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Abstract.  The rapid technology developments in smartphones have created a significant opportunity for 
their use in structural live load measurements. This paper presents extensive experiments conducted in two 
stages to investigate this opportunity. Shaking table tests were carried out in the first stage using selected 
popular smartphones to measure the sinusoidal waves of various frequencies, the sinusoidal sweeping, and 
earthquake waves. Comparison between smartphone measurements and real inputs showed that the 
smartphones used in this study gave reliable measurements for harmonic waves in both time and frequency 
domains. For complex waves, smartphone measurements should be used with caution. In the second stage, 
three-dimensional motion capture technology was employed to explore the capacity of smartphones for 
measuring the movement of individuals in walking, bouncing and jumping activities. In these tests, 
reflective markers were attached to the test subject. The markers‟ trajectories were recorded by the motion 
capture system and were taken as references. The smartphone measurements agreed well with the references 
when the phone was properly fixed. Encouraged by these experimental validation results, smartphones were 
attached to moving participants of this study. The phones measured the acceleration near the center-of-mass 
of his or her body. The human-induced loads were then reconstructed by the acceleration measurements in 
conjunction with a biomechanical model. Satisfactory agreement between the reconstructed forces and that 
measured by a force plate was observed in several instances, clearly demonstrating the capability of 
smartphones to accurately assist in obtaining human-induced load measurements. 
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1. Introduction 
 

Due to their lightweight and flexibility, footbridges, large-span floors and cantilever grandstand 

structures are very often prone to human-induced vibrations (Brownjohn et al. 2004). Predicting 

the dynamic response of these structures due to human-induced loading has therefore become a 

critical aspect of vibration serviceability evaluation (Van Nimmen et al. 2014). Better knowledge 

of the dynamic properties of crowd-induced loading was the key issue for this evaluation. The 

traditional direct force measurements utilize an instrumented treadmill or force plates integrated in 
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the walkway (Dierick et al. 2004). This methodology, however, is not suitable for measuring the 

crowd-induced force. Another common method is to use cameras or a digital head-tracking system 

to record the movement of individuals in a crowd (Fujino et al.1993, Yoshida et al. 2007, Araújo et 

al. 2009). Recently, newly emerged measurement technologies in biomechanical science have been 

adopted to investigate human-induced loads, such as the optical marker-based technology of Vicon 

(Wang et al. 2011) and CODA (Richards 1999). However, due to the limited number of 

instruments available and limitation on the measurement range, the problem of how to measure 

crowd-induced dynamic loading properties in an effective and easy-to-apply manner is still a 

challenging issue.  

Nowadays, smart mobile phones (hereafter referred to as smartphones) are widely used on a 

daily basis. With the rapid development of micro-chip technology, a tri-axial accelerometer and a 

tri-axial gyroscope based on MEMS (Micro-Electro-Mechanical system) have been integrated into 

smartphones, which provide a good technical platform for implementation (Spencer 2003;). 

Smartphone development continues to serve a fast growing and broad variety of applications 

including remote medical treatment (Cao et al. 2009, Lau et al. 2010), remote home automation 

and security monitoring (Zhang et al. 2007), and especially for human activity monitoring and 

education in medical healthcare applications (Khan et al. 2010, Lee and Cho 2011, Wu 2012). One 

of the most recent developments has been in the field of structural health monitoring (Yu et al. 

2015, Feng et al. 2015).  

Smart phones as daily-used and portable electronic devices are capable of recording the 

kinetics of individuals in a crowd. Considering the merits of smartphones with built-in tri-axial 

accelerometers, it is of great significance to investigate the possibility of using smartphones as a 

„mobile vibration measurement device‟ to measure human-induced loads such as the walking load, 

bouncing load and jumping load. The purpose of this paper is, therefore, to verify the possibility, 

capacity and accuracy of smartphones for human-induced loads measurements by extensive 

experiments. 

 

 

2. Smartphones 
 

2.1 Selection of smartphones and software 
 
Preliminary tests using a small-scale shaking table were performed in order to select proper 

smartphones and data acquisition software from many software providers. In total, seven 

smartphones from four market-leading brands and three software applications were tested which 

are listed in Table 1. The test arrangement is shown in Fig. 1. The seven smartphones have two 

operating systems. By comparing each smartphone‟s measurement with the shaking table‟s input, 

we finally selected the iPhone 4s (and higher generations) manufactured by Apple Inc. and 

Sensorlog®  as the hardware and software, respectively, for the following experiments. The iPhone 

manufactured by Apple Inc. was the first to integrate tri-axial accelerometers and gyroscopes 

based on MEMS into phones, and this is why we selected iPhone 4s as the first phone to test. The 

iPhone‟s market popularity is another important factor if we want to apply it to crowd load 

measurement and to future anonymous individual loads collection. A mobile phone application 

software, Sensorlog, was selected as the data acquisition software because it is free and has the 

highest sampling rate of 100 Hz compared with other analogous apps. The iPhone‟s built-in sensor 

unit (inclination, gyro, GPS, and acceleration) is used for monitoring an object‟s original motion 
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information. The information is then processed and analyzed through the self-developed intelligent 

algorithm embedded in the iPhone. Sensorlog is able to provide information concerning latitude 

and longitude, acceleration in local coordinates of iPhone and the raw gyro rotation rate of the 

phone with the maximum sample frequency of 100 Hz. The main interface of the Sensorlog is 

shown in Fig. 2. 

 

 
Table 1 Smartphones‟ built in accelerometer sensors 

Phone type 
Accelerometer 

Model 
Manufacturer Quantity Measured Apps 

iPhone 4s LIS331DLH ST Microelectronics Acceleration 

(1) Sensorlog; 

(2) Sensor kinetics; 

iPhone5 STM33DH ST Microelectronics Acceleration 

iPhone5s BMA 220 Bosch Acceleration 

iPhone6 
BMA 280/ 

MPU-6700 
Bosch/ InvenSense 

Acceleration& 

Angular velocity 

GALAXY 

Note 3 
MPU-6500 InvenSense 

Acceleration & 

Angular velocity (1) Sensor kinetics; 

(2) AndroSensor; Xiao Mi 3 MPU6050 InvenSense Acceleration 

HTC ONE Unknown - - 

 

 

 

 

Fig. 1 The experimental setup 

 

 

627



 

 

 

 

 

 

Jun Chen, Huan Tan and Ziye Pan 

 

 

Fig. 2 The interface of Sensorlog®  

 

 

Fig. 3 Local coordinates of embedded accelerometer and tri-axial gyroscope 

 

 

2.2 Vibration measurement by smartphone 
 

Fig. 3 shows the local coordinates and positive directions of a smartphone‟s embedded tri-axial 

accelerometer and tri-axial gyroscope. The plane that consists of x and y axes is parallel to the 

smartphone‟s screen. The embedded accelerometer is able to record acceleration in x , y , and z 

directions which are mutually perpendicular, while the tri-axial gyroscope can record the angular 

rotation velocity ( , units: rad/s) of these three axes. To measure the movement of an 

object, the smartphone can be fixed on object so that one of the three axes, say the x axis, of phone 

is in the same direction as the vibration. Under such a circumstance, the smartphone‟s acceleration 

measurement in x direction represents the object‟s movement in that direction. 

When using the smartphones for human-induced load measurement, usually we know the 

orientation of its local coordinates at the beginning (t = 0), e.g., x-axis is perpendicular to the 

ground and y-axis is parallel to the ground, which is then defined as the reference coordinate or the 

global coordinate. During the measurement, the orientation of the smartphone‟s local coordinates 

is changing due to the movement and rotation of human body. Therefore, we need coordinate 

, ,x y z  
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transformation rules to convert smartphone measurements at any time instant t from local 

coordinates to the global coordinates. 

Assume the accelerations recorded by the smartphone at time instant t are ,  and 

 in the local coordinates. The accumulated angles of rotation about the three axes from time 

0 to t are as follows 

                   (1) 

in which n means the total number of sample points up to time t. The following equation is used to 

transfer ,  and 
 

to the global coordinates 

                (2) 

in which the transformation matrix H is 

 

cos cos         sin sin +cos cos         sin sin -cos sin cos

cos sin     cos cos -sin sin sin     sin cos -cos sin sin

    sin                      -sin cos                           cos cos

H

          

           

    




 








     n    (3) 

Eq. (2) transfers the acceleration measured by the smartphone at any time instant t to the 

reference coordinates at the beginning of the measurement.  

 

 

3. Calibration tests using a shaking table 
 
3.1 Experimental setup 
 

Vibration serviceability problems in long-span structures, i.e., pedestrian bridges, floors and 

cantilever grandstands, are mostly caused by people walking, bouncing or jumping. Thus, the 

experimental tests were focused on these three types of human-induced load, which is a 

near-periodic process and is characterized by its frequency, amplitude and phase. The frequency 

range of walking is from 1.5 to 2.5 Hz and that of jumping or bouncing is normally between 2.5 

and 3.5 Hz.  

In the shaking table experiment, smartphones were fixed on an organic glass which was in turn 

fixed by bolts on a small scale shaking table manufactured by Quanser Co. (Fig. 1). Different 

inputs were introduced to the shaking table, including sinusoidal waves of different frequencies, 

sweep waves and earthquake waves. The measurement accuracy of the smartphones is designed to 

be identical in every axis since the same MEMS chip is utilized and fully differential capacitive 

sensing and common-centroid configurations are realized in all the axes. Therefore, only the x-axis 

was tested in the experiments. Amplitude controlling strategy was adopted in the test that the 

shaking table had constant vibration amplitude for each case. A dual-axis ADXL210E 

accelerometer was embedded in the shake table to measure the acceleration of the platform in both 

x and y directions. The sensor has a measurement range of ±10 g, and its noise level in the 

operation range of the shake table is approximately ±5.0 mV, i.e. ±5.0 mg. The record of the 

embedded accelerometer was taken as a reference to verify records from smartphones.  

 1a t  2a t

 3a t

1 1 1
;  ;  

n n n

t x t y t zt t t            

 1a t  2a t  3a t

           1 2 3, , * , ,
T T

x y za t a t a t H a t a t a t      
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3.2 Sinusoidal wave 
 
Eight sinusoidal waves were tested in the experiments. Their frequencies ranged from 1.2 to 3.4 

Hz with an interval of 0.4 Hz, covering the typical frequency range of human-induced loads. For 

test cases with 1.6 and 3.4 Hz sinusoidal waves, Figs. 4(a) and 4(b) compares the time histories 

and corresponding Fourier amplitude spectra for the smartphone records with that of the reference 

waves. Visual observation indicates that the records from smartphones are very close to the real 

waves in both time and frequency domain. To quantify the measurement error, the relative error of 

each peak in measured and reference time histories were computed. The mean values and standard 

deviations are presented in Table 2. The last column of Table 2 gives the relative error between the 

dominating frequency of the smartphone record and the preset frequency in the test. Note that the 

maximum peak measurement error is lower than 4%, and the difference in dominating frequency is 

negligible. 

 

3.3 Sinusoidal sweeping wave 
 
In order to verify the smartphones‟ adaptation to the vibration environment, the sinusoidal 

sweeping test was also conducted. Normally, a sinusoidal sweeping vibration test is utilized to 

simulate the devices vibrating condition when the resonant frequency is unable to be determined 

beforehand. In this experiment, the input to the shaking table was a sine sweeping wave that 

increased from 1 Hz to 7.5 Hz in 20 seconds. The amplitude of the sweeping wave was set at 2 

mm. The test was repeated several times. In each case, the smartphones‟ records were compared 

with the output data of the shaking table in terms of time history, Fourier amplitude spectrum and 

the one-second running root-mean-square (1s-RMS), which was calculated using the time-history. 

Figs. 5(a) and 5(b) shows the comparison for one test case.  

 

 

 
Table 2 Mean values and standard deviation of relative error peak values and frequencies 

 Error of peaks Error of frequency(%) 

Cases Mean (%) STD(%) 

1.2 Hz 3.59 1.56 0.37 

1.6 Hz 2.68 0.97 0.62 

2.0 Hz 1.35 0.89 0.99 

2.4Hz 0.66 0.35 0.83 

2.8 Hz 0.68 0.49 0.12 

3.2 Hz 1.08 0.79 0.19 

3.4Hz 1.13 0.76 0.29 

3.6 Hz 1.55 0.95 0.90 
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(a) 1.6 Hz 

  
(b) 3.4 Hz 

Fig. 4 Time history of sensors under sine wave vibration 

 

 

 

As shown in Fig. 5(a), the time history of the smartphone‟s record is close to the real input, and 

the 1s-RMS acceleration recorded by the smartphone is slightly larger than that of the reference. 

The conclusion was the same for the other test cases. For the Fourier amplitude spectrum, the 

measurement by smartphone was close to that of the real input as demonstrated in Fig. 5(b). 

 

3.4 Earthquake wave  
 

In order to verify the accuracy of smartphone‟s built-in tri-axial accelerometer to wideband 

random vibration, we conducted the earthquake wave tests. Four field earthquake records were 

used as the shaking table‟s inputs: 1) the El Centro earthquake, 2) the Northridge earthquake, 3) 

the Kobe earthquake and 4) the Cape Mendocino earthquake data. For the El Centro earthquake, 

the shaking table‟s output and three measurements by smart phones are shown in Fig. 6 with their 

corresponding Fourier amplitude spectra given in Fig. 7.  
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(a) Comparison of time histories and 1s RMS  

 
(b) Comparison of Fourier spectrum of iPhone6 and a shaking table 

Fig. 5 Comparison of shaking table data and smartphones recording during the sinusoidal sweep vibration 

 

 

 

It can be seen that the smartphone measurements are similar to the shaking table vibration in 

terms of shape of curves, frequencies, and maximum values. However, it should be noted that the 

peaks in the smartphone records appear at different times from that of the real input. Our 

experiment results suggest that for complex waves, such as earthquakes that have high frequency 

components, smartphone records should be used with caution.  
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Fig. 6 Comparison of the recorded time histories under the El Centro earthquake vibration 

 

 

 

Fig. 7 The Fourier spectrum of the shake table input and smartphones records 

 

 

4. Calibration tests using motion capture technology 
 

4.1 Experimental setup 
 

The accuracy of selected smartphones for measuring low frequency harmonic waves was 

validated by the shaking table test. We intend to use smartphones to record people‟s daily 

movements and the resulting loads. Since smartphones are carried by people in many different 
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manners, the effect of smartphone carrying manner for the individual phone carrier can affect 

measurement results and should be further validated. To this end, we designed and conducted 

experiments using a three-dimensional motion capture system, which is an advanced measurement 

technology capable of synchronously recording motions of reflective markers attached to a test 

subject. The Vicon Motion Capture System was used in the test. It contains 12 infra-red cameras, 

four fixed force plates, and associated software for data recording and processing, as shown in Fig. 

8. The distance measurement accuracy of the system is 0.1 mm. More information about the 

motion capture technology can be found in Peng et al. (2015).  

In the experiment, test subjects were asked to wear skinny jeans and performed bouncing, 

jumping and walking activities. Four reflective markers were attached to the test subject‟s pelvis as 

shown in Figs. 8(a) and 8(b). According to the Vicon System‟s instruction, the average of the four 

markers‟ records is very close to the trajectory of COM, which was also proved by previous 

studies (Zhang et al. 2013). Thus, the average value of the four markers‟ records was taken as the 

COM‟s trajectory. After each test, the COM‟s vertical acceleration was calculated using all the 

markers‟ trajectories, and it was then taken as a reference for latter comparison. One additional 

marker was attached to the smartphone to record its acceleration in the global coordinates of the 

motion capture system. The trajectory of this special marker was used as a reference to verify the 

coordinates conversion rules.  

 

4.2 Smartphone carrying manner 
 

To investigate the effect of smartphone carrying manner on the measurement result, we tried 

two methods: M1) the smartphone was put in the test subject‟s pocket (Fig. 8(a)), and M2) the 

smartphone was bound to the test subject‟s waist by a belt placing the smartphone close to the 

pelvis (Fig. 8(b)). For each carrying method, the test subject was instructed to conduct jumping, 

bouncing and walking tests three times at different frequencies instructed by a metronome. 

 

 

  
(a)  Carrying manner 1 (b) Carrying manner 2 

Fig. 8 Two different phone carrying manners in the test 

A marker on 

the iPhone 

The belt 
Markers on 
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Figs. 9(a) and 9(b) compare the smartphone measurements with the corresponding references 

for the first carrying manner, and Figs. 10(a) and 10(b) show the results for the second manner. 

Visual observation suggests that the second carrying manner gives a better measurement than the 

first one. The conclusion for other test cases is the same. This observation is actually the same as 

for the traditional accelerometer, which is also required to be securely fastened on the object. 

 

 

 
(a) Jumping at 2.0 Hz 

 
(b) Bouncing at 2.0 Hz 

Fig. 9 Comparison of acceleration measurements between iPhone and Vicon (Carrying manner 1) 
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(a) Jumping at 2.0 Hz 

 
(b) Bouncing at 2.0 Hz 

Fig. 10 Comparison of acceleration measurements between iPhone and Vicon (Carrying manner 2) 
 

 

After comparing the two different carrying manners, it is obvious that when the smartphone 

was bound close to the test subject‟s COM, the smartphone measurements are able to represent the 

trajectories of COM. The second carrying manner is therefore recommended for real application of 

smartphones for human activity measurements. 

 

4.3 Coordinate conversion 
 

At the beginning of each test, the coordinates of smartphones were set in accordance with that 

of the motion capture system by fixing the phone at the origin of Vicon‟s global coordinates and 

then pressing the start button of Sensorlog. By this means, the smartphone‟s „global coordinates‟ as 
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defined in section 2.2 were the same as the Vicon System. After each test, Eq. (2) was applied to 

the smartphone records to convert them from local coordinates to global coordinates. For the 

bouncing case at 2.6 Hz, Fig. 11(a) compares the original and converted smartphone acceleration 

measurements with that of the reference marker.  

 

 
(a) Comparison of acceleration 

 
(b) Comparison of 1sRMS values 

 
(c) Comparison of 10sRMS values 

Fig. 11 Comparison of accelerations of bouncing at 2.6 Hz 
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Figs. 11(b) and 11(c) further compare the 1s-RMS and 10s-RMS curves of the smartphone 

records with that of the reference. Note that the acceleration time history, 1s-RMS and 10s-RMS, 

after revision are much closer to those of the reflective marker. The conclusion for the other test 

cases is the same. 

The above experimental results clearly demonstrate that when applied to human movement 

measurement, it is very important to set the smartphones‟ local coordinates to a known direction at 

the beginning and perform coordinate conversion afterward. Moreover, the smartphone should be 

securely attached to the object in order to get high quality measurements. 

 

 

5. Application for human-induced loads measurement 
 
After we attach a smartphone close to a person‟s COM in a walking/bouncing/jumping activity, 

the vertical acceleration measured by the smartphone (after coordinates conversion) can represent 

the acceleration of COM in the vertical direction, which is parallel to gravity. The loads induced by 

the person‟s activity can then be computed by introducing COM‟s acceleration into the 

biomechanical model of the person (Chen et al. 2015). The simplest model is given in Eq. 4, which 

treats each person as a single rigid body 

                           (4) 

in which G(t) is the ground reaction force (GRF) caused by the person, m is the body mass of the 

person, g is the gravitational acceleration and ay is the vertical acceleration of a person‟s COM. For 

activity such as bouncing, not all of a person‟s body mass participates in the vibration; a dynamic 

participation coefficient was introduced as R which is the ratio of that part of the mass 

participating in vibration and the whole human mass. As a result, Eq. (4) is expressed as 

                          (5) 

We applied Eq. (5) to all the test cases in the motion capture experiments to calculate the 

ground reaction force. Taking the bouncing experiment as an example, Figs. 12(a) and 12(b) 

compare the bouncing force measured by the force plate and that obtained by Eqs. (4) and (5). As 

shown in Fig. 12(a), the single-rigid biomechanical model where R=1 is not good enough to 

reproduce the ground reaction force. This is because in the bouncing activity, the lower legs of the 

person don‟t fully participate in the vibration. With R = 0.7870 in Eq.(5), the reproduced force 

agrees well with the force plate measurement as shown in Fig. 12(b). The R value was determined 

by trial and error. Figs. 13(a) and 13(b) give the analogous comparison in bouncing activity at 1.5 

Hz. The relative errors in peak and root-mean-square (RMS) were computed between force plate 

measurements and that obtained by Eqs. (4) and (5). The results are shown in Table 4 with the R 

values used in the calculation. 

Note from Table 3 and 4 that for bouncing and jumping tests, the peak errors vary in a range  

6% - 25% and 13% - 32% respectively, while the RMS errors are all lower than 2%. It is worth 

emphasizing that experimental results in Section 4 already demonstrated that the acceleration 

recorded by the smartphone is very close to the COM‟s acceleration; therefore, the errors presented 

in Table 4 are mainly due to the biomechanical model (Eq. (4) or Eq. (5)). In other words, Table 4 

shows that when a proper model is selected, the loads calculated using the smartphone 

  yG t mg ma 

 0 1R 

  yG t mg mRa 
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measurements are acceptable. Our experimental results indicate that the R factor is 

individual-dependent. The mean values R = 0.76 for bouncing and R = 0.88 for jumping from this 

study could be options. However, it is beyond the scope of this paper to find a proper R factor for 

the biomechanical model. 

 

 

 

 
(a) Reproduced GRF using a single-rigid model (R=1) 

 
(b) Reproduced GRF using a single-rigid model (R=0.761) 

Fig. 12 Comparison of the reproduced GRF with force plate measurement (Bouncing frequency 2 Hz) 
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(a) Reproduced GRF with a single-rigid model (R=1) 

 
(b) Reproduced GRF with a single-rigid model (R=0.896) 

Fig. 13 Comparison of the reproduced GRF with force plate measurement (jumping frequency 1.5 Hz) 

 

 
Table 3 Errors between reproduced and measured GRF of bouncing load with R for one subject 

Cases(Hz) 

R = 1 R ≠ 1 

Peak errors(%) 
Errors of 

RMS(%) 
R Peak errors(%) 

Errors of 

RMS(%) 

1.5 Hz 18.15 5.49 0.708 5.7764 0.1 

2.0 Hz 20.93 7.14 0.761 8.2965 0.69 

2.5 Hz 17.78 6.24 0.853 24.71 1.52 

3.2 Hz 26.64 5.63 0.735 14.5845 0.67 
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Table 4 Errors between reproduced and measured GRF of jumping load with R 

 

Cases(Hz) 

 

R 

Peak errors (%) Errors of RMS (%) 

1.5 Hz 0.896 17.37 0.43 

2.0 Hz 0.882 13.10 0.30 

2.8 Hz 0.907 16.63 0.34 

3.5 Hz 0.844 32.43 0.7 

 

 

6. Conclusions 

 
Based on the experimental results on the selected smartphones and data collection software in 

this study, the following conclusions and limitations were obtained. 

 The selected smartphones (iPhone5c and higher generation) are able to measure simple 

sinusoidal waves with high accuracy. For complex vibration waves like earthquake waves, the 

measurement accuracies of the selected smartphones were not up to our standards in the 

experiments conducted.  

 With a secure carrying manner and coordinates revision, the selected smartphones can 

measure a person‟s walking, jumping, and bouncing movement with good accuracy. 

 The human loads induced by walking, jumping, and bouncing can be computed by 

introducing the smartphone measurements into a biomechanical model of the moving person. 

The accuracy of the reproduced load mainly depends on the accuracy of the model. 

 This kind of technique is limited because of the smartphone type and software. Even for 

iPhones which were tested in this paper, different series of phones have different accelerometer 

sensors so that their accuracy will not all measure out to the same results.  

 With the merits of being used daily and their around-the-clock accessibility as portable 

electronic devices, smartphones tested herein were capable of recording the kinetics of 

individuals in a crowd and the loading force was estimated conveniently and simply.  
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