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Abstract.  This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin 
beam-type structures with resistive-inductive electrodes to ANSYS

®  
three-dimensional (3D) finite element 

(FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are 
considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner 
that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a 
special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral 
deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler 
beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher’s 
equation (second-order in time and space). Analytical results of our theory are validated by 3D 
electromechanically coupled FE simulations with ANSYS

®
. A clamped-hinged beam is considered with 

various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A 
natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement 
between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of 
electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive 
electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an 
optimized impedance. 
 

Keywords:  piezoelectric effect; conductive electrodes; linear piezoelectric beam and bar modeling; 

passive vibration control; bending vibration; finite element analysis 

 
 
1. Introduction 
 

Intelligent structures are systems with multi-functional materials, which manipulate the motion 

in a desired manner. One possibility to influence the structure is based on the piezoelectric effect, 

either by feedforward or feedback control of the piezoelectric control devices (actuation) or by 

dissipation of the electric energy (passive control), which then affects the motion of the host 

structure. An overview of the research domain of adaptronics, where the piezoelectric effect is 
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only one of many others used for measuring physical quantities or for the control of structures, is 

given by Janocha (2007). Classical and introductory works on piezoelectricity are Crawley (1994), 

Chopra (2002) and Tzou (1998). For the particular use of piezoelectric transducers or patches, the 

reader is referred to the books by Moheimani and Fleming (2006) and Preumont (2006), where the 

focus is laid on the reduction of structural vibrations. 

The concept of passive vibration control is referred to Forward (1979), who was the first to 

attenuate vibrations of an optical device by linking the piezoelectric transducer to an external 

circuit. This circuit was replaced by resistive-inductive impedances in Hagood and Flotow (1991), 

which then opened the field for single- and multi-mode shunt strategies and semi-passive control 

methods, e.g., Niederberger et al. (2004), Park (2003) and Trindade and Maio (2008). The 

experimental results of a shunt damped cantilevered plate from Hagood and Flotow (1991) are 

used by Thornburgh and Chattopadhyay (2002) to verify their finite element (FE) model. Contrary 

to most electromechanically coupled FE formulations, they used the electrical displacement field 

instead of the electric potential as the electrical degree of freedom (DOF). Later they used this 

formulation to develop an optimization procedure in order to calculate the parameters of an 

attached electrical circuit of a plate, see Thornburgh and Chattopadhay (2003). In Krommer and 

Irschik (2001) the authors investigated the influence of the electric field on transverse vibration of 

a simply-supported piezoelectric bimorph. A beam model was then developed by Krommer (2001), 

which properly takes into account indirect and direct piezoelectric effects within the framework of 

the Bernoulli-Euler theory. He also investigated the influence of short-, open-circuited and no 

electrodes on the deflection and on the eigenfrequencies. An extension to the Timoshenko beam 

theory is later given by Krommer and Irschik (2002). A piezoelectric beam theory for moderately 

thick structures (Timoshenko beam), where the electrodes of the piezoelectric layers are connected 

to external electric circuits, was presented in Schoeftner and Irschik (2011). This model was later 

used to derive conditions for passive shape control, see Schoeftner and Irschik (2011b): the width 

of the piezoelectric layers and the impedance of the electric circuit are computed, such that 

time-harmonic vibrations due to external loads are completely canceled. FE beam formulations for 

piezoelectric sandwich structures were derived in Benjeddou et al. (1997) and (1999). Based on 

the variational formulation of a sandwich beam, the differential equations are given in terms of 

mass and stiffness matrices and mechanical and electrical force vectors. Extension and shear 

actuation mechanisms are accounted for in this model. Static and dynamic analyses are performed 

for sandwich structures with a large or a small soft core and compared to literature.  

In contrast to metal electrodes, polymer electrodes cause a significant potential loss over the 

electrode surface, e.g. position-sensitive touchpads exploit this fact in order to detect the location 

of a pressure source, see Buchberger et al. (2008, 2008b). A model properly coupling mechanical 

assumptions, the piezoelectric effect and resistive electrodes has been published first by Lediaev 

(2010), who analyzed the interaction of moderately and low conductive electrodes with 

three-dimensional (3D) vibrations of a cantilever. Buchberger and Schoeftner (2013) combined 

elementary beam theory, piezoelectricity and resistive electrodes to obtain an extended beam 

differential equation, which is coupled to a diffusion equation for the electric potential of the 

electrodes. It has been shown that shape control can be realized by properly tuning the electrode 

resistance, see Schoeftner et al. (2014). The practical application of the innovative control method 

is proven by the issued patent (Schoeftner and Buchberger 2013) and the experimental realization 

(Schoeftner et al. 2015b).  

In the following, first, the partial differential equations for a piezoelectric bimorph with 

resistive-inductive electrodes are recalled when the axial and lateral deflections are coupled. 
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Considering a symmetric bimorph, the axial motion can be dropped, yielding that the beam 

equation (forth-order in space, second-order in time) is coupled to the wave equation, which 

describes the electrodes (second order in space and time). Six boundary conditions are needed to 

solve the differential equations: four of them are denoted as mechanical boundary conditions, the 

remaining two are electrical ones. The one-dimensional (1D) extended beam model is validated by 

a 3D ANSYS
® -

FE model. A natural frequency analysis is performed as well as frequency 

responses due to harmonic excitations (quasi-static and dynamic). Finally, the practical relevance 

of resistive-inductive electrodes is pointed out. 

 

 

2. Equations of motion of a slender bimorph with resistive-inductive electrodes 
 

Assuming a bimorph with two identical piezoelectric layers and constant (i.e., no dependency 

on x -axis) geometrical and material properties, the two equations of motion for axial 
0( , )u x t  

and lateral 
0 ( , )w x t  deflections are (for a detailed derivations, see Schoeftner et al. (2015)) 

 p l u

0 N 0, 31 p , ,( , ) ( , ) ( , ) ( , ) ( , )u xx x x xM u x t K u x t q x t e b V x t V x t                 (1) 

p l u

0 M 0, 31 m p p , ,( , ) ( , ) ( , ) ( , ) ( , ) .w xxxx z xx xxM w x t K w x t q x t e z b V x t V x t             (2) 

These equations are coupled to the damped wave equation (=the Telegrapher’s equation) for 

the voltage, which determines the potential difference ( , )kV x t  across the electrodes of the lower 

( lk  ) and the upper ( uk  ) layers 

 
,

p

31 p 0, m 0, 0, m 0,

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) .

k k k

xx

x k xx x k xx

V x t crV x t clV x t

e b r u x t z w x t l u x t z w x t

  

         

     (3) 

For the sake of completeness, the definitions of the axial 
NK , bending stiffness 

MK  as well 

as mass per unit length 
wuM M  and capacitance c  per unit length are recalled in Eq. (A.1). 

The damped wave Eq. (3) is the same as that of a damped transmission line (Telegrapher’s 

equation), see Buchberger et al. (2008b) or Marshall et al. (1996). It is influenced by the velocity 

and acceleration of the axial strain of each layer 0, m p 0,( , ) ( , )x xxu x t z w x t  and by the resistance 

r  and the inductance l  per unit length of the electrode. 

Here, we are only interested in the lateral deflection. From Eq. (3) one sees that the bending 

strain m p 0, ( , )xxz w x t  causes only sign-reversed voltages 
l u( , ) ( , ) ( , )V x t V x t V x t    for the 

upper and lower layers. Hence, the axial deflection 
0( , )u x t  is not excited if the axial load is 

( , ) 0xq x t   or by the opposite phase voltages, see Eq. (1). It follows from Eqs. (1)-(3) that the 

two coupled differential equations for bending dynamics are 

p

0 M 0, 31 mp p ,( , ) ( , ) ( , ) 2 ( , )w xxxx z xxM w x t K w x t q x t e z b V x t              (4) 
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p

, 31 p mp 0, 0,( , ) ( , ) ( , ) ( , ) ( , ) .xx xx xxV x t crV x t clV x t e b z rw x t lw x t              (5) 

Grounding the inner electrodes, ( , 0, ) 0x z t   , one finds a relation between the electric 

potential ( , , )x z t  inside the piezoelectric layers, the electrode voltage ( , )V x t  and the 

deflection 
0 ( , )w x t  

 

p 2

31
mp 0,p

p 33

( , )
( , , ) ( , ).

2
xx

eV x t z
x z t z zz w x t

h




 
     

 
               (6) 

The plus and minus signs in Eq. (6) hold for the lower and upper layers, respectively. 

The current flow ( , )i x t  on the external electrodes can be determined from the Kirchhoff 

voltage and current rules 

,

d
( , ) ( , ) ( , )

d
x

i
ri x t l x t V x t

t
                         (7) 

p

, 31 mp 0, p( , ) ( , ) ( , ).x xxi x t e z w x t b cV x t                    (8) 

Assuming that the excitation load is time-harmonic 
 i

eˆ kx t

z zq q


 , the solution must be also 

time-harmonic 

 i0
ˆ( , )

,e
ˆ( , )

kx t
ww

VV

x t

x t

  
   

   

                     (9) 

yielding 

 

2 4 p 2

M 31 mp p

p 2 2 2 2

31 p mp

2 ˆ ˆ
.

ˆ 0i i

w z
M K k e z b k w q

e b z k r l k cl cr V



   

      
             

          (10) 

Inverting this equation, the solution is 

 

   

2 2 p 2

31 mp p

p 2 2 2 4

31 p mp M

2ˆ ˆ1

ˆ 0det

i

i

z

w

k cl cr e z b kw q

V e b z k r l M K k

 

  

          
        

        (11) 

where the determinant is 

      
2

2 4 2 2 4 p 2

M 31 mp piet id 2 .wM K k k cl cr k e z b r l                (12) 

For a given excitation frequency  , six roots for the wave-number jk  can be computed by 

setting the determinant equal to zero. The final solution can be written in the form of
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     6

0 1

iˆ, , eˆ
TT kx t

j jj
w V w V




 ; so, 12 unknown coefficients 621

ˆ,...,ˆ,ˆ www and 621
ˆ,...,ˆ,ˆ VVV  

have to be determined. However, taking into consideration the second equation in (10), which 

gives a relation between ˆˆ ,j jw V , only six unknowns remain. They are determined by prescribing 

four mechanical and two electrical boundary conditions (see next section). 

 

 

3. Formulation of the boundary conditions 

 
3.1 Mechanical boundary conditions 
 

For the mechanical boundary conditions we assume the classical boundary conditions at 
*x x  (either hinged, clamped, free or locking of the rotation):  

• free: 
* *( , ) 0, ( , ) 0M x t Q x t   

• hinged: 
* *

0( , ) 0, ( , ) 0M x t w x t   

• rotation locked: 
* *

0,( , ) 0, ( , ) 0xQ x t w x t   

• clamped: 
* *

0 0,( , ) 0, ( , ) 0xw x t w x t   

The bending moment ( , )M x t  and the shear force ( , ) 0Q x t   depend on an elastic and on 

an inelastic part, so (see e.g., Schoeftner et al. (2015) or Krommer (2001)) 

p

M 0, 31 mp p

...elastic (=mechanical) part ...inelastic (=electrical) part

p

, M 0, 31 mp p ,

...elastic (=mechanical) part ..

( , ) ( , ) 2 ( , )

( , ) ( , ) ( , ) 2 ( , )

xx

x xxx x

M x t K w x t e z b V x t

Q x t M x t K w x t e z b V x t

  

   

.inelastic (=electrical) part

.
           (13) 

 

3.2 Electrical boundary conditions 
 

The term electrical boundary condition represents the fact in which manner the internal and 

external electrodes (of the lower and upper piezoelectric layers) at the edges of the beam are 

connected. Several possibilities are shown in Fig. 1. The boundaries can be divided into two 

groups: one for the case of actuation (Figs. 1(a) and 1(b)) and one for the case of sensing or 

passive applications (Fig.1c and d). According to Eq. (9), they must be formulated in terms of the 

displacement and the voltage, so that the coefficients ˆˆ ,j jw V  (and hence the solution 0 ,w V ) 

may be computed. 

 

3.2.1 Electrical boundaries for actuation 
Fig. 1(a) shows an electrically actuated beam so that the voltage at the left end is prescribed by 

0V  and the right end is linked to an electric circuit 
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Fig. 1 Electrical boundary conditions, when (a) the voltage or (b) the current at the left end are prescribed; 

(c) electrodes remain unconnected (open-circuit) at the left end and connected by resistance at the right end; 

(d) both ends of the electrodes are connected by resistances. Note for reasons of simplicity the electric circuit 

is connected to the lower layer in the figure only 
 

 

load

0

2

(0)

( ) ( ).

V V

R i L V L




                            (14) 

According to Eq. (9), we need to express ( )i L  in terms of the displacement and the voltage. 

E.g., when assuming resistive, but not inductive electrodes (i.e., 0, 0r l  ) and considering 

Kirchhoff’s voltage rule Eq. (7) , /xV r i  , the second relation yields 

load

,

2

( )
( ) .

xV L
V L R

r
                          (15) 

When the current is prescribed at the left boundary (Fig. 1(b)), one finds after inserting Eq. (7) 

and assuming 0, 0r l   again 

0 , 0

,

2 2load load

(0) (0)

( )
( ) ( ) ( ).

x

x

i i V i r

V L
R i L V L R V L

r

  

   
                (16) 

Eqs. (14) and (16) also include limit cases for the right boundary conditions: if the network is 

short-circuited 2load 0R  , the terminal voltage needs to be zero ( ) 0V L  . If it is open-circuited 

2loadR  , the electric current is ( ) 0i L  , and consequently the gradient of the voltage is also 

zero , ( ) 0xV L  . 
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3.2.2 Electrical boundaries for sensing or passive applications 
Two of the operation modes (e.g., if the piezoelectric layers are used as sensors) are depicted in 

Figs. 1(c) and 1(d). The case, when the electrodes are left open at one end (Fig. 1(c)), reads  

,

,

2load load2

(0) 0 (0) 0

( )
( ) ( ) ( ).

x

x

i V

V L
V L R i L R V L

r

  

   
               (17) 

Assuming the ends of the electrodes to be linked by two electric circuits (Fig. 1(d)), one obtains 

,

1 1load load

load load

,

2 2

(0)
(0) (0) (0)

( )
( ) ( ) ( ) .

x

x

V
V R i V R

r

V L
V L R i L V L R

r

   

   

               (18) 

It is noted that the resistance loadiR  or the electrode resistance r  can be replaced by any 

other impedance (e.g., for a resistance-inductance circuit, loadiR  has to be replaced by 

load load d di iR L t ). 

 

 

4. Validation of the one-dimensional theory with three-dimensional ANSYS-FE results 
 

In this section, results of our extended beam model are compared to the outcome of 3D FE 

calculations with ANSYS
®
 15.0. As a benchmark example, we study a clamped-hinged bimorph 

with the force load 
0( , ) cos( ) 25cos( )zq qx t t t   , see Fig. 2. 

 

 

 

 

Fig. 2 Clamped-hinged piezoelectric bimorph used in the numerical study. 
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The parameters are listed in Table 2 of Appendix A and Eq. (A.1) therein. For the electrical 

boundary conditions, we assume that the electrodes are open-circuited at 0x  , i.e., (0, ) 0i t  . 

At x L  the electrodes are linked by the resistance 
loadR  and inductance 

loadL , so that the 

voltage drop is load load( , ) ( , ) d ( , ) di iV L t i L t L i L t tR  . Since we investigate several kinds of 

electrical loads 
loadR , 

loadL  and electrode materials r  and l , these values may range from 0  

to  . The length of the beam is L = 0.04 m, the width bp =0.004 m and the thickness of one layer 

hp = z2p = 0.0005 m. 

The ANSYS
®
 model has 96xn   elements in the axial, ten elements ( 10zn  ) in the 

thickness and four elements ( 4yn  ) in the width direction. In order to gain more confidence in 

the accuracy of the FE results, a convergence study concerning the number of elements was 

conducted, securing that the resulting solution may converge into the exact solution (or at least the 

difference from the exact one is small). In ANSYS
®
 the SOLID5 eight node brick element is 

available with DOFs for the displacement field ( u v w  ) and for the electric potential (V ). The 

ansatz functions for the electrical DOFs are linear, for the displacement field so-called extra shape 

functions are optionally selected (linear and additional quadratic ansatz functions) to increase the 

accuracy. For the moderately conductive electrode no proper FE is available. Since the 1D 

resistance per unit length r  and the inductance per unit length l  are parameters, the voltage 

nodes over the electrodes are connected by CIRCU94 elements, which allow for modeling 

resistances and inductances. For the FE model we assume that the electrode resistance and 

inductance in the y-direction are negligible. The discrete resistance of the CIRCU94 elements in 

the x -direction is 
d ( 1) /x y xR r n L n   and the inductance is 

d ( 1) /x y xL l n L n  . These 

values for the electrode impedances are used to connect two neighboring voltage nodes at the 

conductive electrodes. The same electrical element (CIRCU94) is also used for the terminal circuit. 

In order to satisfy the grounded electric potential of the inner electrodes, these voltage nodes are 

prescribed as zero. For the nodes at the clamped end, all mechanical DOFs are locked, whereas the 

hinge at x L  is realized by locking the displacement in the z -direction: 

( , , 0) 0w x L y z   . 

The following parameter variations (cases (a)-(h)) for the electrode properties ( ,r l ) and for the 

terminal network (
load load, LR ) are performed in this study:  

 case (a): resistive electrodes 
611.34 10 Ω/m, 0H/mr l    and an attached short circuit 

load load0 , 0HLR     

 case (b): resistive electrodes 
69.97 10 Ω/m, 0H/mr l    and an attached open circuit 

load load, 0HLR    

 case (c): perfectly conductive electrodes 0Ω/m, 0H/mr l   and a resistive network 

load load18744 , 0HLR     

 case (d): resistive-inductive electrodes 
3846.4 10 Ω/m, 558.17H/mr l    and an 

attached open circuit 
load load, 0HLR    

 case (e): perfectly conductive electrodes 0Ω/m, 0H/mr l   and a resistive-inductive 
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network 
load load2328 , 2.33HLR     

 case (f): perfectly conductive electrodes 0Ω/m, 0H/mr l   and a resistive circuit with 

load load3749 , 0HLR     

 case (g): perfectly conductive electrodes 0Ω/m, 0H/mr l   and an attached inductive 

circuit with 
load load0 , 4662HLR     

 case (h) inductive electrodes 
60Ω/m, 10 H/mr l   and an attached short circuit 

load load0 , 0HLR     

First, a frequency analysis is performed (section 4.2) for the cases when the clamped-hinged 

beam is either 

 short-circuited and perfect electrodes ( 0Ω/m, 0H/mr l  , 
load load0 , 0HLR    ) 

or 

 open-circuited and perfect electrodes ( 0Ω/m, 0H/mr l  , 
load load, 0HLR   ) or 

 non-electroded ( , 0H/mr l  ,
load load, LR  arbitrary) or 

 the terminal network consists of an inductance ( 0Ω/m, 0H/mr l  ,
load 0R   , 

load 2.33HL  ) or 

 electrodes are inductive ( 0Ω/m, 558.2H/mr l  ,
load 0R   , 

load 0HL  ). 

For the 3D FE models, only the bending modes in the xy -plane are regarded. Then, the 

displacement and voltage distributions along the beam length or across the thickness are compared 

at 10 Hz (quasi-static) and at 7000 Hz (between the second and the third eigenmodes) in section 

4.2. The practical application of resistive-inductive electrodes is demonstrated, when the frequency 

response around the first eigenfrequency is computed for an optimally tuned terminal impedance 

(
load load, LR ) and perfectly conductive electrodes and for resistive-inductive electrodes ( ,r l ) with 

open- or short-circuited network (section 4.3). 

 

4.1 Natural frequencies 
 

The results of the natural frequency analysis and the relative error between both results are 

shown in Table 1 (analytical Bernoulli-Euler (BE) vs. 3D FE results with ANSYS
®
). The relative 

error is calculated from the eigenfrequencies (EF) as follows  

ANSYS FE analytic BE

analytic BE

EF EF
relative error .

EF


                    (19) 

For the ANSYS
®
 results only the bending modes are considered (no torsional, extensional or 

electrical modes due to inductance or inductive circuit). One sees that the frequencies of the 

non-electroded beams are the highest, those for the elastic beam (i.e., piezoelectric effects are 

neglected
p

31 0e  ) are the lowest. The first bending modes computed with ANSYS
®
 are at  

1313.2 Hz (non-elec.), 1276.9 Hz (open), 1272.3 Hz (short) and 1255.9 Hz (elastic), whereas the 

BE-results underestimate these results slightly: 1299.5 Hz (non-elec.), 1266.1 Hz (open), 1260.7 

Hz (short) and 1247.4 Hz (elastic). The difference between analytical and 3D-results is in general 
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lower than 2.26%. When disregarding inductive properties the error is even lower than 1% . Even 

for the higher modes the 1D theory provides accurate results: e.g. the third mode without 

electrodes 8786.3 Hz (BE) and 8820.6 Hz (ANSYS
®
) (rel. error = 0.39%). The difference between 

the forth mode for the beam without electrodes and the purely elastic beam is 

672Hz(=15013Hz 14341Hz)f    and is in good agreement with the analytical results 

701Hz(=15025Hz 14324Hz)f   ).  

 

 

 

 
Table 1 Natural frequencies (Hz) and relative errors (%) of a clamped-hinged beam (Bernoulli-Euler (BE) 

and ANSYS
®
 FE (bending modes only)) 

 1f  
2f  

3f  
4f  

Analytic BE 31( 0)e   1247.4  4042.8  8434.9  14324  

Analytic BE (short)  1260.7  4085.5  8524.2  14577  

Analytic BE (open)  1266.1 4090.6  8529.3  14582  

Analytic BE (non-electroded) 1299.5  4211.1 8786.3  15025  

Analytic BE 
load( 2.33H)L   1206.9  1323.4  4091.1 8529.3  

Analytic BE 
load( 558.2H/m, R )l    1173.9  1370.1 n.e.

* 
n.e.

* 

ANSYS
®
 FE 31( 0)e   1255.9  4057.5  8430.8  14341 

ANSYS
®
 FE (short)  1272.3  4110.8  8542.8  14534  

ANSYS
®
 FE (open)  1276.9  4116.6  8546.6  14541 

ANSYS
®
 FE (non-electroded) 1313.2  4243.3 8820.6  15013  

ANSYS
®
 FE 

load( 2.33H)L   1231.6  1343.0  4117.3 8546.6  

ANSYS
®
 FE 

load( 558.2H/m, R )l    1193.7  1401.1 n.e.
* 

n.e.
* 

definition of error see Eq. (19) % % % % 

relative error 31( 0)e   0.68  0.36  0.05  0.12  

relative error (short)  0.92  0.62  0.22  0.29  

relative error (open)  0.85  0.64  0.20  0.28  

relative error (non-electroded) 1.05  0.76  0.39  0.08  

relative error 
load( 2.33H)L   2.05  1.48  0.64  0.20  

relative error 
load( 558.2H/m, R )l    1.69  2.26  n.e.

* n.e.
* 
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For the beam configuration with ideal electrodes and an inductive network 
load 2.33HL  , the 

first and second eigenmodes read 1206.9Hz  and 1323.4Hz  (BE). The electrical mode, which 

is 
p load1/ (2 ) 1271.6Hzf C L   for the uncoupled system (i.e., 

p

31 0e  ), influences the 

first bending mode. ANSYS
®
 results are higher, but reflect the same tendency: 1231.6 Hz and 

1343.0Hz . Assuming inductive electrodes 558.2H/ml   and open-circuited electrodes at 

x L  (i.e., 
loadR  ), an infinite number of electrical eigenmodes exists: for the decoupled 

system 
p

31 0e  , the first three electrical natural frequencies read 
elec / (2 )kf k clL  

[1290.7Hz,2581.5Hz,3872.2Hz] , see Marshall et al. (1996). This formula can be obtained if 

the eigenvalues of the uncoupled differential Eq. (5) are calculated (i.e., setting 
p

31 0e  ) by using 

the electrical boundary conditions 
, ,(0) ( ) 0x xV V L  . We only list the first two modes, which 

are overestimated by the ANSYS model: 1193.7Hz  and 1401.1Hz  (ANSYS) in comparison 

to 1173.9Hz  (BE) and 1370.1Hz  (BE), yielding the relative errors = 1.69%  and 2.26% . 

 

4.2 Harmonic frequency responses (10 Hz and 7000 Hz) 
 

The harmonic frequency responses for the deflection and voltage distributions are shown in Figs. 

3 and 4. The excitation in the quasi-static regime (Fig. 3–10Hz) shows the beam deflection 0
ˆ ( )w x  

and voltage distributions along the external electrode 
2p

ˆˆ( ) ( , )V x x z , see Eq. (6). As expected, 

the elastic beam shows the largest deflections (0.0169 mm for BE and 0.0165 mm for ANSYS
®
). 

In case of no electrodes the deflection is 8%  less for both the analytical and the numerical 

ANSYS
®
 results mm 0156.0=)(ˆ

0 xw  and 0.0151 mm at 0.023mx  ). In case of highly 

conductive electrodes ( 0r  , Fig. 3 bottom), the potential must be uniformly distributed along 

the layer electrodes. This is true for open-circuits (gray) and for an inductive terminal circuit 

load 4662HL   (gray-dash-dot): the electric potential is 2.30V  and 0.31V  (ANSYS
®
) and 

agrees with the analytical results 2.44V  and 0.35V . 

These results can be verified as follows: by assuming ideal electrodes 0r  , the solution for 

the voltage yields, see (7)  

1 0( )V x C x C                             (20) 

Due to the open circuit condition at the left end ( ,(0) 0 (0) 0xi V   ) the constant 
1C  

vanishes, meaning that the equipotential area condition is fulfilled over the electrodes. From 

Kirchhoff’s voltage rule for the inductive network 
loadd ( ) / d ( )L i L t V L  follows (in the 

frequency domain) 

)(ˆ)0(ˆ)(,ˆ
0

LVidxxiL x

L

load 







 i                        (21) 

Inserting Eq. (8) into Eq. (21) and considering the boundary condition 0,
ˆ (0) 0xw   one finds 

for the inductive circuit 
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end

p

31 p mp

ind. 0,

p 2

p

ˆ ˆ ( ) 0.35V.
1

1

x

e b z
V w L

C
C L 

  
 
  

 

                 (22) 

For the open circuit (i.e. 
loadL  ) one finds 

p

31 p mp

open 0,

p

ˆ ˆ ( ) 2.44V.x

e b z
V w L

C
                     (23) 

 

 

 

 

 

Fig. 3 Lateral deflection 
0

ˆ ( )w x  (above) and voltage across the electrodes ˆ ( )V x  along the beam axis 

(bottom) at 10Hzf   for the BE- (left) and the ANSYS model (right) 
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One notices that ind.V̂  is frequency-dependent and converges to the open-circuit voltage for 

large frequencies ω. When the piezoelectric layers are not covered by electrodes ( r , black), 

it can be shown that dividing Eq. (5) by r , then taking the limit r , the voltage distribution 

is proportional to the curvature of the beam 

p

31 p m

non

p

l ,e ec. 0
ˆ ˆ( ) ( ).xx

e b z
V x w x

c
                    (24) 

For 0x   one finds 
nonelec.
ˆ (0) 13.90VV  . A similar shape of this curve is obtained by the 

FE model, which deviates from the analytical result only close to the clamped end due to the edge 

effect. When the excitation frequency is increased (7000 Hz–between the second and the third 

mode), the lateral deflection and the through-the-thickness potential distribution are shown in Fig. 

4. The short- and open-circuited displacements are almost the same and very close to the result, 

where the electrodes are linked by the resistance 
load 3749R    (case (f)-light gray curve). 

 

 

Fig. 4 Lateral deflection 
0

ˆ ( )w x  (above) along the beam axis and potential distribution along the thickness of the 

layer ˆ(0.5 , )L z  (bottom) at 7000Hzf   for the BE- (left) and the ANSYS model (right) 

case (f), open, short 
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Differences to the configuration without electrodes (black) and the one with resistive electrodes 

(
69.97 10 /mr    , gray-dashed) are close the same for the analytical and FE results (e.g. the 

displacements at 0.02mx   are 
30.95 10 mm   for BE and 

30.93 10 mm   for ANSYS
®
: 

relative error 2.2% ). The potential distribution at the half of the beam length ˆ(0.5 , )L z  (Fig. 4 

bottom) shows the nonlinear distribution with respect to the thickness. In a first approximation, the 

exact solution within the Bernoulli-Euler framework yields a linear and a quadratic part, where the 

latter one is the influence due to the bending strain, see Eq. (6). In general, the ANSYS results 

match quite well with the analytical results. The voltage, when electrodes are not present ( r ), 

is ˆReal{ (0.5 )} 1.53VV L   at 0.5mmz   for both models. For resistive electrodes (case (b)) 

the voltage is ˆReal{ (0.5 )} 1.14VV L   for BE and ˆReal{ (0.5 )} 1.12VV L   for ANSYS
®
 

(relative error of 1.79% ). 

 

4.3 Passive vibration control 
 

In this subsection, we focus on the practical use of the optimal material properties of the 

electrodes. We show that the damping effect by means of the electrodes is much more efficient 

than damping by a simple attached circuit. Figs. 5 and 6 show the frequency response around the 

first eigenfrequency and the transient response due to the impulse load 0( , ) ( )zq x t q t . 

 

 
Fig. 5 Frequency response 

0
ˆ| (0.5 ) |w L  around the first eigenfrequency (above: elastic, short, open, no 

electrodes; bottom: optimal resistive electrodes with attached short (case (a)) and open circuit (case (b)) and 

optimal terminal resistance (case (c)) 
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Fig. 5 shows the frequency response for the limit cases (above: elastic, short, open, no 

electrodes) and for the optimally tuned circuits (bottom: case (a) optimal resistive electrode with 

the terminal short circuited, case (b) optimal resistive electrode with open circuit, case (c) ideal 

electrodes with optimal terminal resistance). The first eigenfrequencies for the short- and the 

open-circuited beam are 1260.7 Hz and 1266.1 Hz (BE), see also Table 1. The points, where these 

two curves intersect, correspond to the maximum displacement 
0

ˆ| (0.5 ) | 3.75mmw L   for case 

(c): if the attached circuit resistance is optimized 
load opt 18744R R   , the lowest possible 

deflection may be obtained at 1263.4Hzf  . If the electrodes are properly tuned, then the 

amplitudes are lower: electrodes with 
611.34 10 Ω/mr    and 

load 0R   (case (a) black solid) 

yield a displacement of only 0.53 mm (reduction of 86% ). If the electrodes are open-circuited, 

one finds 0.75 mm (case (b) gray dashdot, 80% ). These results correspond with ANSYS
®
 

results, which are 0.52 mm and 0.71 mm, respectively: the relative errors between BE and 

ANSYS
®
 are 2.0%  (case (a)) and 5.6%  (case (b)).  

 

 

Fig. 6 Frequency response 
0

ˆ| (0.5 ) |w L  around the first eigenfrequency and transient response 

0(0.5 , )w L t  (elastic with mechanical damping, optimal resistance and resistive electrode, optimal RL

-values for terminal circuit and optimal rl -values for electrodes (above); transient response due to impulse 

load (bottom)) 
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As already known from literature (e.g., Schoeftner and Irschik (2011b)), the damping 

performance can be further enhanced by using resistive-inductive networks. The major drawback 

of that kind of systems is their high sensitivity concerning parameter uncertainties. In addition to 

the previously discussed optimized resistive electrodes (cases (b) and (c)), the frequency response 

is shown in Fig. 6, when the resistive-inductive terminal load (case (e) black dashdot) and the  

rl -electrode properties (case (d) black) are optimized. The two peaks at 1173.9 Hz and 1370.1 Hz  

(see Table 1 for the electrically undamped system) are attenuated. The highest deflection for the 

rl -optimized electrodes is 
0

ˆ| (0.5 ) | 0.14mmw L   (black solid), for the RL -optimized circuit it 

is 0.25mm  (black dashdot).  

Furthermore, the transient response due to the impact load 0( , ) ( )zq x t q t  is shown at the 

bottom of Fig. 6. The optimally tuned resistive circuit (case (c) light gray dashed) hardly 

contributes damping (at 0.02st   the deflection amplitude is still 0.09 mm) in comparison to the 

beam with the optimal electrode resistance and attached open circuit (case (b) gray dashdot): the 

deflection amplitude is 0.02 m at 0.02st  . This is the same output as if we add external 

damping to the beam equation with dext = 174.2 kg/(ms) corresponding to a logarithmic damping of 

0.012d   (exponential decaying envelope). When the RL -circuit is optimally tuned (black 

dashdot), amplitudes are almost vanished at 0.008st  . For the optimal choice of rl  (black 

solid), most of the amplitudes are significantly reduced at 0.0045st  . Hence, this result reveals 

the importance of the proper electrode characteristics, which will be further investigated in a future 

contribution. 

 

 

5. Conclusions 
 

In this contribution, a 1D theory for smart piezoelectric beams is presented which considers the 

presence of finite conductivity of the electrodes. Contrary to the actual state of the art, where the 

potential over the electrodes of piezoelectric layers is evenly distributed, we investigate the 

coupling of non-ideal moderately conductive electrodes with the mechanical deformation of a 

slender beam. The outcomes of our beam theory are two coupled differential equations: the 

Bernoulli-Euler equation is extended by a voltage-dependent term and is coupled to the 

Telegrapher’s equation for the electric potential. Our derived 1D equations results are compared to 

those from 3D FE analysis in ANSYS
®
. A natural frequency analysis is performed and frequency 

responses for the lateral displacement and the electrode voltage are computed. A good agreement 

with the 3D numerical results is obtained. Finally, the practical relevance of this type of electrodes 

is pointed out. It is shown that properly tuned resistive-inductive electrodes provide a huge 

potential for passive vibration control: vibrations are much more attenuated compared to optimized 

resistive electrodes or to an optimally attached resistive-inductive circuit. 
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Appendix A 

 

The material properties for the piezoelectric transducers used in our study read: 

• Density 
3kg/m ) :( 7750   

• Elasticity components in Voigt notation 
2 9

11 22/m ) : 121.00 0(N 1 ,C C    
9

12 75.40 10 ,C    

9

13 23 75.20 10 ,C C   9

33 111.00 10 ,C    
9

44 55 21.10 10 ,C C    66C    11 12 / 2C C  

922.80 10 ,   remaining components 0ijC   

• Piezoelectric components in Voigt notation 
2(C/m ) :  31 32 5.40,e e    33 15.80,e   

24 15 12.30,e e   remaining components 0ije   

• Permittivity components in Voigt notation: 11 22  01649 ,  33 01750 ,   

12

0 8.854 10 C/(Vm),    remaining components 0ij   

Based on these values, the effective constants (reduced axial stiffness 
p

11C , stress piezoelectric 

coupling constant 
p

31e  and blocked strain-free permittivity 
p

33 , see Buchberger and Schoeftner 

(2013) for their derivation). Further data for the numerical example can be found in Table 2. 

 

 
Table 2 Parameters for the numerical example 

variable (unit) Value 

3

p kg/m )(  7750  

1p (m)z  0  

2p )(mz  45.00 10  

p )(mb  34.00 10  

)(mL  24.00 10  

p 2

31 A( s/m )e  10.48  

p

33 As/ )( V/m  
82.10 10  

p 2

11 (N/m )C  
106.15 10  

0 )(N/mq  25  

 

 

The layer thickness ph , the mean distance to the x -axis m pz , the mass per unit length 
uM , 

the longitudinal stiffness 
NK , the bending stiffness 

MK , the capacity per unit length c  and the 

capacity of the electrodes pC  read 
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            (A.1) 
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