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Abstract.  In this paper a different formulation for the response of structural systems controlled by Tuned 
Liquid Column Damper (TLCD) devices is developed, based on the mathematical tool of fractional calculus. 
Although the increasing use of these devices for structural vibration control, it has been demonstrated that 
existing model may lead to inaccurate prediction of liquid motion, thus reflecting in a possible imprecise 
description of the structural response. For this reason the recently proposed fractional formulation introduced 
to model liquid displacements in TLCD devices, is here extended to deal with TLCD controlled structures 
under base excitations. As demonstrated through an extensive experimental analysis, the proposed model 
can accurately capture structural responses both in time and in frequency domain. Further, the proposed 
fractional formulation is linear, hence making identification of the involved parameters extremely easier. 
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1. Introduction 

 
Tuned Liquid Column Dampers (TLCDs) are passive vibration control devices, which dissipate 

structural vibrations through the motion of liquid inside U-shaped containers. Classical 

mathematical formulation ruling the TLCD liquid displacement (Sakai et al. 1989) is represented 

by a nonlinear differential equation, whose nonlinear term describes the head losses and damping 

effects of the liquid motion within the container. 

Due to some of their characteristics, in this decade an increasing interest in using these devices 

for structural vibration control purposes has been noticed (Ziegler 2007, Cheng et al. 2015, Lee 

and Juang 2012). Real applications of these systems can be observed in many countries and 

therefore most researches deal with the optimization of design parameters to enhance control 

performance (Yalla and Kareem 2000, Wu et al. 2012, Hochrainer and Ziegler 2006, Ziegler 2008, 

Di Matteo et al. 2014a, 2015a). 

However, just dealing with the motion of the liquid inside the TLCD, it has been recently 
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proved (Chaiviriyawong et al. 2007, Wu et al. 2009, Lee et al. 2012, Hitchcock et al. 1997) that 

existing classical nonlinear mathematical model can be inaccurate in predicting surface liquid 

displacement, unless particular devices geometry are considered. In fact, for some geometric 

TLCD configurations, experimental tests have shown remarkable discrepancies between predicted 

and experimentally recorded natural frequencies of liquid oscillation. 

Specifically, in a recent work (Di Matteo et al. 2015b) it has been pointed out that when 

sloshing motion occurs (Ibrahim 2005), together with vertical motion, the apparent natural 

frequency of liquid oscillation departs from the theoretical one. 

Classical formulation does not take into account this feature, which instead has been well 

predicted through an innovative formulation obtained introducing a fractional derivative term. In 

fact, as well assessed in (Spanos and Evangelatos 2010), a fractional dissipative term acts on both 

damping and stiffness, leading to a simultaneous alteration of both the resonant frequency and the 

degree of damping of the system. 

It has then been proved (Di Matteo et al. 2015b) that a linear fractional differential equation can 

highly capture the real behavior of the free surface liquid motion of TLCD devices, without a 

valve or an orifice inside. However this recent study, and related experimental results, was only 

focused on the TLCD device, and not on the whole structural system equipped with TLCD. 

In this regard aim of this paper is the extension of the aforementioned formulation to predict 

structural system response. Note that this proposed formulation, due to its linearity, could 

represents a valid improvement of the classical nonlinear equation of motion, since it leads to a 

much simpler parameters identification than the classical nonlinear formulation. Unknown 

parameters can, in fact, be easily determined in the frequency domain as in any linear system. 

Further, in order to fully validate the proposed formulation, experimental tests have been 

conducted in the Laboratory of Experimental Dynamic at University of Palermo. Numerical results 

obtained with the proposed fractional formulation have been compared with the corresponding 

experimental ones and numerical results computed with the classical formulation, proving the 

reliability of the fractional derivative model. 

 

 

2. Problem formulation 
 

2.1 Classical theoretical model 
 

Consider a TLCD device as shown in Fig. 1(a), driven by a base acceleration  gx t . During 

the motion, the liquid inside the vertical columns is assumed to move vertically relative to the tube 

with an average velocity  y t . From the continuity equation, the average horizontal liquid 

velocity in the horizontal duct is  vy t , where  v hA A   is the ratio between vA , the vertical 

duct cross-sectional area, and hA , the horizontal duct cross-sectional area. 

Using energy principles, the Lagrange equation yields the equation of motion of the liquid 

displacement  y t  as 

         21
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where  2eL h b   is defined as the effective liquid length, h and b are the vertical and 

horizontal liquid length respectively (see Fig. 1(a)),   is the so-called head loss coefficient and 

2
e

e

g

L
                                (2) 

is the natural frequency of liquid oscillation inside the TLCD, with g  the gravitational constant. 

Clearly, if the simple case of uniform cross section  h vA A A d s     is considered, then 

 1   and  2eL L h b   , which represents the total length of the liquid inside the TLCD. 

Note that Eq. (1) is a nonlinear differential equation, in which the nonlinear term appears to 

take into account the hydrodynamic head losses and viscous interactions which arise during the 

motion of the liquid inside the TLCD device (Hitchcock et al. 1997, Wu et al. 2009). 

Consider now a shear-type single-degree-of-freedom structure (main system) subjected to a 

base excitation, whose equation of motion can be written as 

       gM x t Cx t Kx t Mx t                        (3) 

where  x t  is the relative displacement of the main system and ,M C  and K  are the mass, 

damping and stiffness parameters of the main structure respectively. 

Let the motion of the main system be controlled through a TLCD device (see Fig. 1(b)). Then 

the corresponding classical governing equations (Sakai et al. 1989) of the aforementioned system 

are 

 

 

 
(a) TLCD device (b) TLCD controlled system 

Fig. 1 Systems corresponding to Eq. (1) and (4) 
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            (4 a,b) 

where  m AL  represents the total liquid mass in the TLCD device,  hm Ab  is the 

liquid mass of the horizontal portion only and   is the liquid density. 

Further, dividing Eq. (4(a)) by M  and Eq. (4(b)) by m , Eq. (4) can be recast in canonical 

form as 
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           (5 a,b) 

where  1 12C M   and  2

1 K M   are the damping coefficient and natural frequency of 

the main structure respectively,  m M   is the mass-ratio between the liquid and the main 

structure, and  b L  . 

 
2.2 Proposed theoretical model 
 

The vast majority of studies in literature have resorted to Eqs. (4) and (5) to model the motion 

of TLCD controlled structures under a ground excitation. Based on these relations, many research 

efforts have been then devoted to the determination of the optimal values of head loss coefficient 

  and theoretical liquid natural frequency e  for design purposes. 

Recent works have pointed out that discrepancies may arise between the theoretical natural 

frequency e  in Eq. (2) and the experimentally determined one, obviously leading to differences 

between experimental and numerical results in time domain as well. 

Specifically aforementioned discrepancies may be ascribable to several phenomena, not 

considered in the classical formulation, such as variation of the liquid velocity in case of large 

transition zones between vertical and horizontal part of the TLCD device, vortices and separation 

in the flow induced by liquid viscosity, sloshing effects of the liquid in the vertical columns (Wu et 

al. 2005, Konar et al. 2012) and sharp edge effects in case of sharp corners (Lee et al. 2012). 

As for instance shown in Wu et al. (2005), in case of broadband noise ground excitation TLCD 

free water surface may simultaneously experience vertical displacements and a sloshing motion, 

leading to deviation of the measured liquid frequency from the theoretical one. 

To take into account these phenomena, in (Di Matteo et al. 2015b) a different equation of 

motion, ruling the evolution of the free surface liquid displacements, has been introduced. 

Specifically, replacing the nonlinear damping term in Eq. (1) with a fractional derivative term, 

yields the equation of motion of the liquid displacement  y t  as 
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where C  is a constant that can be considered as a fractional damping coefficient and 

  0
C

tD y t  is a  -order left Caputo fractional derivative, defined as (Podlubny 1999) 

 
 
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d
D y t t y d

d

    
 

   
                 (7) 

being )•(Γ the Euler-Gamma function. 

Note that Eq. (6) contains only linear terms, hence it is now a linear differential equation, albeit 

of fractional order. 

Resorting to the Fourier transform property of fractional derivatives, that is 

       0
C

tD y t i y t
 F F                      (8) 

the liquid displacement Frequency Response Function (FRF)       y gH Y X    may be 

easily obtained from Eq. (6) as 
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                     (9) 

Observe that Eq. (9) can be used to identify the two unknown parameters C  and  , for 

instance through a best fitting procedure on the experimentally evaluated liquid displacement FRF. 

As soon as these two parameters are identified, Eq. (6) can be solved numerically leading to the 

liquid motion time history  y t . This procedure has been applied in (Di Matteo et al. 2015b), 

showing that Eq. (6) yields differences between numerical and experimental liquid motion time 

histories considerably smaller than those obtained through the classical equation of motion Eq. (1). 

However, in that paper attention was focused on the modeling of the liquid motion inside the 

device only. 

To extend those results for TLCD controlled systems, proceeding as in (Di Matteo et al. 2015b), 

the nonlinear damping term in Eq. (5(b)) can be replaced with a Caputo fractional derivative term, 

leading to the sought equations of motion in the form 
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          (10 a,b) 

Note that Eq. (10) is now a system of linear coupled differential equations, the second of which 

is of fractional order. 

Further, Fourier transforming Eq. (10) and taking into account Eq. (8) yields 
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Thus, the structural displacement FRF       x gH X X    can be written as 
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while the liquid vertical motion FRF       y gH Y X    is 
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where 
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It is worth stressing that, if the main structural parameters 1  and 1  are known, Eq. (12) 

can be used to identify the two unknown parameters C  and  , through a best fitting on the 

experimentally evaluated structural displacement FRF. This procedure will be clearly shown in the 

following section. 

 

 

3. Experimental investigation 
 

In order to experimentally validate the proposed linear fractional formulation in Eq. (9), a 

small-scale SDOF shear-type frame, made with two steel columns and two steel plates as 

upper-base and floor, has been built in the Laboratory of Experimental Dynamics at University of 

Palermo. Further, TLCD-controlled structures have been realized with U-shaped Plexiglas
®
 vessels 

rigidly connected to the upper plate of the main systems. 

Two configurations of TLCDs with same horizontal liquid length b , but two different cross 

sectional areas A  have been considered. Specifically, the diverse values of A  have been 

obtained varying the width d  and keeping constant the transversal dimension s  (see Fig. 1). 

Note that, in this way the ratio  w b   between the corner to corner width  2w d  and 

the horizontal liquid length b  has been varied. As in fact demonstrated in (Chaiviriyawong et al. 

122



 

 

 

 

 

 

Innovative modeling of tuned liquid column damper controlled structures 

2007),   represents an important parameter since it may be one of the principal causes of 

discrepancies between theoretical and experimental liquid natural frequencies. 

Therefore, building two different TLCD devices has allowed studying the effects of the 

variation of this ratio on the proposed formulation. Clearly, since two TLCD configurations have 

been considered, two corresponding main systems to be controlled have been built. 

In the following theoretical/experimental validation of the proposed formulation on these two 

TLCD controlled structures is presented. 

 
3.1 Main systems 
 

As detailed above, since the main system has to take into account also the dead weight of the 

TLCD vessels, two small shear-type frames with the two empty TLCD devices on the upper plate, 

have been used as two main systems Configurations (#1 and #2). In Figs. 2(a) and 2(b) pictures of 

the two main systems configurations are shown, while in Figs. 2(c) and 2(d) schematic drawings 

of the structures with the corresponding dimensions are depicted. 

 

  
(a) Picture of Configuration #1 (b) Picture of Configuration #2 

  
(c) Dimensions for Configuration #1 (d) Dimensions for Configuration #2 

Fig. 2 Experimental setup of the main systems 
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As shown in these figures, here adopted TLCD devices have rather large lateral dimensions, 

which is suitable for laboratory testing. Clearly such a design would not be proper for real 

buildings, where lateral excitations cannot be excluded, leading to unwanted lateral liquid 

sloshing. 

To experimentally identify dynamic structural parameters of the shear-type frames, the two 

SDOF systems have been rigidly connected and excited at the base through an APS 

Dynamic-Model 133 shake table (Figs. 2(a) and 2(b)). Acceleration responses, at the base and at 

the storey of the systems, have been acquired using Miniature DeltaTrone Accelerometers 

Brüel&Kjæ r - Type 4507-002B trough a NI PXIe-1082 DAQ device, equipped with a 

high-performance 16-channels NI PXIe-4497 board. Since the same device is also equipped with a 

NI PXIe-4497 board digital-to-analog (D/A) converter, it has been used to generate the output 

voltage signals for the APS shake table, thus providing the base excitation. Finally the entire 

system is controlled via a self-developed signal processing software in LabVIEW environment. In 

Fig. 3 the principal devices used for the shake table tests are presented, while Fig. 4 shows an 

outline of the experimental setup. 

 

 

Fig. 3 Acquisition devices for shake table tests 

 

 

 

Fig. 4 Experimental setup 
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Table 1 Main systems dynamic parameters 

 Configuration #1 Configuration #2 

M 2.057 kg 2.039 kg 

C 0.1535 N s m  0.1272 N s m
 

K 318.33N m  317.58 N m  

1  0.003 0.0025 

1  12.44 rad/s 12.48 rad/s 

 

 

For each configuration, 15 samples of broadband noise, in the range 0.5-15 Hz (3.14-94.25 

rad/s) with duration of 50 s and sampling frequency of 1 kHz, have been generated and used as 

ground acceleration. In this way the corresponding mean FRF, for the considered configuration, 

has been computed. 

Once obtained the sought FRFs, dynamic parameters have been identified for each configuration 

using well-known techniques (Maia and Silva 1997, Ewins 1984) such as half-power bandwidth 

method and Rational Fractional Polynomial method. All these techniques leaded to similar results 

of the systems dynamic parameters, which are reported in Table 1. 

In order to assess the reliability of the identified parameters, experimental vìs-a-vìs numerical 

mean FRFs are depicted in Fig. 5 for the two main systems configurations. 

The perfect agreement between numerical and experimental results demonstrates the accuracy 

of the identified parameters in Table 1. 
 

 

  
(a) FRF amplitude for Configuration #1 (b) FRF amplitude for Configuration #2 

Fig. 5 Comparison of structural displacement mean FRFs for the main system: experimental results (black 

solid line), numerical results (blue dot line) using Eq. (3) 
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3.2 TLCD devices 
 

Two configurations of TLCDs, with different cross sectional areas A , have been used. Further, 

vessels have been filled with water  31000kg m   reaching different vertical liquid lengths 

h , to tune each TLCD with the corresponding main system configuration. 

Figs. 6(a) and 6(b) show pictures of the two TLCD devices used for the tests, while in Figs. 

6(c)-(d) schematic drawings of the TLCDs with the corresponding geometric dimensions are 

depicted. 

The two TLCD configurations have been rigidly connected and excited at the base through an 

APS Dynamic-Model 133 shake table (Figs. 6(a) and 6(b)), while an accelerometer on the table 

itself has been used to acquire the ground acceleration. 

For each device, 20 samples of broadband noise in the range 0.5-15 Hz (3.14-94.25 rad/s), with 

a duration of 25 s and sampling frequency of 1 kHz, have been generated and used as ground 

accelerations.  

During the motion, a video camera (model Nikon D3200) has been employed to record the 

TLCD free surface vertical liquid displacements. Specifically, the camera was rigidly connected 

through a screw to the table to create a moving reference frame, integral with the TLCD devices. 

The camera has been positioned so that it focused on the left TLCD column, in order to record the 

liquid vertical displacements only (see Fig. 7 for a schematic view of the acquisition system). 

 

 

  
(a) Picture of Configuration #1 (b) Picture of Configuration #2 

  
(c) TLCD dimensions for Configuration #1 (d) TLCD dimensions for Configuration #2 

Fig. 6 TLCD devices 
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Fig. 7 Acquisition system for TLCDs tests 

 

 

Each video, for every base acceleration sample, has been recorded at 30 fps (corresponding to a 

sampling frequency of 30 Hz) and high-resolution full-frame images of 1280 720  pixels have 

been acquired and transferred to the computer. Finally, in order to determine the free water surface 

displacements for each configuration, an image processing method in MATLAB environment has 

been used. Readers are referred to (Di Matteo et al. 2014b) for a description of the implemented 

image processing procedure. 

Once base accelerations have been acquired and liquid vertical displacements time histories 

have been extracted from the videos, the mean FRFs of the two TLCDs configurations have been 

computed. The experimental natural frequency of oscillation of the liquid exp  has been directly 

identified from the corresponding FRF, while the head loss coefficient   has been determined by 

minimizing the gap between the experimentally measured liquid FRF and that obtained 

numerically solving Eq. (1), considering as input the recorded accelerations. 

 

 
Table 2 TLCD geometric parameters 

 Configuration #1 Configuration #2 

d 0.01 m 0.015 m 

A 3 21 10 m  3 21.5 10 m
 

b 0.06 m 0.06 m 

w 0.014 m 0.021 m 

  0.23 0.35 

h 0.03 m 0.027 m 

L 0.12 m 0.114 m 

m
 0.119 kg 0.182 kg 

e  12.78 rad/s 13.11 rad/s 
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Table 3 TLCD identified parameters 

 Configuration #1 Configuration #2 

exp  18.35 rad/s 16.71 rad/s 

  12 10 

  0.0287 0.045 

C  37.96 19.53 

 

 

Further, in order to evaluate the TLCD parameters of the theoretical fractional model (   and 

C ) in Eq. (6), a best fitting procedure, based on a nonlinear least square curve fitting method 

using MATLAB, has been applied to fit the experimental FRFs data with the one in Eq. (9). 

The geometric and identified TLCD parameters, for each configuration, are detailed in Tables 2 

and 3 respectively. 

In order to assess the reliability of the identified parameters, numerical-experimental 

comparison of the liquid displacements mean FRF is depicted in Fig. 8, for each TLCD 

configuration. Note that, in this picture experimental FRFs are compared with those computed 

with Eq. (1) (say classical nonlinear formulation results) using the theoretical natural frequency 

e  in Eq. (2), and those computed numerically integrating Eq. (6) (say proposed fractional 

formulation results) using as parameters those reported in Tables 2 and 3. In both cases, the 

recorded accelerations have been used as input. 

 

 

  
(a) FRF amplitude for Configuration #1 (b) FRF amplitude for Configuration #2 

Fig. 8 Comparison of liquid displacement mean FRFs: experimental results (black solid line), classical 

nonlinear formulation results (blue dot line) and proposed fractional formulation results (red dashed line) 
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The satisfactory agreement between proposed fractional model and experimental curves shows 

that the dynamical parameters have been correctly identified. On the other hand, a rather evident 

discrepancy can be observed between the classical nonlinear model FRFs and the experimental 

ones. This is due to the differences between the theoretical natural frequency e  and the 

experimentally identified one exp , as shown in Tables 2 and 3 as well. As in fact been 

demonstrated in other studies (Chaiviriyawong et al. 2007, Di Matteo et al. 2015b), this 

discrepancy may be due to the sloshing phenomenon which takes place when some particular 

geometrical configuration of the TLCD device are employed. On the other hand, as shown in (Di 

Matteo et al. 2014b), Eq. (1) leads to very good agreement among experimental and numerical 

results when the identified natural frequency exp  is used, together with the experimentally 

determined head loss coefficient  . 

 

 

4. TLCD controlled systems: experimental validation of the proposed fractional 
formulation 

 

Once main systems and TLCD devices parameters have been identified (see Tables 1-3), the 

validity of the proposed theoretical fractional model Eqs. (10) has been proved through several 

experimental tests on two TLCD controlled systems configurations, as outlined in the following. 

In this regard pictures of the two systems configurations are shown in Figs. 9(a) and 9(b) while 

in Figs. 9(c) and 9(d) their schematic drawings are reported with the corresponding dimensions. 

The two configurations have been excited at the base with the APS Dynamic-Model 133 shake 

table, through broadband noises in the range 0.5-15 Hz (3.14-94.25 rad/s) and duration of 50 s. 

Specifically 15 samples of broadband noise for each configuration have been generated, 

accelerations at the ground and at the upper plate have been recorded and the two mean FRFs have 

been computed. 

As previously done for the TLCD devices only, once the two mean FRFs of the TLCD 

controlled structures have been obtained, a best fitting procedure has been applied to identify 

TLCD parameters for the theoretical fractional model (   and C ). Therefore a nonlinear least 

square curve fitting method using MATLAB, has been applied to fit the two mean experimental 

FRFs with the corresponding theoretical ones given in Eq. (12). Quite remarkably, identified 

values of   and C  matches those obtained using the TLCD devices only and reported in 

Table 3, thus further proving the correctness of the procedure outlined in Section 3.2. 

To assess the validity of the proposed theoretical fractional model in Eqs. (10), 

numerical-experimental comparison of mean FRFs and relative structural accelerations are 

depicted in Figs. 10 and 11 for each TLCD controlled system configuration. Specifically in Figs. 

10(a) and 10(b) the recorded relative upper plate accelerations are compared with those computed 

with Eq. (5) (say classical nonlinear formulation results) and those obtained numerically 

integrating Eq. (10) (say proposed fractional formulation results) using as parameters those 

reported in Tables 1-3.  

Further in Figs. 11(a) and 11(b) the corresponding experimental and numerical mean FRFs are 

depicted. In all cases, the recorded accelerations have been used as input. It is worth noting that 

numerical classical results have been obtained with a 4th-order Runge-Kutta method, whereas 

numerical solution of Eq. (10) have been performed implementing a Newmark method through a 
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discretization of the Caputo fractional derivative (Spanos and Evangelatos 2010, Failla and 

Pirrotta 2012), as detailed in Appendix A. 

As shown for each configuration, proposed fractional model results closely match the 

corresponding experimental ones both in time and in frequency domain. In particular it is worth 

noting that in Fig. 11(b) proposed FRF (red dashed line) is almost fully coincident with the 

corresponding experimental one (black solid line). 

 

 

  
(a) Picture of Configuration #1 (b) Picture of Configuration #2 

 

 

(c) Dimensions for Configuration #1 (d) Dimensions for Configuration #2 

Fig. 9 Experimental setup of the controlled systems 
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(a) Relative Acceleration for Configuration #1 

 
(b) Relative Acceleration for Configuration #2 

Fig. 10 Comparison of relative upper plate accelerations: experimental results (black solid line), classical 

nonlinear formulation results (blue dot line) and proposed fractional formulation results (red dashed line) 

 

 

On the other hand, as may be observed, numerical classical results are rather different from 

experimental data. This is due to the discrepancies between theoretical liquid natural frequency 

e  and the experimentally identified one exp , which has been highlighted in previous section 

for the TLCD devices only. This discrepancy clearly reflects on the analysis of the TLCD 

controlled systems, leading to differences in detecting the second peak of the FRFs which is in fact 

associated to the TLCD devices. In this regard, higher differences can be observed in frequency 

domain, as shown in Fig. 11. This may represent a relevant result, since the great majority of 

studies on TLCD controlled structures deal with the optimal design parameter determination based 

on the classical nonlinear formulation, and generally working in the frequency domain. 
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(a) FRF amplitude for Configuration #1 (b) FRF amplitude for Configuration #2 

Fig. 11 Comparison of structural displacement mean FRFs: experimental results (black solid line), 

classical nonlinear formulation results (blue dot line) and proposed fractional formulation results (red 

dashed line) 

 

 

4.1 Percentage discrepancy evaluation 
 

In order to better evaluate the differences among experimental and numerical results, a properly 

percentage index has been introduced as 

   

 

2

2

f

i

f

i

t

th ex
i i

t

i t

ex
i

t

x t x t dt

x t dt



  







                      (15) 

where 
i ft t    is the observation window,  ix t  denotes the relative structural accelerations of 

the i-sample, while the apexes th and ex stand for numerical and experimentally measured, 

respectively. Clearly, as shown in Eq. (15), the greater the value of i  the higher the discrepancy. 

Therefore, values of the index in Eq. (15) for the two analyzed TLCD controlled systems 

configurations have been computed for each sample considering both classical nonlinear 

formulation results (Eq. (5)) and proposed fractional formulation results (Eq. (10)). Figs. 12(a) and 

12(b) show the trend of i  for the 15 samples of Configuration #1 and #2. 

Further, to get an overview of these results, the mean discrepancies for each model has been 

computed as reported in Table 4, where ec stands for the mean discrepancy of the classical model 

and ef stands for mean discrepancy of the proposed fractional formulation. 

As shown in Table 4, mean discrepancies obtained considering the proposed formulation are 

always smaller than those obtained from the classical one, thus proving that Eq. (10) can captures 

the real motion of TLCD controlled structures. 
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Table 4 Mean value of the discrepancies 

 Configuration #1 Configuration #2 

ec 12.9% 12.8% 

ef 3.6% 6.5% 

 

 

  
(a) 

i  for Configuration #1 (b) 
i  for Configuration #2 

Fig. 12 Percentage values of 
i  for the 15 samples: numerical classical results (blue crosses) and 

proposed fractional model (red dots) 

 

 

5. Conclusions 
 

Recently, an alternative formulation, based on fractional operators, has been proposed to model 

liquid vertical displacements in TLCD devices, notably improving the prediction of the real liquid 

surface displacements with respect to the classical nonlinear model used in literature. 

In this paper this alternative formulation has been extended to the case of TLCD controlled 

structures. Since the proposed fractional model is linear, identification of involved parameters is 

extremely simpler than the classical nonlinear one. 

Further, the proposed fractional formulation has been validated by means of experimental tests 

on two different models realized in the Laboratory of Experimental Dynamic at University of 

Palermo. The two configurations were characterized by two different values of the ratio between 

the corner to corner width and the horizontal liquid length of the TLCD device, which has been 

proven to be an important parameter causing discrepancies among theoretical and experimental 

natural frequencies. 

Numerical results obtained with the proposed fractional formulation have been compared with 

the corresponding experimental ones and numerical results computed with the classical nonlinear 

model. 

Results show that responses obtained via the proposed fractional formulation highly match 

experimental data of the two tested TLCD controlled structures configurations, both in time and 

frequency domain. On the other hand, classical nonlinear formulation may lead to inadequate 
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discrepancies among experimental and numerical responses, especially in frequency domain. This 

is a rather interesting result, since most researches in this field are focused on the determination of 

optimal design parameters based on the classical nonlinear formulation, working in frequency 

domain. 
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Appendix A. Newmark method for the solution of the proposed fractional model 
 

Since readers may not be familiar with the numerical solutions of fractional order differential 

equation, in this Appendix the numerical procedure used in this paper for the proposed fractional 

formulation Eq. (10) is outlined. Specifically, numerical results have been obtained implementing 

a Newmark method based on a Grunwald-Letnikov (GL) discretization (Podlubny 1999) of the 

Caputo fractional derivative in Eq. (7). 

In this regard, considering a quiescent system at  0t   and subdividing the time interval 

0, ft    into equally -spaced steps t , the fractional derivative Eq. (7) at time  it i t   can be 

approximated with the following GL series expansion 

   0
0

0

lim
i

C
t k i

t
k

D y t t GL y t k t 

 


                    (A.1) 

where kGL  are coefficients to be computed recursively as  

1 0

1
, 1k k

k
GL GL GL

k




 
                      (A.2) 

Therefore, substituting Eq. (A.2) in Eq. (10), the equation of motion for the proposed fractional 

model at the time instant it  can be rewritten as 

             

         

2
1 1 1

2

0

1 2 1

1

2

i i i i g i

i

i i k i e i g i

k

x t y t x t x t x t

C
x t y t t GL y t k t y t x t

L

 

     

  



       



       



          (A.3) 

Specifying Eq. (A.3) for the following time instant 1it   and subtracting from Eq. (A.3), yields 
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where     1i ix x t x t   ,     1i iy y t y t   ,     1g g i g ix x t x t    and  

     1 1

1

0
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P GL y t k t y t k t GL y 



                       (A.5) 

The term iP  can be then considered as a pseudo-force, depending on the liquid displacement 

until the time instant it . 

Rewriting Eq. (A.4) in compact matrix form, yields 
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gx    MΔZ CΔZ KΔZ= A B                   (A.6) 

where  
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In this way a classical Newmark scheme can be applied to find the numerical solution of the 

differential Eq. (A.6). Specifically, applying the constant average acceleration method the 

following relations hold true 
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in which  itZ  is the state variables vector 
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Substituting Eq. (A.13) and (A.14) into Eq. (A.6) and manipulating, yields 
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where 
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  θ M C K                          (A.17) 

Clearly, once obtained the response acceleration vector  1it Z  from Eq. (A.16), velocity and 

displacements responses can be determined through Eqs. (A.13) and (A.14). 
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