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Abstract.  In this paper, a new Pigeon Colony Algorithm (PCA) based on the features of a pigeon colony 
flying is proposed for solving global numerical optimization problems. The algorithm mainly consists of the 
take-off process, flying process and homing process, in which the take-off process is employed to 
homogenize the initial values and look for the direction of the optimal solution; the flying process is 
designed to search for the local and global optimum and improve the global worst solution; and the homing 
process aims to avoid having the algorithm fall into a local optimum. The impact of parameters on the PCA 
solution quality is investigated in detail. There are low-dimensional functions, high-dimensional functions 
and systems of nonlinear equations that are used to test the global optimization ability of the PCA. Finally, 
comparative experiments between the PCA, standard genetic algorithm and particle swarm optimization 
were performed. The results showed that PCA has the best global convergence, smallest cycle indexes, and 
strongest stability when solving high-dimensional, multi-peak and complicated problems. 
 

Keywords: optimization algorithm; Pigeon Colony Algorithm; low-dimensional function; high-dimensional 

function; nonlinear equation 

 
 
1. Introduction 
 

In conjunction with the rapid development of production, optimization problems have emerged 

widely in industry, communication, transportation, civil and hydraulic engineering (Li et al. 2012, 

2015), and in many other fields. For example, Genetic Algorithms (GAs) have been used in 

vehicle scheduling (Zuo et al. 2015), and the Monkey Algorithm (MA) has been adopted for 

sensor placements in a structural health monitoring field (Yi et al. 2012). Traditional optimization 

algorithms such as Newton's method (Qi and Sun 1993), Simplex algorithm (Spielman and Teng 

2004), and the Branch-and-bound method (Zuo et al. 2015) have been used in many fields. 

However, these approaches demonstrate some limitations in nonlinear, complex situations that 

have multiple peak functions (Lei et al. 2012, 2013). 

In recent years, swarm intelligent optimization algorithms have become popular because they 
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can solve combinatorial optimization problems well, and with them, it is not easy to fall into 

locally optimal solutions. The first swarm intelligent optimization algorithm was the GA (Holland 

1975), which is based on natural selection and the biological evolution of a genetics mechanism; 

this approach is independent from the concrete aspects of the fields of application and is broadly 

used in many fields, such as combination optimization, mathematical problems and signal 

processing. Dorigo et al. (1991) simulated the process of ants foraging and proposed Ant Colony 

Optimization, which can well solve optimal path selection problems, such as the traveling 

salesman problem. Kennedy and Eberhart (1995, 1998) proposed Particle Swarm Optimization 

(PSO) through the simulation of birds flying, which has been extensively used in function 

optimization, neural network training, and fuzzy system control. Harmony Search (Geem et al. 

2001) was proposed in terms of musicians composing wonderful and sweet harmonies. The 

algorithm was successfully applied to many combinatorial optimization domains. The Artificial 

Fish-School Algorithm (Li and Qian 2003) was proposed through the study of fish foraging 

behavior. It has been practiced in power system planning and the optimization of multi-step 

logistic transit shipment systems. Eusuff and Lansey (2003) proposed the theory of the Shuffled 

Frog Leaping Algorithm by simulating a frog foraging, and this approach has been used to solve 

the problem of minimizing the pipeline size in a pipeline network expansion. Zhao and Tang (2008) 

proposed the MA, which is based on the climb, watch and jump process of a monkey. This 

approach can effectively solve the optimization problem of high-dimensional, non-linear and 

non-differentiable functions. Yang (2009) used inspiration from the group behavior of firefly 

information exchange via fluorescence and proposed the Firefly Algorithm, which has good 

performance in peak function optimization. Yan et al. (2010) proposed the Wolves Algorithm, 

which is based on the predator and prey distribution of wolves. It can better handle complex 

multimodal, high-dimensional functions while avoiding the premature convergence of a general 

intelligence algorithm. 

The intelligent optimization algorithms described above have played effective roles in their 

own specific fields, while most have premature convergence, large cycle indexes and slow 

convergence and easily fall into local optimums for high-dimensional, multi-peak and complicated 

functions. This paper proposes a new swarm intelligence optimization algorithm, the Pigeon 

Colony Algorithm (PCA), to solve global numerical optimization problems. PCA has good global 

convergence, small cycle indexes, and strong stability when finding optimal solutions in 

high-dimensional, multi-peak and complicated problems. This paper is organized as follows: 

Section 2 describes the concept and detailed implementation steps of PCA. Section 3 demonstrates 

the impact of the parameters on the PCA solution quality. In Section 4, low-dimensional functions, 

high-dimensional functions and systems of nonlinear equations are used to test the global 

optimization ability of the PCA. Section 5 shows comparative experiments between PCA, standard 

GA and PSO. Finally, conclusions are drawn in Section 6. 

 

 

2. Pigeon colony algorithm 
 

2.1 The PCA architecture 
 

The pigeon is a type of common social animal that is characterized by having a strong homing 

ability, high sensitivity, and good memory, among other traits. This paper refines the 

characteristics of the pigeon colony and further proposes PCA. PCA includes three processes: 
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take-off, flying and homing. 1) Take-off process: to simulate the take-off characteristics of the 

pigeon colony, including initialize, spring up and ascend, which constitute three sub-processes, to 

homogenize the initial values and look for the direction of the optimal solution; 2) flying process: 

to simulate the flying characteristics of the pigeon colony, including the level fly, turn, and chase, 

which constitute three sub-processes; the level fly is used to search for a local optimum, and 

turning is used to search for a global optimum, while chasing is used to improve the global worst 

solution; 3) homing process: according to the strong homing characteristics of the pigeon colony, 

the homing process avoids having the algorithm fall into a local optimum. The flowchart of PCA is 

shown in Fig. 1. 

 

2.2 Take-off process 
 
2.2.1 Initialize 

N  is defined as the size of the pigeon population; the vector  1 2, , , , ,i i ij inx x x x
i

X ,

1,2, ,i N , 1,2, ,j n , is each pigeon’s current position; and n  is the number of unknown 

numbers, namely, the dimension. Each pigeon's current position vector i
X  corresponds to a 

feasible solution of one optimization problem, and it has the same dimension n ; the vector  

 1 2, , , , ,i i ij iny y y y
i

Y  is pigeon i ’s current optimal position; the vector  

 1 2, , ,b b b bnp p pP  is the pigeon colony’s current best position; and the vector  

 1 2, , ,w w wnp p p
w

P  is the pigeon colony’s current worst position. 

Step 1: Initialize the pigeon colony’s position. 

For a multi-dimensional function, the variable ijx  has a domain of definition ,ij down upx x x   . 

For the order that is followed when the pigeon colony takes off, within the range of the domain, 

each pigeon’s initial domain decreases as in Eq. (1), which makes each pigeon’s domain different. 

 

 

Fig. 1 Flowchart of the processes of the PCA 
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Define vector 
1 2

, , ,
1 1 1

N

N N N


 
  

   
 and disrupt the order of the component in   to 

obtain the vector 
' . It will enrich the initial values of the solution.  

 '

ij i up down downx x x x                            (1) 

Step 2: Initialize the pigeon colony’s sensitivity. 

Pigeons are characterized by quick acuteness and high alertness, and they are easily frightened. 

Each pigeon’s sensitivity is different from the others. Define i  as the sensitivity coefficient of 

pigeon i , where i  is a random number that is generated from the range  0,1 . The larger the 

value of i  is, the higher the pigeon springs up, and the more disperse the initial values.  

Step 3: Initialize the pigeon colony’s speed. 

Define the vector  1 2, , , ,i i ij inv v v v
i

V  as pigeon i ’s flying speed, which means a positive 

direction when the ijv  is positive, and vice versa. Define  max max,V V  as the speed range; let ijv  

be a uniformly generated random number from the range of  max max,V V , and its expression is  

maxijv V                                 (2) 

In Eq. (2),   is a uniformly generated random number in the range  1,1 . 

 

2.2.2 Spring up 
When the pigeon colony takes off, the jump up height of each pigeon is different. According to 

this characteristic, homogenize the initial values, and define  ,down up  as the pigeon colony’s 

spring up range. 

Step 1: Define  1 2, , , , ,i i ij inx x x x    
i

ΔX  as pigeon i ’s jump up height, where ijx  is 

a uniformly generated random number from the range  ,down up ; its expression is  

 ijx up down down                            (3) 

where   is a random number generated in the range  0,1 . 

Step 2: Update each pigeon's current position i
X  using the expression  

i= + *
i i i

X Y ΔX                             (4) 

If i
X  is better than the current optimal position i

Y , then the current position i
X  is assigned 

to the current optimal position i
Y ; in other words, 

i i
Y X . If i

X  is better than the pigeon 

colony’s current best position bP , then make b  i
P X . 

Remark 1: To improve the precision and speed of the PCA, the spring up range  ,down up  has 

the same precision as the maximum item ijp  of bP . For example, when the precision of the 
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maximum item ijp  of bP  is one percent, then the spring up range  ,down up  maintains the 

same precision in the following way 

0.01

0.01

new

new

up up

down down

 


 
                         (5) 

 

2.2.3 Ascend 
The pigeon colony has an ascend process after the spring up, which makes it fly in a better 

direction. Simulating this property, using the Pseudo Gradient Method, define  ijf 
i

X  as the 

direction of the optimal solution. 

Step 1: Randomly generate vector  1 2, , , , ,i i ij inc c c c    
i

ΔC  by Eq. (6). 

1
     with probability 

2

1
   with probability 

2

ij

ri

c

ri




  



                         (6) 

where ri  is called the up height. 

Step 2: Calculate pigeon i ’s up direction  ijf 
i

X  for each dimension j  using the following 

expression 

 
   

2
ij

ij

f f
f

c

  
 



i i i i

i

X ΔC X ΔC
X ， 1,2, ,i N ， 1,2, ,j n .         (7) 

Step 3: Update each pigeon's current position i
X  using the following expression  

  ij ij ijx y ri sign f   
i

X                            (8) 

where  sign x  is the symbol function. When 0x  ,   1sign x  . When 0x  ,   1sign x   . If 

i
X  is better than the current optimal position i

Y , then make 
i i

Y X ; if i
X  is better than the 

pigeon colony’ s current optimal position bP , then make b  i
P X . 

Step 4: Cycle through steps 1 to 3 once more.  

Remark 2: To avoid the random vector i
ΔC  having a large deviation that can affect the 

accuracy of the up direction  ijf 
i

X , more time is needed for the ascending process in Step 4. To 

improve the precision and speed of the PCA, the up height ri  has one more level of precision 

than the spring up range  ,down up  when the range  ,down up  is changed. For example, when 

the precision of the spring up range  ,down up  is changed to one percent, ri  is also changed:

0.001newri ri  . 

 

2.3 Flying process 
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After the pigeon colony’s take-off, the colony has entered the phase of flying, and Zhang's 

(2014) research shows that when the pigeon colony flies at a flat height, the direction of each 

pigeon follows its neighbors. When in a turn, the direction is to obey the leadership. Using this 

feature, a local optimum can be found when the pigeon colony flies in a level flying region, and a 

global optimum will be obtained when they turn. 

 

2.3.1 Level fly 

Define pigeon i ’s range of neighbors as M , e.g., in the range of one pigeon, there are M  

pigeons around as its neighbors. For each pigeon, the average position of the neighbors is defined 

as i
Ave . The time of the level fly is 1F . 

Step 1: Calculate, for pigeon i , the average position of its neighbors i
Ave  using the 

expression  

 2 1

2

M i M

i

i i M

y M

    

   

 i
Ave                          (9) 

where M  is the key parameter of the flying process, which will affect the rate of convergence of 

the local optimization. When M  is too large, the value of i
Ave  will be similar to the global 

optimization, which will decrease the speed of convergence. Here,    means down to the 

nearest integer. When M  is too small, the algorithm will have premature convergence, which 

will decrease the convergence accuracy. 

Step 2: Use i
Ave  to calculate pigeon i ’s flying speed. 

 1w c    
i i i i

V V Ave X                         (10) 

where 1c  is the local flying factor, and w  is the flying weight coefficient, and using Eberhart’s 

(1999) regressive method from 0.9 to 0.4, its expression is 

 
0.5

0.9 1
1c

w cn
M

   


                       (11) 

where cM  is the total number of cycle indexes, and cn  is the current cycle index. 

Step 3: Update each pigeon's current location using the expression 

1r r

i

  
i i

X X V                            (12) 

If 1r

i


X  is better than the current optimal position i

Y , then make 1r

i


i

Y X ; if i
X  is better 

than the pigeon colony’s current optimal position bP , then make 1r

b i

P X .  

Step 4: Repeat step 1 to step 3, until they reach the level fly cycles 1F . 

 

2.3.2 Turn 
A pigeon colony often turns when it is flying, to make the whole colony maintain a better 

direction. Define the turn times as 2F . 
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Step 1: Calculate pigeon i ’s flying speed as i
V  

 2 b ic  
i

V P Y                             (13) 

where 2c  is a global flying factor.  

Step 2: Update each pigeon's current location, the same as in Eq. (12). 

If 1r

i


X  is better than the current optimal position i

Y , then make 1r

i


i

Y X ; if i
X  is better than 

the pigeon colony’s current optimal position bP , then make 1r

b i

P X . 

Step 3: Repeat step 1 to step 2, until the turning cycle 2F  is reached.  

 

2.3.3 Chase 
Compared with other birds, pigeons are "monogamous" birds. After the female pigeons fly out 

of the nest, male pigeons will have a "chasing wife" behavior, called chase. Set the optimal 

location bP  of a pigeon colony to be occupied by a female and its worst position 
w

P  to be 

occupied by a male, and make them match to improve the worst global solution. 

Step 1: Among the n -dimensional space vectors, from  2 ~n n  dimensions, a uniformly 

generated random integer bit is used as a substitute for the location points cp  

     2 2cp n n                              (14) 

where   is a uniformly generated random number from the range  0,1 . 

Step 2: Copy the value from the position ncp ~  dimensional of  1 2, , , , ,b b b bcp bnp p p pP

directly to its corresponding positions of  1 2, , , , ,w w wcp wnp p p p
w

P . After the update, if a 

group’s worst position w
P  is better than the previous worst location, then keep the update; 

otherwise, it is not updated. 

This process will improve the global worst solution, which will improve the convergence speed 

significantly. 

 

2.4 Homing process 
 

Pigeons possess a homing ability (Perera et al. 1999), and after the flying process, they will 

always return to their own nests. Define  ,rg rg  as the homing range; the smaller the range of 

homing is, the smaller the final landing area, and vice versa. The memory of each pigeon is 

different, and thus, the average position difference i
ΔH  is introduced to prevent having a large 

deviation among the individual pigeons when landing. 

Step 1: For pigeon i , the homing coefficient ir  is a uniformly generated random number 

from the range  ,rg rg . 

Step 2: Based on the optimal position i
Y  of each pigeon, calculate the gap in the average 

position between the individual position and that of the other pigeons. 
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 
1

1
N

i

i

r N


  
      

  
i i i i

ΔH Y Y Y                    (15)
 

  i
ΔH

 
is very important in PCA, which will avoid having the algorithm fall into a local 

optimal solution. 

Step 3: Update pigeon i 's current position.  

 
i i i

X Y ΔH                             (16) 

If i
X  is better than the current optimal position i

Y , then make 
i i

Y X ; if i
X  is better than 

the pigeon colony’s current optimal position bP , then make b  i
P X . 

A complete PCA procedure contains take-off, flying, and homing, and these three processes are 

called one iteration. This routine is iterated until the global optimal solution is found or until the 

termination conditions are met. The advantages of PCA include that it has high convergence 

accuracy as well as a high convergence speed. The take-off process and homing process can 

improve the convergence accuracy by the changing of  ,down up , ri  and i
ΔH . The flying 

process improves the convergence speed by M  and the chase process. The pseudo code of the 

process of PCA is shown in Fig. 2. 

 

 

3. Parameter analyses 

 
Similar to many intelligent optimization algorithms, PCA also has several controllable 

parameters. PCA has ten controllable parameters in total, except that N  is the pigeon’s 

population ( N  is fixed in each comparison experiment, and 60N   is chosen in all of the later 

experiments); the parameters are divided into two parts, in groups of three. The first part has 

parameters that are in the flying process, which include ( 1 2, ,c c M ) and ( 1 2 max, ,F F V ). The former 

are the parameters of the functions. The latter are the vector and iteration numbers of the flying 

process. The second part has parameters that are in the other process, which contains (  ,down up , 

ri ,  ,rg rg ). Analyzing the variable parameters of PCA is necessary and requires having a 

selection range for each parameter. The Rastrigin function is chosen to test the optimization 

performance of the intelligent optimization algorithm. 

   2

1

10cos 2 10
n

i i

i

F X x x


                          (17) 

This function is based on the function Sphere. It uses the cosine function to generate a large 

number of local minima. The global optimal solution is zero in 1 2( , , , ) (0,0, 0)nx x x  . The 

Rastrigin function is a typical complex multimodal function with a large number of locally optimal 

points; this function makes the algorithm fall into a local optimum easily, and then, it cannot 

obtain the global optimal solution. The 3D surface of the Rastrigin function when the dimension

2n   is shown in Fig. 3. 

Each group of experiment data was run 100 times in the experiments in this paper. The control 

variable method was used in the experiments to keep the other parameters fixed when analyzing 
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one group of parameters. The average number of total cycle indexes and the success rate is 

calculated in 100 experiments of PCA. An iteration of PCA has three processes: take-off, flying 

and homing. Each process has its cycles, and thus, the total number of cycle indexes means all of 

the cycles of all of the iterations of PCA. The termination condition is when the change in the 

value bP
 
is less than 10

-6
 for 10 iterations. Success means that the difference between the PCA 

minimum value bP  and the real minimum value of the Rastrigin is less than 10
-5

; otherwise, there 

is a failure. The success rate means the success proportion out of a total of 100 times. PCA has 

three processes, and it uses cycle indexes to calculate the cost of the whole process.  

 
Pigeon Colony Algorithm  

Set population of PCA N  

Initialize PCA 

Set parameters  ,down up , ri , 1c , 2c , M , maxV , 1F , 2F  and  ,rg rg  

Set termination condition 

for s = 1 to termination condition do: 

{ 

Initialise  1 2, , , , ,i i ij inx x x x
i

X , ,ij down upx x x     '

ij i up down downx x x x    

Calculate jump up height  1 2, , , , ,i i ij inx x x x    
i

ΔX , 

 ijx up down down     

Update i= + α *
i i i

X Y ΔX   

For i=1 to 2 do: 

{ 

Calculate  1 2, , , , ,i i ij inc c c c    
i

ΔC   

Calculate  
   

2
ij

ij

f f
f

c

  
 



i i i i

i

X ΔC X ΔC
X  

Update   ij ij ijx y ri sign f   
i

X  

} 

  For i = 1 to 1F  do: 

 { 

Calculate 
 2 1

2

M i M

i

i i M

y M

    

   

 i
Ave ,  

Calculate  1w c    
i i i i

V V Ave X   

Update 1r r

i

  
i i

X X V  

 } 

For i=1 to 2F  do: 

{   

Calculate  2 b ic  
i

V P Y , Update 1r

i


X  

} 

Calculate    2 2cp n n      copying the value from ~gcp gnp p of 

 1 2, , , , ,b b b bcp bnp p p pP directly to its corresponding positions in 

 1 2, , , , ,w w wcp wnp p p p
w

P  

Calculate  
1

1
N

i

i

r N


  
      

  
i i i i

ΔH Y Y Y  

Update  
i i i

X Y ΔH  

} 

Print Optimal Solutions 

 

Fig. 2 Pseudo code of the process of PCA 
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Fig. 3 The 3D surface of the Rastrigin function when the dimension 

 

 

The calculation cost of PCA means the cycle times. In one iteration, the takeoff process 

contains two ascending cycles. The flying process contains 1F  level fly cycles, 2F  turn cycles 

and once chase cycle. It will have many iteration times when the PCA reaches the termination 

condition; the cycle indexes are the sum of the cycles of all of the iterations, which can reflect the 

cost of the algorithm. The average of the cycle indexes is calculated in 100 experiments using 

PCA. 

 

3.1 The influence of 1 2, ,c c M  

 

The average cycle indexes of PCA in a different combination of 1 2, ,c c M  when 1,2,3n   are 

shown in Fig. 4. First, set the other six parameters to be fixed and 5M  , when comparing the 

different combinations of 1 2, ,c c M . Fig. 4(a) shows that the average cycle indexes of PCA are 

smaller when 1 2,c c  is set to be from 1 to 1.5, and the average cycle indexes are smallest with

1 2 1.5c c   when 1,2,3n  . Here, 1 2 1.5c c   has the best performance, while 1 2 2.5c c   

has the worst. Then, set 1 2 1.5c c   to compare the different values of M  (Fig. 4(b)). The 

results show that 3M   and 5M   have better performances. 5M   becomes better while n  

increases, gradually. Last, to validate if 1 2 1.5c c   and 5M   will have an even better 

performance, set 4,5,6n  . The results in Table 1 show that 1 2 1.5c c   and 5M   have better 

performance when the dimension is increasing and that 3M   is also a good choice. 

 

3.2 The influence of 1 2 max, ,F F V  

 

First, set the other six parameters to be fixed, and set max 1V  . Fig. 5(a) shows that the average 

total cycles of the PCA is the smallest with 1 2 5F F   when 1,2,3n  . Thus, 1 2 5F F   has 
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the best performance. The performance is also good when 2F  rises to 10 and 1 5F  . Thus, 2F

can be chosen to be from 5 to 10. Then, set 1 2 5F F   to compare the different values of maxV  

(Fig. 5(b)) . The results show that when max 1V  , there is better performance. Last, set 4,5,6n   

to see if 1 2 5F F   and max 1V   will still have better performance. The results in Table 2 show 

that 1 2 5F F   and max 1V   have better performance when the dimension is increasing. 

 

 

 

  

(a) The different combinations of 1 2,c c  when 

5M   and 1,2,3n   

(b) The different values of M  when 1 2 1.5c c   

and 1,2,3n   

Fig. 4 The different combinations of 1 2, ,c c M  when 1,2,3n   

 

 

 

  
(a) The different combinations of 1 2,F F  when 

max 1V   and 1,2,3n   

(b) The different values of maxV  when 

1 25, 5F F   and 1,2,3n   

Fig. 5 The different combinations of 1 2 max, ,F F V  when 1,2,3n   
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Table 1 Regular verification when 4,5,6n   

Dimension

n  
Value of 1c  Value of 2c  Value of M  

Average cycle 

indexes 
Success rate 

4 1.5 1.5 3 171.45 100% 

4 1.5 1.5 5 170.325 100% 

4 1 1.5 5 182.325 100% 

5 1.5 1.5 3 204.675 100% 

5 1.5 1.5 5 203.1 100% 

5 1 1.5 5 219.525 100% 

6 1.5 1.5 3 232.275 100% 

6 1.5 1.5 5 232.125 100% 

6 1 1.5 5 256.425 100% 

 

 

Table 2 The different combinations of 1 2 max, ,F F V when 1 ~ 6n   

Dimension

n  

Value of 

1F  

Value of 

2F  

Value of 

maxV  

Average 

iterations 

Average cycle 

indexes 
Success rate 

4 5 5 1 11.14 167.1 100% 

4 5 5 2 11.355 170.325 100% 

5 5 5 1 13.295 199.425 100% 

5 5 5 2 13.539 203.1 100% 

6 5 5 1 15.164 227.475 100% 

6 5 5 2 15.475 232.125 100% 

 

 

3.3 The influence of  ,down up , ri  and  ,rg rg  

 

First, set the other six parameters be fixed, and set 0.1ri  . Fig. 6(a) shows that when the 

spring up range  ,down up  increases, the average total cycle indexes of PCA increase, when the 

homing range  ,rg rg  is fixed in each dimension. When the homing range  ,rg rg  increases, 

the average total cycle indexes of PCA also increase, when the spring up range  ,down up  is 

fixed in each dimension. The best choices for the spring up range and homing range are 

   , 1,1down up    and    , 1,1rg rg   . When    , 1,1down up    and the homing range 
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 ,rg rg  rises to  10,10 , the performance is also good. Then, set    , 1,1down up    and 

   , 1,1rg rg   , and compare the different values of ri  (Fig. 6(b)). The results show that 

0.1ri   and 0.01ri   both perform well. Last, set 4,5,6n   to see if    , 1,1down up   , 

   , 1,1rg rg    and 0.1ri   or 0.01ri   will still have better performance. The results in 

Table 3 show that the regulars above are correct while the dimensions are increasing. 

The reference selection of ten controllable parameters in PCA is shown in Table 4. 

 

 

Table 3The different combinations of    , , , ,down up rise range range  when 1 ~ 6n   

Dimension n  
Value of 

 ,down up  

Value 

of ri  

Value of 

 ,rg rg  

Average 

iterations 

Average cycle 

indexes 

Success 

rate 

4 1 0.1 1 11.02 165.3 100% 

4 1 0.01 1 11.21 168.15 100% 

5 1 0.1 1 13.402 201.03 100% 

5 1 0.01 1 13.406 201.09 100% 

6 1 0.1 1 15.16 227.4 100% 

6 1 0.01 1 15.324 229.86 100% 

 

 
Table 4 Optimization parameter selection for a low-dimensional function 

Parameters Value 

population N  60 

spring up range  ,down up  [ 1,1]  

up height ri  [0.01,0.1]  

local flying factor 1c  [1,1.5]  

global flying factor 2c  [1,1.5]  

range of neighbors M  [3,5]  

max flying speed maxV  1 

level fly cycles 1F  5 

turning cycles 2F  [5,10]  

homing range  ,rg rg   10,10  
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(a) The different combinations of 

   , , ,down up rg rg  when 0.1ri   and 

1,2,3n   

(b) The different values of ri  when 

     , , 1,1down up rg rg     and 1,2,3n   

Fig. 6 The different combinations of    , , , ,down up rise rg rg  when 1,2,3n   

 

 
Table 5 The optimal value of each iteration 

Iteration times Optimal solution  Iteration times Optimal solution 

1 0.2878351374228 11 0.0056533942916 

2 0.2878351374228 12 0.0044230302844 

3 0.2793306299891 13 3.010200505e-04 

4 0.2773423612152 14 4.270724202e-05 

5 0.2773423612152 15 1.013942223e-05 

6 0.2623245785077 16 3.222942948e-06 

7 0.2623245785077 17 4.239604173e-07 

8 0.2265190088335 18 2.607510770e-07 

9 0.2237455514596 19 2.167854229e-09 

10 0.0458584677429 20 5.505182976e-10 

 

 

 

3.4 An example 
 

To test the parameters of Table 4, a high-dimensional function, the Griewank function, is 

adopted here. This function has many local minimum points, and the number is related to the 

dimension of the problem. When the variable  600,600ix   , the global minimum value 0 can be 
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obtained in 1 2( , , , ) (0,0, 0)nx x x  . The dimension is set to 30n  . The parameters are selected 

as in Table 4 to observe the suitability and effectiveness of the parameters in other functions. Fig. 7 

shows the convergence process of Griewank. Table 5 shows the optimal value of each iteration. It 

can be seen that the optimal value decreases rapidly when the number of iterations increases from 

9 to 10, and the optimal value is close to 0 when the number of iterations is 12. From Table 5, it 

can be seen that PCA can find the optimal value very well. 

 

 

4. Optimization analysis of PCA 
 

To test the optimal performance of PCA to solve the global numerical optimization, the 

low-dimensional functions, high-dimensional functions and systems of nonlinear equations are 

adopted here. The selection of PCA parameters refers to Table 4. The termination condition is 

when the change in the value of bP
 
is less than 10

-6
 for 50 iterations, and each group of 

experimental data was run 100 times. When the difference between the PCA minimum value bP  

and the real minimum value of the functions is less than 10
-5

, it is deemed to succeed; otherwise, it 

is not successful. PCA has three processes, and each process has its cycle indexes. Calculate the 

total of the indexes of the three processes, and then, calculate the average cycle indexes and the 

success rate over 100 run times. 

 

4.1 Low-dimensional function optimization 
 

Labeling a function as a low-dimensional function means that the function has fixed unknown 

numbers. Usually, such a function does not have many dimensions. Here, three famous functions 

are selected. 

 

 

 

Fig. 7 The Optimal value changed with the iterations increasing 
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Rosenbrock function: This function is a typical pathological quadratic function that is difficult 

to minimize; when  10,10ix   , place  0,0  obtains the minimum value of 0. There is a narrow 

valley between the global optimal and local optimal that can be reached, and the steepest descent 

direction of a point on the surface of the valley is almost vertical to the minimum value of the best 

direction of the function. Because this function provides very little information for the search, the 

general algorithm finds it very difficult to discern the search direction; thus, there is only a slight 

chance of finding the global optimal point.  

Schaffer function: This function is a multi-peak function that is difficult to optimize; the unique 

global optimum is surrounded by a large number of local optima, and around the function, there is 

a large amount of shock. When variable [ 10,10]ix   , in place (0,0) , the minimum value of 0 

can be obtained. 

Shuber function: This function has multiple peaks, with several global and local optimal points, 

and there is a large amount of shock. When [ 10,10]ix   , the function is a multimodal function; 

there is a total of 760 local minimum points within its domain, and 18 of them are the global 

minimum points -189.7309. 

Details on these functions are shown in Table 6. Table 7 shows that for the objective functions 

of low dimension, PCA can accurately find the global optimal solution, and the average cycle 

indexes are small, which reflects characteristics such as good global convergence, small cycle 

indexes and a high rate of convergence. 

 

4.2 High-dimensional function optimization 
 

Labelling a function a high-dimensional function means that the function can have an uncertain 

number of unknowns. Usually, the dimensions that we used were larger than 30. In this test, four 

typical representative functions are selected; for the parameter selections of the PCA, refer to 

Table 4. 

Ackley function: This function is a continuous experiment function that is reached by an 

exponential function plus moderate amplification of a cosine. When  32,32ix   , the global 

optimal solution in place    1 2, , , 0,0, 0nx x x   obtains the value 0. The search of this 

function is extremely complex because a strict local optimization algorithm in the process of 

climbing will inevitably fall into the trap of a local optimum. Scanning a larger area can gradually 

achieve a better optimal point. 

Griewank function: This function has many local minimum points, and the number is related to 

the dimension of the problem. When the variable  600,600ix   , the global minimum value 0 can 

be obtained in 1 2( , , , ) (0,0, 0)nx x x  , and this function is a typical nonlinear multimodal 

function with a wide range of search space, which is usually considered to be a complex 

multimodal problem that is difficult to address by an optimization algorithm. 

Generalized Schwefel function: This function is an inseparable multi-peak function and is 

somehow deceptive. When variable  500,500ix   , the global optimal solution, which is related to 

the dimension n, is -418.983n. The global optimum and best local optimum are far apart, and thus, 

the convergence of the search algorithm is always moving in the wrong direction. 

The details of these are shown in Table 8. Table 9 shows that when the dimension 

30, 100n n  , PCA can still 100% find the global optimal solution, and the average number of 
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iterations and average cycle indexes are small; in addition, the cycle indexes do not increase 

obviously with the increase in the dimension. The results embody PCA under a high dimension 

and have characteristics such as having a strong global convergence ability, fast convergence rate 

and good stability. 

 

 

 
Table 6 Optimization results on low-dimensional functions 

Function Expression 
Domain of 

definition 
3D figure 

Rosenbro

ck 
     

22 2, 1 100f x y x y x     
 10,10ix  

 

 

Schaffer  
 

  

2
2 2

2
2 2

sin 0.5
, 0.5

1 0.001

x y
f x y

x y

 
 

 

 
 10,10ix  

 

 

Shubert 
       

5 5

1 2

1 1

cos 1 cos 1
i i

F x i i x i i i x i
 

   
       
   
 

 

[ 10,10]ix  

 

 
 

 

 
Table 7 Optimization results on low-dimensional functions 

Function 
Domain of 

definition 
Dimension n 

Global 

optimal 

solution 

Average cycle 

indexes 
Success rate 

Rosenbrock [ 10,10]ix    2 0 11.43 100% 

Schaffer [ 10,10]ix    5 0 11.355 100% 

Shubert [ 10,10]ix    3 -189.7309 12.1 100% 
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Table 8 Optimization results on high-dimensional functions 

Function Expression 
Domain of 

definition 
3D figure 

Rastrigin    2

1

10cos 2 10
n

i i

i

F X x x


       5.12,5.12ix    

 

Ackley 
 

 
2

1 1

1 1
0.2 cos 2

20 20

n n

i i

i i

x x
n n

F x e e e


 

   
      

 32,32ix    

 

Griewank  
1 1

cos 1
4000

nn
i i

i i

x x
F x

i 

 
   

 
 

 

 600,600ix    

 

Generalized 

Schwefel 
   

1

sin
n

i i

i

F x x x


 
     500,500ix    

 
 

 

 
Table 9 Optimization results on high-dimensional functions 

Function Domain of definition Dimension n  
Global 

optimal 

solution 

Average cycle 

indexes 

Success 

rate 

Rastrigin  5.12,5.12ix    30 0 374.85 100% 

100 0 404.85 100% 

Ackley  32,32ix    
30 0 982.5 100% 

100 0 1087.05 100% 

Griewank  600,600ix    
30 0 366 100% 

100 0 388.8 100% 

Generalized 

Schwefel 
 500,500ix    

30 -12569.49 3265.5 100% 

100 -41898.3 5191.55 100% 
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4.3 Nonlinear equation optimization 

 
Nonlinear equations are represented in Eq. (19) below  

 

 

 

 

1

2

0

0

0m

f X

f X
F x

f X

 



 

 

                                (18) 

Vector  1 2, , , nx x x  can be regarded as X , where m  is the number of equations, and n  is 

the number of unknown variables. The domain of the variable is  1, ,i i ia x b i n   , and 
ia , 

ib  are the lower limit and upper limit of X ’s component 
ix . 

Solving a system of equations is equivalent to solving an optimization problem, such as Eq. 

(19)  

   
1

min
m

i

i

f X f X


                           (19) 

 

 

 
Table 10 Optimization results for the nonlinear equations 

Equation set 
Domain of 

definition 

Optimal 

solution 

Average 

cycle 

indexes 

Success 

rate 

 

     

     

     

2 2

1 1 2 3

2 2

2 2 3 1

2 2

3 1 3 2

5 40sin 10 0

2 40sin 10 0

3 40sin 10 0

f x x x x

F X f x x x x

f x x x x

    



    


   

 
 1 2 3, , 1,1x x x  

 

 0,0,0X 

 
3168 100% 

 
 

   

2

1 1 2

2 1 2

1 0

cos 0.5 0

f x x x
F X

f x x x

    
 

  

  1 2, 2,2x x    

 0,1X 

 1,2

 1 / 2,1.5

 

1014.9 100% 

 
   

     

2 2

1 1 2

2 1 2

99.7091 10000 0

sin 5 cos 5 1.9932 0

f x x x
F X

f x x x

     
 

     

 1 2, 2,2x x    
 0.2909,0X 

 
749.25 100% 
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When  f X  reaches the minimum value (the general equation is 0), the corresponding X  

is the solution of the equations; in other words, when  f X  is found, the global optimal solution 

is 0. 

To test the three nonlinear equations in Table 10 (Tan 2011), the parameter selection for the 

PCA is the same as in Table 4. 

Note that in the second equation, 0.0001ri  . In the third equation, set 100N  ,  0.0001ri  , 

and 
max 0.0001V  .  

PCA can accurately find the optimal solution for the nonlinear equations in Table 10, rather 

than an approximate solution, and the numbers for the average cycle indexes are small, which 

embodies the PCA’s advantages of fast global optimization, strong optimization capability and 

good stability. 
The tests on the low-dimensional function, high-dimensional function and nonlinear equation 

show that the selected parameters in Table 4 are suitable and effective under most conditions. 

 

 
5. Comparisons of PCA, GA and PSO 

 

To confirm the superior performance of PCA, the famous GA and PSO are selected to compare. 

Here, three multimodal and complex functions, Rastrigin, Ackley and Griewank, are used to 

determine which can find the global optimal solution of the test functions fast and exactly. The 

three functions all have the same minimum value of zero. In the following tests, each group of 

experiment data is run 100 times to calculate the average of each algorithm’s cycle indexes and 

success rates. 

The parameter selection for the PCA is shown in Table 4. The termination condition is when the 

change in the value of 
bP  

is less than 10
-15

 for 10 iterations. The Matlab Toolbox’s (MathWorks, 

Natick, MA, USA) Standard GA and PSO code was used to test the functions. To be consistent 

with the PCA, for the PSO, the population quantity was also set to 60. For the maximum flying 

speed 1V   to be consistent with the PCA, the learning factor was set to 
1 2 2c c  , which is 

better for the PSO (Eberhart 1998); the weighting coefficient w  was set to decrease from 0.9 to 

0.4 (Eberhart 1999), and the convergence condition was the same as in the PCA. For the Standard 

GA, the population quantity was also set to be 60 for consistency, and the convergence condition 

of the GA is related to the PSO, which can compare the optimal values at the same cost level. 

The results obviously show that when the dimension increases, PCA can still find the global 

optimal value very well from Tables 11 to 13. The Standard GA and PSO cannot find the global 

optimal value exactly when the dimension increases, and the optimal value of the Standard GA 

becomes worse when the function is multimodal and complex. The accuracy of the optimal value 

of the PSO decreases rapidly when the dimension increases. In contrast, PCA can still find the 

optimal values more exactly when the dimension increases, and the average cycle indexes are less 

than those of the PSO most of the time. The comparison shows that PCA has strong global 

convergence, fewer algorithm cycle indexes and a fast convergence speed. 
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Table 11 The average cycle indexes and success rate of PCA, Standard GA and PSO with dimensions 

1 ~ 10n   for Rastrigin 

Dimension

n  

Optimal 

value 

Optimal 

value of 

PCA 

Average 

cycle 

indexes 

Optimal 

value of 

Standard 

GA 

Average 

cycle 

indexes of 

GA 

Optimal 

value of 

PSO 

Average 

cycle 

indexes 

1 0 0 38.85 0.00482 1000 0 717 

2 0 0 80.6449 0.24196 1000 0 1086 

3 0 0 127.32 1.66975 1000 0 1300 

4 0 0 165.3 1.28719 1000 0 1498 

5 0 0 201.03 1.62723 2000 0 1622.92 

6 0 0 227.4 4.36164 3000 0.9949590 2067.57 

7 0 0 277.05 4.66171 3000 1.9899181 2254.78 

8 0 0 288.15 4.98130 3000 2.9848771 1891.67 

9 0 0 451.05 6.52652 3000 3.9798362 1800 

10 0 0 310.5 7.44965 3000 6.9798362 2068 

30 0 0 374.85 120.3924 3000 38.435065 2405.45 

100 0 0 404.85 249.30225 3000 208.77619 3856.23 

 
Table 12 The average cycle indexes and success rate of the PCA, Standard GA and PSO with dimensions 

1 ~ 6n   for Ackley 

Dimension

n  

Optimal 

value 

Optimal 

value of 

PCA 

Average 

cycle 

indexes of 

PCA 

Optimal 

value of 

Standard 

GA 

Average 

cycle 

indexes of 

GA 

Optimal 

value of 

PSO 

Average 

cycle 

indexes of 

PSO 

1 0 0 72.9 0.13118 1000 0 100 

2 0 0 155.1 0.33627 2000 0 1270 

3 0 0 257.55 2.51639 2000 0 1516 

4 0 0 395.1 2.78169 2000 3.552e-15 1655.17 

5 0 0 534.45 3.34631 2000 3.552e-15 1866.66 

6 0 0 872.4 4.99771 2000 3.552e-15 1900 

30 0 0 982.5 11.1285 4000 2.131e-14 3321.3 

100 0 0 1087.05 18.43115 8000 3.836e-13 7454.67 
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Table 13The average cycle indexes and success rate of the PCA, Standard GA and PSO with dimensions 

1 ~ 4n   for Griewank 

Dimension

n  

Optimal 

value 

Optimal 

value of 

PCA 

Average 

cycle 

indexes of 

PCA 

Optimal 

value of 

Standard 

GA 

Average 

cycle 

indexes 

of GA 

Optimal 

value of 

PSO 

Average 

cycle 

indexes of 

PSO 

1 0 0 119.4 0.04043 1000 0 205 

2 0 0 193.08 0.17581 1000 0 918.75 

3 0 0 6744.9 0.46214 10000 0.00739 1342.11 

4 0 0 14154.75 0.53315 20000 0.03696 1422.54 

30 0 0 366 13.7982 20000 0.02701 1734.7 

100 0 0 388.8 450.4097 20000 9.103e-15 5233.21 

 

 

 

6. Conclusions 
 

To solve the traditional optimization algorithms’ shortcomings, such as having a slow speed 

under the condition of nonlinearity, complexity and multiple peak calculations, poor convergence 

performance, and easily falling into a local optimal solution, PCA is proposed here, which is a new 

type of swarm intelligence optimization algorithm. This paper makes the following contributions:  

(1) A new swarm intelligent optimization algorithm, PCA, has been originally proposed. The 

algorithm includes take-off, flying, and homing in three processes, and the architecture, steps and 

expressions have been given in detail.  

(2) Parametric analysis of PCA has been conducted. The parameters are divided into three 

groups and use the control variable method to select the parameter values; parameter selection 

references have been given in Table 4. The parameters in Table 4 are suitable and effective in a 

low-dimensional function, high-dimensional function and nonlinear equation. 

(3) PCA was used to conduct optimization tests on low-dimensional and high-dimensional 

functions and on nonlinear equations. The results show that PCA has the following features: 1) 

because this algorithm only needs to make a comparison between the objective function values, 

and the nature of the objective function is not constrained, it can be a function expression and can 

also be a functional form of representation; 2) good global convergence, small algorithm cycle 

indexes and a fast convergence rate; 3) the algorithm still has good global convergence, a high rate 

of convergence and strong stability for high-dimensional, multi-peak and complicated problems. 

(4) PCA was compared with standard GA and PSO; the results prove the superiority of PCA. 
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