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Abstract.  The goal of this study is to investigate the effect of non-synchronous sensing when using 
wireless sensors on structural identification and to attempt correcting such errors in order to obtain a better 
identification result. The sources causing non-synchronous sensing are discussed first and the magnitudes of 
such synchronization errors are estimated based on time stamps of data samples collected from Imote2 
sensors; next the impact of synchronization errors on power spectral densities (PSDs) and correlation 
functions of output responses are derived analytically; finally a new method is proposed to correct such 
errors. In this correction method, the corrected PSDs of output responses are estimated using 
non-synchronous samples based on a modified FFT. The effect of synchronization errors in the measured 
output responses on structural identification and the application of this correction method are demonstrated 
using simulation examples. The simulation results show that even small synchronization errors in the output 
responses can distort the identified modal and stiffness parameters remarkably while the parameters 
identified using the proposed correction method can achieve high accuracy. 
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1. Introduction 
 

Structural health monitoring (SHM) has emerged as an active, interdisciplinary research field 

over the past two decades due to the need to better manage and maintain complex structural 

systems to ensure their safety, serviceability and sustainability. Structural health monitoring 

employs sensing technologies and data processing methods to perform condition assessment and 

damage detection of structural systems, such as buildings, bridges, aircrafts and ships. A traditional 

SHM system usually consists of many sensors, signal transmitting wires, data acquisition (DAQ) 

instruments, and a centralized server for data storage and processing. However, because of the size 

and complexity of modern civil structures, cabling can become a troublesome issue due to high 

installation and maintenance costs and labor-intensive deployment. With recent advances in 

wireless technology, wireless sensor networks (WSNs) can solve the cabling problem. Compared 

to traditional wired systems, there is no extensive wiring between sensors and data acquisition 

system, allowing for fast and flexible deployment, easier maintenance and cost reduction. In 
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addition, WSNs allow sensor data to be processed locally at each sensor node, which can reduce 

the amount of data that need to be transmitted and distribute the computing burden. These features 

highlight the potential of dense deployment of wireless sensors for monitoring large-scale civil 

infrastructures. Inspired by these advantages, WSNs are becoming immensely popular in structural 

monitoring and control applications (Lynch and Loh 2006, Lynch 2007, Wang et al. 2007).  

Though densely deployed wireless sensors have the potential to improve SHM dramatically, 

limited hardware resources of wireless sensors with compact size preclude direct application of 

traditional monitoring strategies when using wireless sensor networks (Nagayama et al. 2007). 

Time synchronization in wireless sensor networks has been an important concern in the application 

of these networks since vibration-based structural health monitoring requires synchronous 

measured data from the structures. However, each wireless sensor in the network has its own 

intrinsic clock providing timing signals. The clocks on the sensors have to be frequently 

synchronized with each other to maintain a consistent global time. A number of methods have been 

developed and tested on clock synchronization (Sundararaman et al. 2005). Different algorithms 

and hardware resources may result in different precision. Among them, the flooding time 

synchronization protocol (FTSP) (Maróti et al. 2004) is one of the popularly adopted protocols for 

clock synchronization, which ensures accurate clock synchronicity among sensor nodes. For 

example, Imote2 nodes employing FTSP are reported to synchronize with each other with absolute 

error typically below 10 μs and consistently below 80 μs (Nagayama and Spencer Jr. 2007). The 

clock synchronization is periodically performed to eliminate the clock offset and skew. Recently, 

nonlinear clock drift due to extended data collection time and temperature variations have also 

been addressed (Li et al. 2015). Thus fine clock synchronization among sensor nodes has been 

shown to be achievable. 

However, precise clock synchronization does not guarantee sensing synchronization due to 

inherent hardware and software limitations, which will be discussed later. One of the approaches to 

achieve synchronized sensing is rigorous sensing time control, which was pursued and 

demonstrated by Kim et al. (2007). Nevertheless, such approach can be computationally expensive 

and sometimes impractical. Another approach to achieve sensing synchronization is 

post-processing of the non-synchronously sensed data to eliminate such synchronization errors. 

This alternative approach relaxes the need for rigorous sensing time control and can tolerate some 

sensing synchronization errors (Nagayama and Spencer Jr. 2007, Yan and Dyke 2010). 

In this article, the sources causing non-synchronous sensing are first discussed and estimated 

based on time stamps of data samples collected from Imote2 sensors. Then the impact of sensing 

synchronization errors on PSDs and correlation functions of output responses are investigated, and 

a new methodology for correcting such errors is proposed. Finally, the effect of non-synchronous 

sensing on structural identification and its correction using the proposed method is illustrated by 

numerical examples using simulated data. 

 

 

2. Synchronization error source analysis and sampling time modeling 
 

2.1 Sources causing non-synchronous sensing 
 

There are many potential sources causing non-synchronous sensing in wireless sensor networks. 

Generally, sensing using wireless sensors is performed in the following way. Prior to sensing, 

clock synchronization is performed to convert local time to global time using the estimated offsets 
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and skews between local clocks and reference clock. After clock synchronization, the gateway 

node sends sensing parameters such as sampling frequency and number of data points to be 

collected to remote nodes. When the preset start-sensing time comes, sensing tasks are posted on 

remote nodes. Once the sensing driver is ready, sensing starts. The sensing tasks continue running 

until the predetermined amount of data is acquired. During sensing, the acquired data points are 

first stored in a buffer. Every data point or several data points can be marked with a local time 

stamp (The time stamp is the time information identifying when a certain event occurred, and in 

the sensing application, it is the sampling time instant when a certain data point was sampled.). 

When the buffer is filled, the data are passed to the application designed for processing and 

transmitting, and then the buffer is returned to be used for the next block of data. 

Potential sources causing non-synchronous sensing are summarized below (Nagayama and 

Spencer Jr. 2007). The schematic diagram depicting non-synchronous sensing is shown in Fig. 1. 

(a). Clock synchronization error: less than 10 μs for most of the time, the upper-bound is 80 μs 

for Imote2 sensors with FTSP clock synchronization protocol. This error is comparatively small 

for SHM applications.  

(b). Non-simultaneity in sensing start-up: starting the sensing tasks at all of the Imote2 nodes 

simultaneously is a challenge. Even if the time for starting the sensing is set to be the same global 

time, the real execution time is different for each node, and thus sensing will not start 

simultaneously.  

(c). Differences in sampling frequency among sensor nodes: the sampling frequency may differ 

from the nominal value by at most 10 percent for the Imote2 basic sensor board.  

(d). Non-uniform sampling interval over time: a non-uniform sampling interval was observed 

in the Imote2 sensor boards. The coefficient of variation of the sampling interval is about 

0.01%~0.03%, which is relative small. 

 

2.2 Modeling of non-synchronous sampling time 
 

Ideally, the data are sampled uniformly (with the same constant sampling interval Ts) and 

synchronously (all the sensors start up sensing at the same global time). Thus, theoretically, the 

time at k
th
 sampling instant is 

k st kT                            (1) 

 

 

Fig. 1 Illustration of non-synchronous sensing 
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However, due to the reasons mentioned above, the signals are sampled at a different time instant 

 ' ( )k st kT ck k                                (2) 

where, δ is the constant time shift, coming from sources (a) and (b) mentioned in Section 2.1; 

because the clock synchronization error is relatively small and it is hard to be measured during 

sensing, only the time delay of sensing start-up is considered here as the factor contributing to the 

constant time shift. ck is the linear time shift, coming from source (c) mentioned in section 2.1; 

c=Ts
′
-Ts is the difference between the real sampling interval Ts

′
 and the nominal sampling interval  

Ts . ε(k) is the random time shift with zero mean, coming from source (d) mentioned in section 2.1; 

these time jitters cause non-uniform sampling. 

Because ε(k) is relatively quite small according to test results, only the first two terms (δ and ck) 

are considered here. Denote the synchronous and non-synchronous data samples at the k
th
 time 

instant as x(tk) and x(tk
′
) respectively, then 

 ( ) ( )k kx t x t                              (3) 

where α= Ts
′
/Ts=1+c/ Ts is the scale factor of sampling interval. 

 

 

3. Estimation of sensing synchronization errors 
 

The methods for estimating sensing synchronization errors can be classified into two categories: 

indirect methods and direct methods. Indirect methods estimate the time delay between two 

measurements based on sampled data recordings. Lei et al. (2005) proposed two algorithms for 

time delay estimation: the time-delay between an output measurement and the input is estimated 

based on an ARX model from the input-output pair data recordings; the time-delay between two 

output signals is evaluated based on an ARMAV model from two output data recordings. Shen et 

al. (2012) employed cross-correlation analysis for identifying the time delays between a 

time-shifted wireless signal and a reference signal. However, these indirect methods only 

considered synchronization errors due to time delays while the synchronization errors due to 

sampling frequency deviation were not addressed. Moreover, these methods are only applicable in 

the case when the time delays are sufficiently large (at least larger than one sampling interval). On 

the other hand, direct methods are straightforward when the time stamps of the sampled data are 

available. Since wireless sensors are smart sensors with an embedded processing unit that can 

provide support for various modes of operation and interfacing, time stamp recording becomes 

achievable. Using proper embedded programming, the sensing application in wireless sensors can 

provide sampling time information along with the sampled data. Every data point or several data 

points can be marked with a local time stamp. As a result, the magnitudes of sensing 

synchronization errors in wireless sensors can be evaluated based on these time stamps. 

In this paper, the Imote2 platform is used as the test bed. The Imote2 is an advanced wireless 

sensor node platform developed at Intel that became commercially available first by Crossbow 

Technology, Inc. (now acquired by MEMSIC, Inc.). It has a low-power processor with variable 

processing speed (13–416MHz) to optimize power consumption. It incorporates a Zigbee Radio 

with an onboard antenna. It has 256 KB of SRAM, 32 MB of external SDRAM, and 32 MB of 

flash memory. These unique features of the Imote2 make it suitable for SHM applications that 

pose high computational demands and require high-frequency sampling rates. Each sensing unit 
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consists of an Imote2 board, a sensor board and a battery board, which are stack together via 

connectors (Fig. 2). One option for sensing with the Imote2 is to utilize a basic sensor board 

developed by Intel, available from MEMSIC Inc. This basic sensor board has a 3-axis digital 

accelerometer, a relative humidity sensor, a temperature sensor, a light sensor, and a general 

purpose 12-bit ADC. In this test, only accelerometer sensor was used. 

To evaluate the magnitudes of sensing synchronization errors, a group of ten Imote2 sensors 

were installed and programmed with the sensing application provided by the ISHMP toolsuite 

(http://shm.cs.uiuc.edu), an open source software platform that contains a library of services for 

SHM applications and was developed by a research group at the University of Illinois at 

Urbana-Champaign. The accelerometer sensor boards used for testing were ITS400CB Intel Basic 

Sensor Boards. One of these ten sensors served as gateway node, and the other nine sensors served 

as remote nodes. During sensing, the time stamp of every data point was recorded. The sampling 

interval was calculated as the difference of two consecutive time stamps. Processing these 

sampling time stamps data, the magnitudes of sensing synchronization errors in Imote2 with 

ITS400CB sensor boards were estimated. 

 

 

  
(a) Imote2 stacked configuration (b) Imote2 basic components 

Fig. 2 Imote2 wireless sensor configuration and its basic components 

 

 
Table 1 Statistics of sampling intervals (40 Hz, 1000 points) 

Node ID 
sif  (Hz) it  (µs) Error SD CV 

3 38.64 25878 3.51% 3.0 0.01% 

32 39.09 25584 2.33% 3.8 0.01% 

98 38.20 26179 4.71% 3.7 0.01% 

99 39.84 25099 0.40% 2.5 0.01% 

101 40.50 24690 -1.24% 2.9 0.01% 

102 40.47 24711 -1.16% 4.1 0.02% 

104 39.22 25499 1.99% 4.6 0.02% 

105 39.98 25011 0.04% 3.0 0.01% 

113 38.77 25791 3.16% 5.2 0.02% 

Notes: 
sif mean sampling frequency; it mean sampling interval 

Power Supply Unit

Processing Unit

Processor

Storage

Radio

Transceiver Unit

Sensor

ADC

Sensing Unit

& Antenna
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Table 2 Differences in the start-sensing time (Node 113 as reference) 

Node ID 3 32 98 99 101 102 104 105 113 

i (µs) 14942 14160 16582 16582 8601 910 17908 10484 0 

/ n

i it   0.60 0.57 0.66 0.66 0.34 0.04 0.72 0.42 0 

Notes: 
i start-sensing time delay compared to reference node; 

n

it nominal sampling interval (25ms) 

 

 

From Table 1, it can be seen that the actual sampling frequencies of the accelerometers on 

ITS400CB sensor boards have non-negligible deviations from the nominal value. According to the 

data sheet of the accelerometer, which is provided by the manufacturer, the actual sampling 

frequency may differ from the nominal value by at most 10%. Such deviations were observed in 

these nine sensor boards, with a maximum observed error of 4.71% in Node 98 for sampling 

interval. Differences in the sampling frequencies among the sensor nodes will result in inaccurate 

estimation of modal parameters and stiffness parameters unless appropriate post processing is 

performed. The standard deviation (SD) and coefficient of variance (CV) of the sampling intervals 

in each sensor are listed in the last two columns of Table 1. The sampling time interval fluctuates 

with CV about 0.01~0.02%, which is quite small, thus can be neglected. 

From Table 2, it can be seen that the sensing start-up at all of the Imote2 sensor nodes is not 

simultaneous. Some of them will start earlier, while some of them will start later. In this test, Node 

113 is the first one to start sensing, while Node 104 is the last one to start sensing. Although the 

commands to start sensing are set at exactly the same time, the execution time of the commands is 

different on each node. This is due to the resource limitations of the embedded system, which 

leaves user little control to assign priority to commands. Thus, the measured signals are not 

synchronized to each other because of the different sensing start-up time.  

 

 

4. The effect of sensing synchronization on structural identification 
 

4.1 The effect of sensing synchronization errors on PSDs and correlation functions  
 

The Fourier transform of a stationary random time history record x(t) is defined as 

 2( ) ( ) j ftX f x t e dt





                          (4) 

Note that physical frequency in Hz rather than circular frequency in rad/s is used in Eq. (4). All 

spectral quantities in this paper are with respect to the physical frequency in Hz. In reality, one can 

measure x(t) only over some finite time duration T, so that X(f) is estimated by computing the 

finite Fourier transform 

 
2

0
( ) ( , ) ( )

T
j ft

TX f X f T x t e dt                       (5) 

The two-sided cross spectral density function between two random processes x(t) and y(t) is 
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defined by (Bendat and Piersol 1993) 

 
*1

( ) lim [ ( , ) ( , )]xy
T

S f E X f T Y f T
T

                      (6) 

where (·)
*
 denotes transpose and complex conjugate operation. Note that this definition of cross 

spectral density function is identical to the corresponding function defined in terms of Fourier 

transform of the correlation function 

 
2( ) ( ) j f

xy xyS f R e d  





                        (7) 

The identity of these two definitions is commonly referred to as the Wiener-Khinchin 

relationship, and is proved in the reference (Bendat and Piersol 1986). 

In time domain, the relationship of non-synchronous data and synchronous data is represented 

by Eq. (3). In the frequency domain, the finite Fourier transform of the corresponding 

non-synchronous data is expressed as (Appendix I) 

 
21

( ) ( )
j f

T T

f
X f e X






 
                          (8) 

Let 1 2( ) [ ( ), ( )... ( )... ( )]
m

T

k Nx t x t x t x t x t  be the synchronous output response time histories, 

where Nm
 
is the number of output measurements. The finite Fourier transform of the synchronous 

output response is given by 

 1 2( , ) [ ( , ), ( , ),... ( , ),... ( , )]
m

T

k Nf T X f T X f T X f T X f TX             (9) 

Thus the power spectral density matrix of the synchronous output is given by 

 
*1

( ) lim [ ( , ) ( , )]
T

f E f T f T
T

S X X                     (10) 

If synchronization errors in the form of Eq. (3) are considered, the PSD matrix of measured 

non-synchronous output becomes 

 
*1

( ) lim [ ( , ) ( , )]
T

f E f T f T
T

  S X X                     (11) 

with (m,n) element 

 
2 ( )

*1 1
( ) lim [ ( , ) ( , )]

n m

n m

j f

mn m n
T

m n m n

f f
S f e E X T X T

T

 


 

   




            (12) 

where δm and δn are the constant time shifts corresponding to sensors m and n respectively; αm and 

αn are the scale factors of sampling interval with respect to sensors m and n respectively. From Eq. 

(12), it can be seen that the cross-spectral density function of the non-synchronous signals has 

changed in three aspects: firstly, the magnitude is scaled with a factor of 1/(αmαn); secondly, the 

phase is shifted by 2πf(δn/αn-δm/αm); thirdly, the frequencies with respect to sensor m and n are 

changed to f/αm and f/αn respectively. It is noted that Xm(f/αm) and Xn(f/αn) correspond to different 

frequencies if αm≠αn . If only constant shifts δm and δn exist, Eq. (12) becomes 
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 2 ( )
( ) ( )n m

mn

j f

mnS f e S f
                           (13) 

Eq. (13) implies that constant time shift errors only affect the phase information of the cross 

spectral density and the phase changes linearly with the frequency.  

When considering the cross-correlation function, according to the sampling time model of Eq. 

(2), it can be expressed as 

 
( ) [ ( ) ( )]

           [ ( ) ( ) ]

mn m m m n n n

mn n m n m

R E x t c k x t c k

R c c k

   

  

      

    
               (14) 

It can be seen that there is a time shift error (δn-δm)+(cn-cm)k in the cross-correlation function. 

Alternatively, the correlation function can also be obtained by the inverse Fourier transform of 

power spectral density 

 2( ) ( ) j f

mn mnR S f e df 



                       (15) 

The errors in spectral density will also propagate in the correlation function obtained through 

inverse Fourier transform. 

 

4.2 Modal parameter based structural identification using output-only data 
 

Structural identification is a necessary and important task in the course of checking the 

construction quality, validating or improving analytical finite element structural models, designing 

structural control systems, or conducting damage assessment. When field dynamic tests are 

performed to identify the structural model, commonly modal parameters (natural frequencies and 

mode shapes) are used. For the modal parameter based structural identification approaches, there 

are two stages: modal parameter identification followed by physical parameter identification. The 

modal parameters include natural frequencies, damping ratios and mode shapes. Usually, natural 

frequencies and mode shapes are used for physical parameter identification, while damping ratios 

are rarely used. Physical parameters include parameters related to mass, damping and stiffness. 

Herein only the stiffness parameters are considered to be identified while mass is assumed to be 

known with sufficient confidence and damping is not considered. 

Many algorithms have been developed and used for modal parameter identification. A special 

class of such algorithms based on only measured output response of the system has become very 

popular over the last decades (Magalhães and Cunha 2011, Bart Peeters and De Roeck 2001). In 

output-only modal identification, the modal testing is normally done by just measuring the 

response of the system under ambient or operational condition. The commonly used output-only 

modal identification methods can be classified into two groups: (a) frequency domain approaches 

and (b) time domain approaches. For frequency domain methods, most of them are based on 

power spectral densities, such as Peak Picking (PP) method (Felber 1993), Frequency Domain 

Decomposition (FDD) method (Brincker et al. 2001), PolyMax method (Bart Peeters, et al. 2004) 

and Bayesian Spectral Decomposition (BSD) method (Feng 2013). For time domain methods, 

some of them are based on correlation functions, such as the Natural Excitation Technique in 

conjunction with the Eigensystem Realization Algorithm (NExT-ERA) (Caicedo et al. 2004, James 

et al. 1993, Juang and Pappa 1985) and covariance driven Stochastic Subspace Identification 

(SSI-COV) method (Peeters and De Roeck 1999). 
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Using the identified modal parameters, the physical parameters (stiffness parameters) can be 

identified subsequently. Given a nominal structural model and experimentally obtained modal 

parameters, a more accurate model can be obtained using model updating. The model updating 

methods can be roughly categorized into two groups: deterministic approaches (e.g., 

sensitivity-based finite element model updating) and probabilistic approaches (e.g., Bayesian 

model updating). 

In this study, three output-only modal identification algorithms and a modal-based Bayesian 

model updating algorithm are used. For modal identification algorithms, two traditional 

output-only modal identification algorithms (i.e., FDD and NExT-ERA) are used here, of which 

one is a frequency domain method and the other one is a time domain method. Another newly 

developed Bayesian modal identification algorithm (BSD) and an efficient Bayesian model 

updating algorithm using modal data are also employed here for application demonstration. These 

two new algorithms are briefly introduced below. 

 

4.2.1 BSD method 
The Bayesian Spectral Decomposition (BSD) method is a new probabilistic modal 

identification algorithm developed by the authors (Feng 2013). With this method, not only the 

optimal values of the modal parameters are obtained but also their associated uncertainties are 

quantified. This method is inspired by the Bayesian Spectral Density Approach (BSDA) 

(Katafygiotis and Yuen 2001) and the Frequency Domain Decomposition (FDD) method (Brincker 

et al. 2001). Mathematical theory shows that the eigenvalues and eigenvectors of the spectral 

matrix follow Normal distributions. Based on these statistical properties, the optimal values of the 

modal parameters and their associated uncertainties are determined using Bayesian inference. The 

method begins with eigendecomposition of the output spectral matrix. Based on the calculated 

eigenvalues, the most probable values of the modal frequency and damping ratio are determined 

by maximizing the posterior PDF which involves the prior PDF and the likelihood function. The 

corresponding covariance matrix of the posterior distribution is also calculated at the most 

probable values. The first eigenvector at the discrete frequency that is closest to the identified 

modal frequency is an estimate of the mode shape with unitary normalization. The covariance 

matrix of the mode shape is also calculated based on the normal property of the eigenvector. 

 

4.2.2 Efficient Bayesian model updating using modal data 
Recently, an efficient approach for model updating of linear structural models with modal data 

was proposed by the authors (Feng and Katafygiotis 2013). The proposed method consists of two 

steps: preliminary model updating using a deterministic approach followed by Bayesian 

probabilistic model updating. In the beginning, an initial finite element (FE) model based on the 

design drawings and/or initial guesses is constructed. In the preliminary updating stage, an 

iterative technique based on the eigenvalue equation and mode shape expansion is applied to 

obtain an initial estimate of the stiffness parameters. Finally, a probabilistic approach based on a 

Bayesian framework is used to find the most probable values of the stiffness parameters as well as 

to quantify their associated uncertainties. 

 

4.3 The propagation of sensing synchronization errors in structural identification 
process 
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The propagation path of the sensing synchronization errors in modal parameter based structural 

identification process is depicted in Fig. 3. 

The effect of sensing synchronization errors on the estimation of power spectral density and/or 

correlation function has been derived analytically previously. The severity of further propagation 

of these errors in modal identification depends on the method that is employed. Different modal 

identification methods may have different propagation paths and effects. Many studies showed that 

small time delays in the measured system response can distort the identified mode shapes seriously 

when the FDD method is used (Krishnamurthy et al. 2008, Park et al. 2011, Yan and Dyke 2010). 

In this study, the effect of sensing synchronization errors (not only time delays but also sampling 

frequency deviations) on modal identification is studied extensively using numerical simulations 

and the results produced by three different methods (FDD, NExT-ERA, BSD) are compared. 

The errors in modal parameters will also propagate in the identification of stiffness parameters. 

The propagation of mode shape errors into the flexibility matrix has been studied analytically by 

Mukhopadhyay et al. (2012). In this study, the propagation of modal parameter errors (not only 

mode shapes but also frequencies) on stiffness identification is also studied using numerical 

simulations. Bayesian probabilistic model updating method using modal data is adopted for 

stiffness parameters identification (Feng and Katafygiotis 2013). Such error propagations are 

investigated in the simulation example 2.  

 

 

 

Fig. 3 The propagation path of the sensing synchronization errors in modal-based structural identification 

process 
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5. Error correction 
 

5.1 Related work review 
 

In order to eliminate the synchronization errors, direct intuition suggests reconstructing 

synchronous data from the measured non-synchronous ones. This is so called signal reconstruction, 

and some work has been done for this purpose, e.g., interpolation based approach (Divi and 

Wornell 2008) and resampling based approach (Nagayama and Spencer Jr. 2007). 

The interpolation based approach is based on the Whittaker-Shannon interpolation formula. If 

x(t) is band-limited and the sampling frequency is higher than twice the upper bound frequency, 

according to the Whittaker-Shannon interpolation formula, the continuous-time band-limited 

signal can be written as 

 ( ) ( ) sinc( ( ))s s

n

x t x n f t nT




                     (16) 

where x(n) are discrete data samples with uniform sampling intervals, fs is the sampling frequency 

fs=1/Ts, and sinc function is defined by  

 
sin( )

sinc( )
x

x
x




                          (17) 

Using Eq. (16), synchronous data samples can be reconstructed by interpolation from the 

non-synchronous samples. However, Eq. (16) requires infinite samples theoretically, which cannot 

be realized. If finite samples are used, it renders big errors. It also requires a lot of computational 

effort. 

Alternatively, synchronous data samples can be obtained by resampling from non-synchronous 

data samples, as it was done by Nagayama and Spencer Jr. (2007). This algorithm involves a 

combination of interpolation, filtering and decimation. One of the possible error sources of this 

resampling process is imperfect filtering. Also the FIR filter design becomes extremely 

challenging when the upsampling factor is large (Nagayama and Spencer Jr. 2007). The basic idea 

of resampling is depicted in Fig. 4. 

 

 

 

Fig. 4 Basic idea of resampling (Nagayama and Spencer Jr. 2007) 
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5.2 Proposed algorithm 
 

As discussed before, signal reconstruction in time domain is computationally expensive and 

time-consuming. Since only spectral density or correlation function estimates are needed for most 

of the modal identification algorithms and raw sampled data are not needed, reconstruction of the 

signal in the time domain can be avoided. Rather than reconstructing the signal in the time domain, 

we develop a correction approach in the frequency domain to obtain an accurate spectral density 

using non-synchronous samples. This approach is based on the spectral relationship of 

synchronous data and non-synchronous data. Once the corrected spectral densities are obtained, 

the correlation functions can also be easily obtained by inverse Fourier transform. 

 

5.2.1 Constant time shift 

Consider two time histories { (0), ( ),... (( 1) )}Tx x t x N t      x  and

{ ( ), ( ),... (( 1) )}Tx x t x N t             x , where 
x  has a constant time shift δ. The discrete 

Fourier transform (DFT) for x  is given by 

 
21 1

2

0 0

( ) ( ) ( )k

n N n N j kn
j f n t N

k

n n

X f x n t e x n t e




  

    
 

 

                 (18) 

where kf k f  , 1/ ( ) /sf N t f N     is the frequency resolution in Hz and fs is the sampling 

frequency. The discrete Fourier transform for the shifted time history 
x  is given by (Appendix 

II) 

 
2

( ) ( )kj f

k kX f e X f
 

 
                           (19) 

Therefore  
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j f N t
k k kX f X f e X f e

 
 

  


 

 
      

 
            (20) 

Note that Eq. (6) provides the spectral density estimate assuming continuous time and 

frequency. For discrete time and frequency, the cross spectral density estimate can be obtained by 

(Appendix III) 

 *( ) lim ( ) ( )x x k k k
N

t
S f E X f X f

N   



                    (21) 

The scaling factor Δt/N of the spectral density estimate in Eq. (21) is defined such that the 

spectral density is two-sided with respect to the physical frequency in Hz. 

 

5.2.2 Linear time shift 

Consider two time histories { (0), ( ),... (( 1) )}Tx x t x N t         x and

{ (0), ( ),... (( 1) )}Tx x t x N t         x , that have different sampling frequencies, i.e., 

t t    , and total sampling time lengths T N t     and T N t    , respectively. In 
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discrete Fourier transform, we know that kf k f   and 1/ ( ) /sf N t f N    . In order to make 

sure ( )kX f and ( )kX f  correspond to the same discrete frequency when calculating the cross 

spectral density, their frequency resolutions should be identical, i.e., f f    , thus their time 

duration should be the same, i.e. 

 N t N t      , 
tN

N t



 





                       (22) 

Based on this relationship, the cross spectral density can be estimated by (Appendix IV) 

 
* *( ) [ ( ) ( )] [ ( ) ( )]x x k k k k k

t t
S f E X f X f E X f X f

N N 

 
   

 

 
  , when ,N N    (23) 

where kf k f  , 1/ ( ) 1/ ( )f N t N t        , 0,1,...,min{int( / 2) 1,int( / 2) 1}k N N    . 

 

5.2.3 Summary of procedures 
In reality, the time shifts of non-synchronous data are a combination of constant time shifts and 

linear time shifts as shown in Section 3. The most popular FFT-based method for power spectral 

density estimation is Welch’s refined periodogram approach (Welch 1967). In order to obtain an 

accurate power spectral density estimate from non-synchronous data, the proposed procedures are 

as follows: 

(1). Perform sensing, and make sure the time stamps are also recorded when sampling. 

(2). Set one sensor as reference, and partition the data points into several segments. Each 

segment has a length of Nr data points (subscript r refers to reference node). 

(3). Partition the data points of other sensors into several segments as well. The first data point 

of each segment is chosen as close as possible to that of the corresponding segment in the 

reference sensor data by comparing their time stamps. For sensor i, the length Ni of each segment 

is chosen such that Eq. (22) holds approximately.  

(4). Calculate the Fourier transform of each segment and correct it using Eq. (20). 

(5). Calculate the cross spectral density using Eq. (23) for each segment.  

(6). Calculate the average of cross spectral densities obtained from different segments. 

(7) When the cross-correlation functions are needed for modal identification, they can be 

calculated by inverse Fourier transform of the cross spectral densities. This step is optional, 

depending on the modal identification algorithm employed.  

After accurate estimates of the power spectral densities or correlation functions are obtained, 

they are fed into a chosen modal-based structural identification algorithm for modal parameter 

identification followed by model (e.g., stiffness parameters) identification. The procedures of the 

proposed method in the application of modal-based structural identification are depicted in Fig. 5. 

 

 

6. Illustration examples 
 

6.1 Example 1: 2-DOF shear building model 
 

As discussed earlier, power spectral densities are the basis of most modal identification 
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algorithms and subsequent modal-based stiffness identification methods. To study the propagation 

of synchronization errors in power spectral densities (especially cross spectral densities), we 

simulated a 2-DOF structural system subjected to white noise excitation. Four cases are considered: 

no time shift, constant time shift, linear time shift and combination of both types of time shifts. 

The 2-storey shear building model is shown in Fig 6. In this system 4
1 2 2 10m m kg   , 

6
1 2 6 10 /k k N m   , the damping is assumed as Rayleigh damping such that the damping ratios 

are 1 2 0.01   . The measurement noise is assumed to be 3% of the root mean square of the 

responses.  

 

 

Fig. 5 Procedures of the proposed synchronization errors correction method for modal-based structural 

identification 

 

 

 

Fig. 6 Two-storey shear building model 
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Fig. 7 Flowchart of non-synchronous sensing simulation 

 

 

According to the levels of synchronization errors shown in Section 3, the simulations are 

performed as follows (Fig. 7): 

Input: Gaussian white noise base acceleration a(t), with sample frequency 10000 Hz, 

corresponding to sampling time interval 0.1 ms. 

Raw output: Using the Matlab built-in function lsim (Simulate LTI model responses to 

arbitrary inputs), the raw output responses, also sampled at 10000Hz, are obtained. 

Baseline (no time shift): Apply an anti-aliasing filter to the raw data first and then pick one data 

point every 250 data points from the filtered output samples for both of the two channels. The 

resulting new sampling frequencies for both channels are 40Hz, and the sampling time intervals 

are 25 ms.  

Case I (constant time shift): Apply first an anti-aliasing filter to the raw data and then pick one 

data point every 250 data points from filtered output samples of both of these two channels, but the 

first data point of channel #2 has 200 points delay compared to that of channel #1. Thus, the new 

sampling frequencies are 40 Hz and the sampling time intervals are 25 ms for both channels, but 

channel #2 has a time delay of 20 ms. 

Case II (linear time shift): Apply first an anti-aliasing filter to the raw data and then pick one 

data point every 250 data points for channel #1 and one data point every 247 data points for 

channel #2. The resulting sampling frequencies of channel #1 & #2 are 40 & 40.4858 Hz 

respectively, while the corresponding sampling time intervals are 25 ms & 24.7 ms respectively. 

Case III (combinational time shift): Apply first an anti-aliasing filter to the raw data and then 

pick one data point every 250 data points for channel #1 and one data point every 247 data points 

for channel #2. The first data point of channel #2 has 200 points delay compared to that of channel 

#1. This case is basically the superposition of case 1 and case 2. 

In the power spectral density matrix computation, the data segment lengths for FFT are chosen 

as 4096 points for the sampling frequency of 40 Hz, i.e., length of 102.4 sec. This number will be 

changed accordingly when a sampling frequency other than 40 Hz is assumed. Although 

overlapping and windowing are commonly employed to increase the accuracy of the spectral 

density estimation, no window and overlap is imposed in this study for simplification. Twenty 

segments of data points are used for averaging. The auto-spectral densities, the magnitude and 

phase spectrum of cross-spectral densities of case I, case II and case III compared with the baseline 
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are plotted in Figs. 8-10, respectively. In these figures, the dash lines stand for the spectrum of 

baseline while the solid lines stand for the spectra of case I, case II and case III. The frequency 

values at two peaks which correspond to two modes of the structure are shown in these figures, 

which clearly show the frequency deviations caused by the time shift errors. The phase values at 

corresponding peaks are also shown in the figures, which clearly show the phase deviations caused 

by the time shift errors. The spectrum values at the two peaks are tabulated in Table 3. From Fig. 8 

and Table 3, it can be seen that the constant time shift error almost only affects the phase 

information of the cross spectral density and the phase deviation depends linearly on the frequency. 

From Fig. 9 and Table 3, it can be seen that the linear time shift error has influence on both the 

auto-spectral density and the cross spectral density. For the cross spectral density, both magnitude 

and phase information change. When the actual sampling frequency (40.4858Hz) is larger than the 

nominal sampling frequency (40Hz), the corresponding frequencies at the peaks become smaller. 

The phase changes caused by the linear time shift errors fluctuate with frequency. For the 

combinational time shift of case III shown in Fig. 10 and Table 3, the frequency changes at the 

peaks are the same as those of the linear time shift case, while the phase changes fluctuate with 

frequency. These results basically confirm the analytical predictions derived in Section 4.1. 

Using the proposed correction method, the corrected power spectral densities of case III are 

plotted in Fig. 11. It can be seen that the corrected power spectral densities agree well with the 

power spectral densities of the baseline case, which confirms the effectiveness of the proposed 

correction method. In order to compare the performance of the proposed correction method with 

the resampling based signal reconstruction method (Nagayama and Spencer Jr. 2007), the output 

responses of case III are resampled with interpolation, filtering and decimation. Firstly, the output 

of channel #1 is interpolated with a factor of 250 and the output of channel #2 is interpolated with 

a factor of 247. Then the first 200 data points of interpolated output of channel #1 are discarded to 

compensate the initial time delay. Finally the outputs of channel #1 and #2 pass an anti-aliasing 

filter and are decimated with a factor of 1/250. The power spectral densities of the resampled data 

are plotted in Fig. 12. The performance comparison of the proposed method with the resampling 

based method is tabulated in Table 4. It can be seen that the magnitude of power spectral densities 

for both methods agree very well with those of the baseline case. For the phase of power spectral 

densities, since it is more sensitive to the synchronization errors, the accuracy is not as good as the 

accuracy of magnitude, but it is also acceptable. Furthermore, the proposed method performs 

better than the resampling based method in terms of accuracy of the phase of the power spectral 

densities. By using Matlab 2013b on a desktop with Intel Core i7-3770 @3.4 GHz and 16 GB 

RAM, it takes around 1.06 seconds to implement the proposed correction method, while it takes 

around 130.27 seconds to implement the resampling based method. 

 
Table 3 Spectrum values at peak frequencies in synchronous and non-synchronous sensing cases  

 Baseline Case I Case II Case III 

 1
st
 Peak 2

nd
 Peak 1

st
 Peak 2

nd
 Peak 1

st
 Peak 2

nd
 Peak 1

st
 Peak 2

nd
 Peak 

S11 0.8065 0.1380 0.8065 0.1380 0.8065 0.1380 0.8065 0.1380 

|S12| 1.3043 0.0850 1.3042 0.0850 0.1865 0.0108 0.1862 0.0108 

S22 2.1093 0.0525 2.1092 0.0524 2.1832 0.0524 2.1842 0.0523 

θ12 0.0016 2.9224 -0.2121 2.3612 -2.7415 1.3667 -2.9585 0.8029 
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Fig. 8 Power spectral densities of constant time shift output compared with baseline 

 

 

 

Fig. 9 Power spectral densities of linear time shift output compared with baseline 
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Fig. 10 Power spectral densities of combinational time shift output compared with baseline 

 

 

 

Fig. 11 Corrected power spectral densities of combinational time shift output compared with baseline 
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Fig. 12 Power spectral densities of resampled combinational time shift output compared with baseline 

 

 
Table 4 Comparison of proposed correction method with resampling method 

 Baseline Corrected case III (1.06s) Resampled case III (130.27s) 

 1
st
 Peak 2

nd
 Peak 1

st
 Peak 2

nd
 Peak 1

st
 Peak 2

nd
 Peak 

S11 0.8065 0.1380 0.8065 0.1380 0.7912 0.1375 

|S12| 1.3043 0.0850 1.3006 0.0853 1.2796 0.0847 

S22 2.1093 0.0525 2.0973 0.0528 2.0694 0.0522 

θ12 0.0016 2.9224 -0.0317 2.8306 -0.1085 2.6324 

 

 

6.2 Example 2: 6-DOF shear building model 
 

To study the propagation of synchronization errors in modal identification and subsequent 

modal-based stiffness identification, and to illustrate the application of the proposed algorithm for 

error correction in the structural identification process, simulated data using a 6-DOF shear 

building structure subjected to white noise excitation are considered. In this system
4

1~6 2 10m kg  , 7
1~6 4 10 /k N m  , and Rayleigh damping is assumed with corresponding 

damping ratios 1 2 0.01   . The theoretical modal frequencies and mode shapes are calculated 

and the values of the first four modes are tabulated in Table 5. All six DOFs are assumed to be 
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measured and the measurement noise for the response is taken to be 3%. The nominal sampling 

frequency is assumed to be 40 Hz, while the actual sampling frequencies sif (i=1,2,…6) and the 

relative differences of start-sensing time i (i=1,2,…6) for the six channels are shown in Table 6. 

The magnitudes of the assumed synchronization errors are comparable to those of the estimates in 

Section 3. 

The modal parameters are identified using three methods: FDD method, NExT-ERA method 

and BSD method. The modal frequencies and mode shapes identified using FDD, NExT-ERA, 

BSD are summarized in Table 7, Table 8 and Table 9, respectively. In each table, the identified 

results from synchronous data, non-synchronous data and corrected non-synchronous data are 

compared. In these tables, the values in the bracket are the relative errors of the identified modal 

frequency compared to its theoretical value; MAC denotes the modal assurance criterion between 

the identified mode shape and the theoretical mode shape; SD denotes standard deviation. It is 

seen that all of these three algorithms suffer from errors when using the non-synchronous data 

directly. The synchronization errors affect the identified modal frequencies only slightly while they 

affect the mode shapes much more. It is observed that the identified modal frequencies are larger 

than the theoretical values as most of the actual sampling frequencies are smaller than the nominal 

ones. The identified mode shapes appear to have large deviations from the theoretical ones for all 

methods in the case of non-synchronous data, which can be seen from the values of MAC between 

the identified mode shapes and the theoretical mode shapes. The effects of the sensing 

synchronization errors on the estimates of modal parameters are different when using different 

modal identification methods. Using the proposed correction method, these errors are largely 

eliminated and the identified modal parameters become satisfactorily accurate. From the tables, it 

is seen that the modal frequencies and mode shapes identified from the non-synchronous data after 

using the proposed correction method render similar high accuracy as those identified from the 

synchronous data. 

 
Table 5 Theoretical values of modal frequency and mode shape of first four modes 

Mode 

number 

Modal 

frequency 

Mode shapes 

1 2 3 4 5 6 

1 1.7159 -0.1327 -0.2578 -0.3678 -0.4565 -0.5187 -0.5507 

2 5.0479 -0.3678 -0.5507 -0.4565 -0.1327 0.2578 0.5187 

3 8.0865 -0.5187 -0.3678 0.2578 0.5507 0.1327 -0.4565 

4 10.6552 -0.5507 0.1327 0.5187 -0.2578 -0.4565 0.3678 

 

 
Table 6 Sampling frequencies and relative differences of start-sensing time 

 1
st
 DOF 2

nd
 DOF 3

rd
 DOF 4

th
 DOF 5

th
 DOF 6

th
 DOF 

𝑓𝑠𝑖 (Hz) 39.2157 39.604 40.404 38.835 38.0952 38.4615 

𝛿𝑖 (s) 0 11250 6500 9000 10500 7250 
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Table 7 Modal frequencies and mode shapes identified by FDD 

 
Mode 

number 

Modal 

frequency 
Mode shape 

   1 2 3 4 5 6 MAC 

Syn. 

1 
1.709  

(-0.4021%) 
-0.1329 -0.2574 -0.3681 -0.4566 -0.5188 -0.5504 1.0000 

2 
5.0586 

(0.212%) 
-0.3654 -0.5468 -0.4537 -0.1314 0.2605 0.5258 0.9999 

3 
8.0859 

(-0.0074%) 
-0.5114 -0.372 0.2495 0.5544 0.1432 -0.4583 0.9997 

4 
10.625 

(-0.2834%) 
-0.5403 0.1228 0.5264 -0.2583 -0.4649 0.3647 0.9997 

Non- 

syn. 

1 
1.7773 

(3.5783%) 
-0.0283 -0.0235 -0.0362 0.4379 0.1069 -0.8911 0.0668 

2 
5.127 

(1.567%) 
-0.112 0.9787 -0.1414 -0.0301 -0.0289 -0.0885 0.2329 

3 
8.3105 

(2.77%) 
-0.4083 0.137 0.0141 -0.8953 -0.0187 0.1114 0.1454 

4 
10.8789 

(2.0994%) 
-0.9641 0.0429 -0.1598 -0.028 -0.0112 -0.2053 0.1525 

Corr. 

non- 

syn. 

1 
1.709 

(-0.4021%) 
-0.1325 -0.2577 -0.3685 -0.4554 -0.5186 -0.5512 1.0000 

2 
5.0586 

(0.212%) 
-0.3494 -0.5529 -0.4566 -0.1258 0.2551 0.5318 0.9994 

3 
8.0859 

(-0.0074%) 
-0.507 -0.3747 0.2518 0.5516 0.1441 -0.4626 0.9996 

4 
10.625 

(-0.2834%) 
-0.5551 0.1157 0.5129 -0.2661 -0.4727 0.348 0.9989 

 

 

 

In the second step, the identified modal parameters are used to update the stiffness parameters 

using a Bayesian probabilistic method. The stiffness matrix is parameterized using a linear model 

described as  

 0

1

( )
N

n n

n

K K K


 


                         (24) 

where K0 is the nominal global stiffness matrix, Kn is the corresponding n
th
 substructure stiffness 

matrix, and θn is a factor that allows for the scaling of the nominal substructure stiffness Kn so that 

the overall stiffness is more consistent with the actual structural behavior. In the simulations, the 

nominal inter-storey shear stiffnesses are assumed to be 0 7
1~6 5 10 /k N m  , which overestimate 

the actual stiffness parameters ( 7
1~6 4 10 /k N m  ).  
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Table 8 Modal frequencies and mode shapes identified by NExT-ERA 

 
Mode 

number 

Modal 

frequency 
Mode shape 

   1 2 3 4 5 6 MAC 

Syn. 

1 
1.7158  

(-0.0058%) 
0.14 0.246 0.3787 0.4514 0.5203 0.5495 0.9997 

2 
5.0523 

(0.0872%) 
0.369 0.5496 0.4579 0.1323 -0.2574 -0.518 1.0000 

3 
8.0885 

(0.0247%) 
0.5165 0.3663 -0.2579 -0.5518 -0.1339 0.4584 1.0000 

4 
10.6676 

(0.1164%) 
0.5506 -0.1318 -0.5179 0.2564 0.458 -0.3684 1.0000 

Non- 

syn. 

1 
1.7554 

(2.3020%) 
0.7872 0.2296 0.0582 -0.4979 -0.1274 -0.2453 0.0592 

2 
5.1548 

(2.1177%) 
-0.9969 -0.0587 -0.0262 -0.0154 -0.0065 -0.0432 0.1512 

3 
8.2517 

(2.0429%) 
0.9992 0.0176 0.0085 0.0168 0.005 -0.0297 0.2491 

4 
10.8767 

(2.0788%) 
-0.9986 -0.021 -0.0131 0.024 0.0261 -0.029 0.2617 

Corr. 

non-s

yn. 

1 
1.7159 

(0%) 
0.1422 0.2637 0.3646 0.4506 0.5255 0.546 0.9998 

2 
5.052 

(0.0812%) 
0.3746 0.5488 0.4557 0.1339 -0.2598 -0.5152 0.9999 

3 
8.0883 

(0.0223%) 
0.5263 0.3562 -0.2529 -0.5624 -0.1356 0.4444 0.9995 

4 
10.6655 

(0.0967%) 
0.5687 -0.1248 -0.5012 0.2645 0.4673 -0.3485 0.9988 

 

 

 

Using twenty realizations, twenty modal data sets are obtained using the BSD method. Each 

modal data set contains the optimal values of modal frequencies and mode shapes and also their 

associated covariance matrix. The identified modal data sets are fed into a Bayesian structural 

mode updating for stiffness identification (Feng and Katafygiotis 2013). The updated stiffness 

parameters are tabulated in Table 10. It is seen that the updated stiffness parameters using modal 

parameters directly identified from non-synchronous data suffer from large errors. A small error in 

the sensing synchronization may lead to a large discrepancy in the identified stiffness parameters. 

Moreover, it is seen that the updated stiffness parameters using modal parameters identified from 

the corrected spectral densities of the non-synchronous data are close to their actual values. The 

level of accuracy is comparable to that of the updated stiffness parameters using modal parameters 

identified from synchronous data. 

 

 

 

562



 

 

 

 

 

 

The effect of non-synchronous sensing on structural identification and its correction 

 

 
Table 9 Modal frequencies and mode shapes identified by BSD 

 Synchronous  Non- synchronous Corrected non-synchronous 

Parameter Optimal SD 
Error 

/MAC 
Optimal SD 

Error 

/MAC 
Optimal SD 

Error 

/MAC 

f1 1.7158 0.0017 -0.0058% 1.7713 0.0035 3.2286% 1.7157 0.0017 -0.0117% 

f2 5.0527 0.0032 0.0951% 5.1207 0.0607 1.4422% 5.0523 0.0032 0.0872% 

f3 8.0908 0.0055 0.0532% 8.3151 0.0086 2.8269% 8.0909 0.0055 0.0544% 

f4 10.6607 0.0091 0.0516% 10.8627 0.0181 1.9474% 10.6608 0.0091 0.0526% 

11 -0.1325 0.0005 

1 

-0.0301 0.0633 

0.0184 

-0.132 0.0018 

1 

12 -0.2579 0.0005 -0.08 0.0632 -0.2582 0.0017 

13 -0.3683 0.0005 0.0511 0.0633 -0.3686 0.0017 

14 -0.4562 0.0004 0.8393 0.0344 -0.4554 0.0016 

15 -0.5188 0.0004 0.0929 0.0631 -0.5185 0.0015 

16 -0.5505 0.0004 -0.5263 0.0539 -0.5512 0.0015 

21 -0.3678 0.0026 

1 

-0.2651 0.095 

0.1099 

-0.3555 0.0053 

0.9998 

22 -0.5499 0.0023 0.9548 0.0293 -0.5546 0.0047 

23 -0.4566 0.0025 -0.0678 0.0983 -0.4591 0.0051 

24 -0.135 0.0027 -0.04 0.0984 -0.1303 0.0057 

25 0.2575 0.0027 0.0183 0.0985 0.2537 0.0055 

26 0.5189 0.0024 0.1076 0.0979 0.5234 0.0049 

31 -0.5114 0.006 

0.9997 

-0.4083 0.0939 

0.1454 

-0.5314 0.0111 

0.9994 

32 -0.372 0.0065 0.137 0.1018 -0.3531 0.0122 

33 0.2495 0.0067 0.0141 0.1028 0.2564 0.0127 

34 0.5544 0.0058 -0.8953 0.0458 0.5582 0.0109 

35 0.1432 0.0069 -0.0187 0.1028 0.1323 0.013 

36 -0.4583 0.0062 0.1114 0.1022 -0.445 0.0117 

41 -0.5396 0.0117 

0.9995 

-0.943 0.0388 

0.0733 

-0.5489 0.0165 

0.9993 

42 0.1447 0.0137 0.0773 0.1162 0.1365 0.0196 

43 0.511 0.0119 -0.2536 0.1128 0.5027 0.0171 

44 -0.2655 0.0134 0.1075 0.1159 -0.2711 0.0191 

45 -0.4624 0.0123 0.1311 0.1156 -0.4704 0.0175 

46 0.3774 0.0128 -0.108 0.1159 0.3642 0.0184 

 

 
Table 10 Updated stiffness parameters using modal data 

  Synchronous Non- synchronous Corrected non-synchronous 

 
Act-

ual 

Opti-

mal 
SD Error 

Opti- 

mal 
SD Error 

Opti- 

mal 
SD Error 

θ1 -0.2 
-0.199

6 
0.0005 -0.2% 0.2436 0.0032 -221.8% -0.2022 0.0013 1.1% 

θ2 -0.2 
-0.201

1 
0.0008 0.55% -0.4351 0.0029 117.55% -0.204 0.0015 2% 

θ3 -0.2 
-0.199

5 
0.0007 -0.25% 1.3778 0.0512 -788.9% -0.1971 0.0011 -1.45% 

θ4 -0.2 -0.2 0.0008 0% -0.6022 0.0009 201.1% -0.1995 0.0015 -0.25% 

θ5 -0.2 
-0.199

9 
0.0008 -0.05% 967802 1093905 -4.8108% -0.2011 0.0012 0.55% 

θ6 -0.2 
-0.200

7 
0.0007 0.35% -0.3341 0.0005 67.05% -0.1976 0.0011 -1.2% 
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7. Conclusions 
 

The purpose of this paper is to address the problem of non-synchronous sensing on structural 

identification when using wireless sensor networks. The potential sources causing 

non-synchronous sensing are first discussed and the magnitudes of these errors are estimated based 

on time stamps collected from Imote2 sensors. Among these error sources the dominant ones are 

non-simultaneity in sensing start-up and differences in sampling frequency among sensor nodes. 

As shown in the simulation examples, these errors can distort the identified results of modal 

parameters and stiffness parameters. A small error in the sensing synchronization may lead to a 

large discrepancy in the identified mode shapes and stiffness parameters. A new methodology was 

proposed for eliminating such errors. This methodology estimates the power spectral density (PSD) 

of output responses using non-synchronous samples based on a modified FFT. Once the corrected 

spectral densities are obtained, the correlation functions can also be easily calculated by inverse 

Fourier transform. Then, these corrected PSDs or correlation functions can be fed into various 

output-only modal identification algorithms. Subsequently, stiffness parameters can be identified 

using modal-based structural model updating. Comparing with the resampling based signal 

reconstruction method, this method is simple, marginally more accurate and computationally 

efficient. It should be noted that this method is not applicable for some of the structural 

identification methods which are not based on power spectral densities or correlation functions and 

signal reconstruction may be necessary when using such methods for structural identification from 

non-synchronous data. The proposed correction method is validated using numerical simulations. 

The simulation results show that errors due to non-synchronous sensing are largely eliminated 

using the proposed method and the resulting identified parameters are of similarly accuracy as 

those estimated from synchronous data. 

 

 

Acknowledgments 
 

This research has been supported by the Hong Kong Research Grants Council under grants 

613412 and 613713. These supports are gratefully acknowledged. The authors also would like to 

acknowledge Professor Billie F. Spencer Jr. and his group members from the University of Illinois 

at Urbana-Champaign for providing some of the codes used in these studies. Constructive 

comments from anonymous reviewers are also gratefully acknowledged. 

 

 

References 
 

 
Bendat, J.S. and Piersol, A.G. (1986), Random Data: Analysis and Measurement Procedures (2nd Ed.), New 

York: Wiley. 

Bendat, J.S. and Piersol, A.G. (1993), Engineering Applications of Correlation and Spectral Analysis (2nd 

Ed.), New York: J. Wiley. 

Brincker, R., Zhang, L. and Andersen, P. (2001), “Modal identification of output-only systems using 

frequency domain decomposition”, Smart Mater. Struct., 10(3), 441-445.  

Caicedo, J.M., Dyke, S.J. and Johnson, E.A. (2004), “Natural excitation technique and Eigensystem 

realization algorithm for phase I of the IASC-ASCE benchmark problem: Simulated data”, J. Eng. Mech. 

- ASCE, 130(1), 49-60.  

564



 

 

 

 

 

 

The effect of non-synchronous sensing on structural identification and its correction 

 

Divi, V. and Wornell, G. (2008), “Bandlimited signal reconstruction from noisy periodic nonuniform 

samples in time-interleaved ADCS”, Proceedings of the In ICASSP, IEEE International Conference on 

Acoustics, Speech and Signal Processing . 

Felber, A.J. (1993), “Development of a hybrid bridge evaluation system”, Ph.D. Dissertation, University of 

British Columbia (UBC), Vancouver, Canada. 

Feng, Z. (2013), “Structural health monitoring using wireless sensor networks and Bayesian probabilistic 

methods”, Ph.D. Dissertation, The Hong Kong University of Science and Technology. 

Feng, Z. and Katafygiotis, L.S. (2013), “Efficient model updating with incomplete modal data for structural 

health monitoring”, In Safety, Reliability, Risk and Life-Cycle Performance of Structures and 

Infrastructures - Proceedings of the 11th International Conference on Structural Safety and Reliability, 

ICOSSAR 2013. 

James, G.H., Carne, T.G. and Lauffer, J.P. (1993), The Natural Excitation Technique (NExT) for modal 

parameter extraction from operating wind turbines (Vol. Rep. No. S). Sandia, NM: Sandia National 

Laboratories. 

Juang, J.N. and Pappa, R.S. (1985), “An eigensystem realization algorithm for modal parameter 

identification and model reduction”, J. Guid. Control Dynam., 8(5), 620-627.  

Katafygiotis, L.S. and Yuen, K.V. (2001), “Bayesian spectral density approach for modal updating using 

ambient data”, Earthq. Eng. Struct. D., 30(8), 1103-1123.  

Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S. and Turon, M. (2007), “Health 

monitoring of civil infrastructures using wireless sensor networks”. In IPSN 2007: Proceedings of the 

Sixth International Symposium on Information Processing in Sensor Networks. 

Krishnamurthy, V., Fowler, K. and Sazonov, E. (2008), “The effect of time synchronization of wireless 

sensors on the modal analysis of structures”, Smart Mater. Struct., 17(5), 055018.  

Lei, Y., Kiremidjian, A.S., Nair, K.K., Lynch, J.P. and Law, K.H. (2005), “Algorithms for time 

synchronization of wireless structural monitoring sensors”, Earthq. Eng. Struct. D., 34(6), 555-573.  

Li, J., Mechitov, K.A., Kim, R.E. and Spencer, B.F. Jr. (2015), “Efficient time synchronization for structural 

health monitoring using wireless smart sensor networks”. Struct. Control Health Monit., doi: 

10.1002/stc.1782. 

Lynch, J.P. (2007), “An overview of wireless structural health monitoring for civil structures”. 

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 

365(1851), 345-372.  

Lynch, J.P. and Loh, K.J. (2006), “A summary review of wireless sensors and sensor networks for structural 

health monitoring”, Shock Vib. Dig., 38(2), 91-128. 

Magalhães, F. and Cunha, Á . (2011), “Explaining operational modal analysis with data from an arch bridge”, 

Mech. Syst. Signal Pr., 25(5), 1431-1450.  

Maróti, M., Kusy, B., Simon, G. andLédeczi, Á . (2004), “The flooding time synchronization protocol”. In 

SenSys’04 - Proceedings of the Second International Conference on Embedded Networked Sensor 

Systems. 

Mukhopadhyay, S., Luş, H., Hong, A.L. and Betti, R. (2012), “Propagation of mode shape errors in 

structural identification”, J. Sound Vib., 331(17), 3961-3975. 

Nagayama, T. and Spencer, B.F. Jr. (2007), Structural Health Monitoring Using Smart Sensors (Vol. Report 

Ser). Urbana, IL: Newmark Structural Engineering Laboratory.  

Nagayama, T., Sim, S.H., Miyamori, Y. and Spencer, B.F. Jr. (2007), “Issues in structural health monitoring 

employing smart sensors”, Smart Struct. Syst., 3(3), 299-329.  

Park, J.H., Kim, J.T. and Yi, J.H. (2011), “Output-only modal identification approach for 

time-unsynchronized signals from decentralized wireless sensor network for linear structural systems”, 

Smart Struct. Syst., 7(1), 59-82. 

Peeters, B. and De Roeck, G. (1999), “Reference-based stochastic subspace identification for output-only 

modal analysis”, Mech. Syst. Signal Pr., 13(6), 855-878.  

Peeters, B. and De Roeck, G. (2001), “Stochastic system identification for operational modal analysis: A 

review”, J. Dynam. Syst. Measurement Control, 123(4), 659.  

565



 

 

 

 

 

 

Zhouquan Feng and Lambros Katafygiotis 

 

Peeters, B., Van der Auweraer, H., Guillaume, P. and Leuridan, J. (2004), “The PolyMAX 

frequency-domain method: A new standard for modal parameter estimation?”, J. Shock Vib., 11(3-4), 

395-409.  

Shen, W., Lei, Y., Hu, L. and Wang, Y. (2012), “Feasibility of output-only modal identification using 

wireless sensor network: A quantitative field experimental study”, Int. J. Distrib. Sens. N., 2012, 1-17.  

Sundararaman, B., Buy, U. and Kshemkalyani, A.D. (2005), “Clock synchronization for wireless sensor 

networks: A survey”, Ad Hoc Networks, 3(3), 281-323.  

Wang, Y., Swartz, R.A., Lynch, J.P., Law, K.H., Lu, K.C. and Loh, C.H. (2007), “Decentralized civil 

structural control using real-time wireless sensing and embedded computing”. Smart Struct. Syst., 3(3), 

321-340. 

Welch, P.D. (1967). “The use of fast fourier transform for the estimation of power spectra: A method based 

on time averaging over short, modified periodograms”, IEEE T. Audios and Electroacoustics, AU-15, 

70-76. 

Yan, G. and Dyke, S.J. (2010), “Structural damage detection robust against time synchronization errors”, 

Smart Mater. Struct., 19(6), 065001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

566



 

 

 

 

 

 

The effect of non-synchronous sensing on structural identification and its correction 

 

Appendices 
 

Appendix I. Derivation of Eq. (8) 
 

In time domain, the non-synchronous data is expressed as in Eq. (3): ( ) ( )k kx t x t    . The 

finite Fourier transform of the non-synchronous data 
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Appendix II. Derivation of Eq. (19) 
 

The discrete Fourier transform for shifted 
x  is given by 
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Appendix III. Derivation of Eq. (21) 
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Appendix IV Derivation of Eq. (23) 
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