matrix: 
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where 

iwbi Kkk cos2  ;   2 2
2 2e gk K K m   

                (A12) 

 01
2Ω rmk dbd  ;    0

2
1

2Ω rmk dbd  ;                  (A13) 

sHtts kkk  ;   tat khk                         (A14) 

The horizontal, vertical and rolling stiffness of the mooring system in the stiffness matrix, are 

obtained from the extended quasi-static model of mooring cable (Sannasiraj et al. 1998) and are 

respectively expressed as 
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where  

              (A18) 
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