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Abstract.    In the present paper we discuss the stability and the post-buckling behaviour of thin piezoelastic 
plates. The first part of the paper is concerned with the modelling of such plates. We discuss the constitutive 
modelling, starting with the three-dimensional constitutive relations within Voigt's linearized theory of 
piezoelasticity. Assuming a plane state of stress and a linear distribution of the strains with respect to the 
thickness of the thin plate, two-dimensional constitutive relations are obtained. The specific form of the 
linear thickness distribution of the strain is first derived within a fully geometrically nonlinear formulation, 
for which a Finite Element implementation is introduced. Then, a simplified theory based on the von 
Karman and Tsien kinematic assumption and the Berger approximation is introduced for simply supported 
plates with polygonal planform. The governing equations of this theory are solved using a Galerkin 
procedure and cast into a non-dimensional formulation. In the second part of the paper we discuss the 
stability and the post-buckling behaviour for single term and multi term solutions of the non-dimensional 
equations. Finally, numerical results are presented using the Finite Element implementation for the fully 
geometrically nonlinear theory. The results from the simplified von Karman and Tsien theory are then 
verified by a comparison with the numerical solutions. 
 

Keywords:    piezoelastic plates; geometrical nonlinearity; buckling and post-buckling behaviour; nonlinear 
Finite Elements 

 
 
1. Introduction 
 

Multifunctional materials and their integration into loading bearing systems of structural 
mechanics are the basis for the development and design of so-called smart or intelligent structures. 
Such structures are prominent in mechanical, aerospace as well as civil engineering. They react 
automatically to changing environmental and loading conditions, a feature which is enabled by 
implementing active or passive control strategies into the smart structures. An introductory 
overview on these systems and structures can be found in e.g., Crawley (1994) or Tani et al. 
(1998); challenges and opportunities for smart structures are discussed in Liu et al. (2005). 
Typically, smart structures are used to reduce structural vibrations and noise radiation; we refer to 
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Nader (2008), Alkhatib and Golnaraghi (2003), Zenz et al. (2013) and Nestorović et al. (2015) in 
this later respect. Practical applications range from wind turbines, to rotor blades, to flexible robots, 
to mention only a few examples. 

In the present paper we are not interested in vibrations and vibration reduction of thin 
piezoelectric plates, but in the study of the buckling and the post-buckling behaviour of such plates. 
For that reason, we focus on the accurate, yet simple electromechanically coupled modelling of 
thin piezoelectric plates in the geometrically nonlinear regime, on the reduction of the nonlinear 
partial differential equations to nonlinear algebraic equations, on the mathematical analysis of the 
solutions of these equations and on the numerical verification of the results. 

The analysis of the buckling and the post-buckling behaviour of thin piezoelectric plates is 
strongly related to an accurate electromechanically coupled modelling, which on the other hand 
must be simple enough to enable a mathematical analysis of the nonlinear behaviour. As we 
consider only thin plates with integrated piezoelectric materials, a modelling as a 
three-dimensional continuum is neither necessary nor efficient. In such problems it is more 
efficient to use the classical theories of structural mechanics with their necessary extension to 
account for integrated piezoelectric materials, which can be used as either actuators or sensors. 
Such an extension is possible within equivalent single layer theories, see e.g., Krommer (2003), 
Batra and Vidoli (2009) or Wu and Ding (2015), layer-wise theories or also hybrid theories 
(Carrera and Boscolo 2007). Typically, a-priori assumptions concerning the thickness distribution 
of the mechanical and electrical fields are imposed in order to reduce the three-dimensional 
continuum to a two-dimensional theory of structural mechanics. In the context of geometrically 
nonlinear theories for plates and shells we refer to the rich literature, e.g., Zheng et al. (2004), Tan 
and Vu-Quoc (2005), Klinkel and Wagner (2006, 2008), Marinković et al. (2007, 2008), Lentzen 
et al. (2007) and Arefi and Rahimi (2012). In the present paper an electromechanically coupled 
equivalent single layer classical lamination theory is presented in either a fully geometrically 
nonlinear regime or within the framework of the von Karman and Tsien kinematic assumption, see 
von Karman and Tsien (1941). The later von Karman and Tsien theory is used for the mathematical 
analysis, whereas the fully geometrically nonlinear theory is used for numerically verifying the 
results of the mathematical analysis. 

Concerning the approximation of the governing nonlinear partial differential equations by 
ordinary ones, the most commonly used methods are the Rayleigh-Ritz method and the Galerkin 
procedure (Ziegler 1998) as well as the Finite Element method (Bonet and Wood 2008). In this 
paper we use the Finite Element method for the fully geometrically nonlinear theory; elements 
with 4 nodes and 12 degrees of freedom for each node are implemented using bi-cubic shape 
functions. These elements were previously used for elastic problems by Vetyukov (2014a). For the 
discretization of the von Karman and Tsien theory a problem-oriented form of the Galerkin 
procedure using solutions of a corresponding Helmholtz problem with Dirichlet boundary 
conditions as Ansatz functions results into equations that are particularly advantageous for the 
mathematical analysis. This solution technique was introduced by Irschik (1986) for the related 
analysis of the thermoelastic stability of initially curved plates. For an application to shallow shells, 
see e.g. Heuer and Ziegler (2004). As the piezoelastic problem is similar to the thermoelastic one, 
this special Galerkin procedure is used to derive a suitable set of nonlinear algebraic equations for 
quasi-static conditions in the present paper. 

Based on the analogy between the thermoelastic problem and the piezoelastic problem 
(Tauchert 1992) the analysis of the stability of solutions and the post-buckling behaviour for 
piezoelastic plates follows the one for the case of thermoelastic plates; in particular, as presented 
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by Irschik (1986). Besides this specific type of analysis, a vast amount of literature concerning 
thermoelastic stability of thin structures has been published over the last decades; e.g., Ziegler and 
Rammerstorfer (1989), Tauchert (1991), Hause et al. (1998), Heuer and Ziegler (2004) and 
Stanciulescu et al. (2012). In relation with the analysis of buckling and post-buckling of 
piezoelectric plates we exemplarily refer to Varelis and Saravanos (2002), Jadhav et al. (2012), 
Yaghoobi and Rajabi (2013), Jabbaria et al. (2013) and Panahandeh-Shahraki et al. (2014), where 
in the last of these references thermoelastic buckling of laminated piezoelectric composite plates is 
studied. 

In the framework of the solution strategy introduced by Irschik (1986), the equations of the 
buckling and post-buckling behaviour of a simply supported plate of arbitrary polygonal form are 
studied in the present paper in a unifying non-dimensional form, where the special geometry of the 
polygonal plate enters via the eigenvalues of a corresponding linear Helmholtz problem with 
Dirichlet boundary conditions. This analysis is extended to the case of electromechanically 
coupled piezoelectric plates discussing also multi term expansions in the Galerkin procedure and 
the stability of multi term solutions, as well as including transverse force loadings of the plate. 
Besides the mathematical analysis a numerical Finite Element solution of the fully geometrically 
nonlinear equations is presented and the results are used for verifying the ones obtained from the 
mathematical analysis of the von Karman and Tsien theory. 

Finally, we mention that the present paper is a substantial extension of the recently published 
paper by Krommer and Irschik (2015) with respect to: (1) The modelling part of the present paper 
considers both, the von Karman and Tsien theory and a fully geometrically nonlinear theory; the 
later was not discussed in Krommer and Irschik (2015). (2) The mathematical analysis of the 
nonlinear algebraic equations resulting from the von Karman and Tsien theory focuses on two 
cases; fixed piezoelectric actuation and varying external force loading as well as fixed external 
force loading and varying piezoelectric actuation. The second case was not studied in Krommer 
and Irschik (2015). (3) In the second case of fixed external force loading and varying piezoelectric 
actuation a transcritical bifurcation is found, which was not discussed in Krommer and Irschik 
(2015). (4) The fully geometrically nonlinear theory is numerically solved with Finite Elements 
and used to verify the results of the von Karman and Tsien theory. 

 
 

2. Constitutive modelling 
 

We start our discussion of constitutive equations by introducing an augmented free energy 
per unit volume in the reference configuration as 

   
(1) 

see e.g., Dorfmann and Ogden (2005). Here, C = FT·F

 

is the right Cauchy-Green tensor and  
the material electric field vector; the later is related to the spatial electric field vector  by 

.   is the free energy, J = detF the determinant of the deformation gradient 

tensor F and 0 the permittivity in vacuum. Then, the symmetric total second Piola-Kirchhoff 
stress tensor S, which is the sum of the second Piola-Kirchhoff stress tensor S and a second 
Piola-Kirchhoff type Maxwell stress tensor, , and the 
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material electric displacement vector  are derived from 

   
(2) 

These relations are valid for deformable dielectrics in general, and for piezoelectric materials in 
particular. However, in piezoelectric materials certain approximations can be imposed due to the 
fact that deformations are only moderately large in these materials. 

 
2.1 Voigt's linearized theory of piezoelasticity 
 
In Voigt's linearized theory of piezoelasticity the augmented free energy is approximated by 

   
(3) 

in which the transformation between the material and the spatial electric field vector and the 
transformation between volume elements have been neglected in the purely electrical part,    
and J≈1. The free energy is formulated in terms of the Green strain tensor E rather than in terms of 
the right Cauchy-Green tensor C=2E+I. Now, the free energy is expanded into a Taylor series up 
to second order terms, see e.g., Kamlah (2001); hence 

                                     
(4) 

C, e and are the fourth rank elasticity tensor, the third rank piezoelectric tensor and the second 
rank susceptibility tensor. Obviously, the derivative of the augmented term with respect to any 
deformation measure vanishes, and one can compute the total second Piola-Kirchhoff stress tensor 
S and the material electric displacement vector  as 

   
(5) 

in which the permittivity tensor =0I+ has been introduced. We also note that in classical 
piezoelectricity we do not distinguish between the total second Piola-Kirchhoff stress tensor and 
the second Piola-Kirchhoff stress tensor, SS; hence, both are symmetric. 

 
2.1.1 The plane stress case 
As we are interested in thin plates, we impose a plane stress condition on the second 

Piola-Kirchhoff stress tensor S=S2+K+K+S33KK; hence, S=S2 , in which S2  is the in-plane 
part of S  and K is the unit normal vector in thickness direction in the reference configuration. 
Moreover, owing to the thinness of the plate, the thickness component of the electric displacement 
vector is assumed to be dominant, . Likewise to the stress tensor and the 

electric displacement vector, we decompose the Green strain tensor and the electric field vector as 
follows 
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(6) 

Accounting for the specific form of the material tensors C, e and for the case of 
piezoelectric materials, which belong to the crystal class 2mm and which are polarized in the 
thickness direction, see appendix or Eringen and Maugin (1990), the conditions and  

result into  and ; hence, E=E2+E33KK and  must hold. Then the augmented 

free energy becomes 

   
(7) 

Computing the derivative of the augmented free energy with respect to E33 results into S33, 
which must be zero; hence, from S33=0 we compute E33 as a function of the plane part of the 
Green strain tensor E2  and of . Inserting this result, which we omit for the sake of brevity, into 

the augmented free energy we have 

   
(8) 

in which C, e and  are effective material tensors for plane stress, which are defined in the 
appendix. Eventually, we derive the constitutive relations for S2  and  as 

   
(9) 

which are the effective plane stress constitutive relations. 
 
2.2 Structural plate level 
 
On the structural level of thin plates we assume the plane part of the Green strain tensor as a 

linear function in the thickness direction; hence, E2=+Z. This assumption was proven 
asymptotically by Vetyukov et al. (2011) for the case of geometrically linear piezoelectric plates.  
is an in-plane strain tensor and  a curvature tensor, for which we will discuss specific expressions 
later on. As holds, the Gauss law of electrostatics simplifies to , which ensures 

a constant electric displacement  through the thickness hp of a piezoelectric layer. Therefore, 

we compute  to 

                                   
(10) 

Reinserting this result into the constitutive relation for D3 enables us to find   as 
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(11) 

Here, ܼ௠ is the thickness centre of the piezeoelectric layer and V  the voltage, which is 
typically applied between the electrodes of a piezoelectric layer; q is a charge per unit area. This 
result together with E2=+Z is inserted into the plane part of the augmented free energy finding 

 
(12) 

Now we assume the plate to be made of n perfectly bonded layers, which may be piezoelectric 
or otherwise purely elastic, and integrate over the total thickness of the plate to obtain 

 
(13) 

with the material parameters 

   
(14) 

on the structural plate level. Finally, we introduce stress tensors  and  for the thin piezoelectric 
plate according to 

                                         
(15) 

Inserting the constitutive relations for S2 given in Eq. (9) together with E3 from Eq. (11) finds 
the stress tensors as a function of  ,  and Vk. Alternatively, one can also compute the identical 
result for  and as well as for the charge per unit area qi from 

                                       
(16) 

which is straightforward using the augmented free energy from Eq. (13). The result is 

                       
(17) 
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in which we have introduced the abbreviations 

                       
(18) 

Our formulation accounts for electromechanical coupling as it includes the piezoelectric 
material parameters in the definition of the effective bending stiffness tensor . Such a theory has 
been introduced by Krommer (2003) for the case of thin plates with small deformations and 
justified by an asymptotic solution for the linearized three-dimensional theory of piezoelectricity 
by Vetyukov et al. (2011). In the present paper we consider the case of large deformations, such 
that it remains to define our strain measures   and . 
 
 
3. Geometrically nonlinear thin plates 

 
In the previous section on constitutive modelling we have introduced the plane part of the 

Green strain tensor as E2=+Z with the argument that the plate is thin. Although this was proven 
to be asymptotically correct in Vetyukov et al. (2011), we discuss this assumption in some detail 
and we must define the strain measures   and . To succeed with these two tasks, we introduce the 
position vector of a material point of the plate in the reference configuration as a function of 
coordinates q1 and q2 in a reference plane and of the distance Z from the reference plane. Hence  

 
R3(q1,q2 ,Z )  R(q1,q2 ) ZK ,                                          (19) 

and we introduce the differential operator for the reference configuration as 

 


3
 K Z.                                                      (20) 

Here, R=A=I-KK holds; A is the first metric tensor of the reference plane in the reference 
configuration, R is the position vector of points in the reference plane, and K is the unit normal 
vector of the reference plane. In the deformed configuration the position vector is 

 
r3(q1,q2 ,Z )  r(q1,q2 ) Zk.                                          (21) 

k is the unit normal vector of the deformed reference surface. Basically, we assume the distance 
from the reference surface conserved and lines normal to the reference plane to remain normal to 
the reference surface in the course of the deformation. Now we compute the deformation gradient 
tensor 

 
F  (3r3)T  (r)T  Z(k)T Kk  F2  Zb0 Kk,                    (22) 

with the plane part of the deformation gradient tensor F2=( r)T and the material second metric 
tensor b0=-(k)T of the deformed reference surface. The Green strain tensor is then 

 
E 

1

2
FT F  I   1

2
F

2
T F

2
 A  ZF

2
T b

0
 Zb

0
T F

2
 Z 2b

0
T b

0 .
 

(23) 
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Furthermore, we note that the plane part of the differential operator for the deformed 
configuration   is related to   via =F2

T· ; hence, we find 

 
b0  (k)T  (F2

T k)T  (F2
T b)T  b F2 ,                               (24) 

because the second metric tensor b is symmetric. Eventually, the Green strain tensor can be 
approximated as 

 
E 

1

2
F

2
T F

2
 A   ZF

2
T b F

2
 E

2
,
                                   

(25) 

if we assume the quadratic term in Z negligible. Now, we identify our strain measures in E2=+Z 
by comparison; the result is 

                                   
(26) 

A plate theory using these strain measures is geometrically exact within the kinematic 
assumptions that we have made above, see Vetyukov (2014) for the case of purely elastic thin 
shells. However, the mathematical analysis of the resulting equations is difficult due to the full 
geometric nonlinearity. Therefore, we will discuss the implementation of a numerical Finite 
Element scheme in the following. 

 
3.1 Finite Element implementation 
 
In general, the geometrically exact nonlinear plate theory does not allow for analytical solutions; 

therefore, we implement a Finite Element scheme using the strain measures 

                                       
(27) 

These strain measures are used in the augmented free energy 2(,,Vk), see Eq. (13), for which 
we assume the voltages Vk to be given. In case the external forces are conservative, we can 
introduce a total energy as 

                                     
(28) 

The total augmented free energy is 

                                           

(29) 

and ext is the potential energy of the external force loadings p and pz. For the Finite Element 
implementation we use elements with 4 nodes. Each node has 12 mechanical degrees of freedom, 
which are the position vector r, the base vectors in the deformed configuration ∂r and the vectors 
of mixed derivatives of the position vector ∂r, see Vetyukov (2014); ∂ denotes the partial 
derivative with respect to q,  = 1,2. The domain of an element is qത × qത, in which the local 

  (r(q1,q2 ),V k ,p, pz )    ext .
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coordinates qത have the range [-1,1]. The position vector within the j-th element is approximated 
as 

     
r j (q1,q 2 )  S i ,1(q1,q 2 )r j ,i  S i,2 (q1,q 2 )

1
r j ,i  S i,3(q1,q 2 )

2
r j ,i  S i,4 (q1,q 2 )

12
r j ,i

i1

4

 .
 

(30) 

The four bi-cubic shape functions for the node located at qത=qത= -1 are shown in Fig. 1. 
The element degrees of freedom are borrowed from the global vector of degrees of freedom U, 

which contains all mechanical degrees of freedom. The applied voltages at the electroded layers or 
patches are collected in the vector V. For all elements with electrical degrees of freedom the 
voltages are borrowed from V, which ensures the equipotential area condition at the electrodes. As 
the electric potentials are element wise constant, no approximation is needed for the voltages 
within the element. Finally, we seek for an extremum of the total energy functional 

 
    ext  Extremum,

 
(31) 

from which nonlinear algebraic equations are derived to compute equilibrium points numerically. 
 
3.2 von Karman and Tsien equations 
 
Besides the numerical solution to the fully geometrically nonlinear theory, we are also 

interested in the mathematical analysis of the studied plate problems to give a better insight into 
the nonlinear behaviour of thin piezoelectric plates. To enable the latter, the much simpler von 
Karman and Tsien theory (von Karman and Tsien 1941) is introduced in this section. In the von 
Karman and Tsien theory the displacement vector is approximated by 

u
3
(q1,q2 ,Z )  r(q1,q2 )R(q1,q2 ) Z k K   u(q1,q2 ) w(q1,q2 )K  Zw(q1,q2 ),

       
(32) 

in which u(q1,q2) is the in-plane displacement vector of material points of the reference surface and 
w(q1,q2) is the out-of-plane displacement of these points. Then, the strain measures are 
approximated by 

                               
(33) 

The balance equations and the boundary conditions of the von Karman and Tsien plate theory 
for moderately large deformation can now be easily derived from a variational principle such as 
Hamilton's principle. The result for the balance equations is 

   
(34) 

The balance equations must hold in the plane domain A0, which constitutes the reference 
surface of the thin plate. In Eq. (34)  and  are the two stress tensors we have already introduced, 
and which we will denote as the in-plane force tensor and the moment tensor in the following. p 
and pz denote the external distributed in-plane and transverse forces and P stands for the linear 
inertia. All entities are assumed as functions of the Lagrangian position vector R(q1,q2) of the  
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of  to be negligible compared to the square of the first invariant. This approximation was also 
used by Irschik (1986) for thermoelastic plates and by Heuer (1994) for thermoelastic shallow 
shells. With the Berger approximation, the augmented free energy contains the terms 

   
(37) 

Using Hamilton's principle we derive the balance equations within the assumptions we have 
made; they read 

                             
(38) 

with the so-called Berger force B 

                                                      (39) 

 is the plane Laplace operator. Taking the boundaries to be simply supported and A0 to be 
polygonal, the boundary conditions are 

 
u  0 , Dw Bw   0 and w  0.

 
(40) 

From the first balance relation B=0 we conclude that B must be constant in the domain of the 

plate. Using the boundary condition u=0, integration over the plate domain A0 finds the Berger 

force as 

 


B
 A

1

2A
0

wwdA
0

A0

  with  
1

A
0

 dA
0

A0

 .
 

(41) 

Therefore, we have reduced the von Karman and Tsien equations to a single fourth order 
nonlinear partial differential equation with corresponding boundary conditions. The bracketed term 
in the differential equation is denoted as a Marcus moment M=Dw-Bw+, see Marcus (1932), 
which allows us to write the initial-boundary-value problem as 

   
(42) 

with the boundary conditions 

 


M
 0 , w  0.

 
(43) 

We now proceed to the approximate solution of this initial-boundary-value problem. 

 

165



 
 
 
 
 
 

Michael Krommer, Yury Vetyukov and Elisabeth Staudigl 

3.3 Galerkin procedure 
 
We solve the second order problem Dw-Bw+M with the boundary condition w=0 by 

using the Galerkin procedure, see Ziegler (1998). As basis functions for the Ritz-Ansatz we use the 
orthonormal eigenfunctions of the Helmholtz eigenvalue problem with homogenous Dirichlet 
boundary conditions, which is defined within the same polygonal domain A0 as the plate; hence, 
the basis functions are computed from 

 
A

0
:W

k


k
W

k
 0 , C

0
:W

k
 0,

 
(44) 

in which k are the Helmholtz eigenvalues. The Ritz-Ansatz 

     
w(R,t)  W

k
(R)w

k
(t)

k1

n

 ,
 

(45) 

which satisfies the boundary condition w=0, is inserted into the differential equation resulting into 
an error e* 

 
e*  D 

k
W

k
w

k
(t)

k1

n

 
B

W
k
w

k
(t)

k1

n

  
M
  .

 
(46) 

We find i=1,…,n nonlinear algebraic equations from the orthogonality relations 

 
e*W

i
dA

0
A0

  0.
 

(47) 

Due to the orthonormality of the Helmholtz eigenfunctions Wk these equations are 

 
D iwi  Bwi  i  Mi ,  

(48) 

with the expansion coefficients of  and M: 

 


i
 W

i
dA

0
A0

 and 
Mi
 

M
W

i
dA

0
A0

 .
 

(49) 

Next, the Ritz-Ansatz is inserted into the definition of the Berger force from Eq. (41) finding 

 
 B 

A

2A0

 k wk
2

k1

n

  .
 

(50) 

It remains to compute the coefficients Mi from the second problem M+Pݓሷ =pz with 
homogenous Dirichlet boundary conditions M=0. Again, we use the Galerkin procedure with the 
same Ansatz-functions 

     
M (R,t)  Wk (R)Mk (t)

k1

n

 .
 

(51) 
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In this problem the error e is 

   
(52) 

and the Galerkin procedure finds 

   
(53) 

Finally, we combine the equations and find a system of nonlinear ordinary differential 
equations 

   
(54) 

 

3.3.1 Non-dimensional formulation 

We now introduce a non-dimensional formulation with the non-dimensional parameters 

2

4
3

2

0

2
2

~~=~ ,=~ ,=~= ,
2

=
~
 ,=~ ,=~

i
iiiiiii

i
i αD

ph
mp

D

h
pμ

D

h
μτ

D

h
τ

A

A

D

h
hαα

h

w
w


   

    
(55) 

which can be written as 

   
(56) 

Here, the new entities 

   
(57) 

have been introduced. The piezoelectric actuation enters by means of ߬̃ and ߤ෤௜, and the external 
force loading pz by means of ݌෤௜. 

 
 

4. Analysis and discussion 
 
In the analysis, we only consider situations, for which a voltage is applied to all piezoelectric 

actuators. Without a loss of generality, we restrict ourselves to problems with only one 
piezoelectric layer, such that only one actuation voltage V is present in the formulation. Moreover, 
we only study the static case in the present paper; hence, all ෥݉ ௜ are zero and we have the system 
of nonlinear algebraic equations 
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(58) 

 
4.1 Single term expansion for the right hand side 
 
We start assuming a single term expansion for the right hand side, ̃ߢଵ ് 0. In this case a 

possible solution is ݓ෥ଵ ് 0 and ݓ෥௞ ൌ 0 for k1, such that we have the single cubic equation 

                                                      (59) 

all the other equations i=2,…,n are identically satisfied. This equation represents a cusp 
catastrophe, see e.g., Troger and Steindl (1991). In contrast to the classical equation, in which ߬̃ଵ 
and ̃ߢଵ are independent, we are dealing with a problem, for which both of these two entities 
depend on the voltage, ߬̃ଵ ൌ ߬̃ଵሺܸሻ and ̃ߢଵ ൌ  ଵ can be decomposed into aߢ̃ ,ଵሺܸሻ. In particularߢ̃
part due to the external forces and a part resulting from the actuation; hence, we have 

                                                 
(60) 

As the first part in this decomposition depends on the voltage V, we can easily establish a 
relation between ߬̃ଵሺܸሻ and ̃ߢଵሺܸሻ. With the relation ߬̃ ൌ  ෨ఛ is a proportionalityߚ ෨ఛܸ, in whichߚ
factor, we compute ߬̃ଵ as 

                                         
(61) 

Likewise, ̃ߢ௏ଵ ൌ  ෨఑,ଵ, must hold as well. Then weߚ ෨఑,ଵܸ with another proportionality factorߚ
find the relation 

                                         
(62) 

which we insert into the cubic equation to obtain 

                                           
(63) 

In the present problem the actuation voltage produces both, an in-plane actuation and an 
actuation moment; hence, we have a different problem compared to e.g. Irschik (1986) and Heuer 
and Ziegler (2004), where only an in-plane actuation was induced due to temperature. In our case 
the problem is not symmetric. For the following analysis we use the parameters 

   
(64) 
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,෥ସݓ,෥ଵݓ) ,෥ସݓ,෥ଵݓ) ௣ଵ)-space or theߢ̃ ߬̃ଵ)-space, which intersects the curve of the equilibrium points 
of solutions computed for ݓ෥ଶ ൌ 0. At these intersection points the solution branches have a 
bifurcation point, at which the first type of solution with ݓ෥ଶ ൌ 0 bifurcates to the second type of 
solution with ݓ෥ଶ ് 0 and the solution becomes unstable; again this can be referred to unstable 
mode jumping. Hence, the two bifurcation points define the critical equilibrium points, at which 
snap buckling occurs. This behaviour has been analysed for constant ߬̃଴ in Krommer and Irschik 
(2015), but the case of a constant ̃ߢ௣ଵ is studied in the present paper for the first time. The 3D 
equilibrium charts are shown in Fig. 6. 

Stable equilibrium branches are plotted with a solid thick line, unstable ones with a solid thin 
line; the straight solid thin line interconnects the two bifurcation points. In Fig. 6(a) the case 
߬̃଴ ൌ െ2.5 is presented, for which the applied voltage is held constant, whereas the pressure is 
varied; in Fig. 6(b) the case ̃ߢ௣ଵ ൌ 0.6 is presented, for which the pressure is held constant, 
whereas the applied voltage is varied. The analysis of the double term expansion in combination 
with a triple term solution already allows us to analyse and discuss the static behaviour of the 
specific plate under consideration for both actuation and external forces. Nonetheless, the results, 
which are based on assumptions like the von Karman and Tsien kinematic hypothesis and the 
Berger approximation, must be verified by a theory not making these assumptions. Moreover, a 
general theory also enables us to study more general problems with regards to geometry and 
material. 

 
 

5. Numerical results 
 
In this section we present numerical results computed with the Finite Element implementation 

presented in section 3.1 for the fully nonlinear formulation. First, the FE implementation is 
verified against a result reported in the literature, and secondly, the results presented in section 4 
are verified with the Finite Elements. 

 
5.1 Verification of the Finite Element implementation 
 
To verify our geometrically fully nonlinear formulation and the corresponding Finite Element 

implementation, we compare our results with results reported in the literature. As an example 
problem a square plate made of 6 layers with a symmetric lamination scheme is studied; this 
problem has also been studied in Varelis and Saravanos (2002) and Klinkel and Wagner (2006). 
The top and bottom layer are made of PZT-5 and the 4 core layers are made of graphite epoxy  
(GE) with the lamination scheme (0°/90°/90°/0°). The material parameters needed for the plane 
stress assumption in our model are reported in the Appendix. The thickness of the GE layers is 
hGE=h/8 and the one of the PZT-5 layers is hPZT=h/4, with h=1mm for the total thickness of the 
plate, which has a length L=200mm. The 4 edges are simply supported and prevented from any 
in-plane displacement. An identical voltage is applied to the two piezoelectric layers, in a way that 
would not result into any deformation within a linear theory. In the nonlinear theory this 
undeformed configuration becomes unstable once the voltage reaches a critical value. In the 
absence of an imperfection a pitchfork bifurcation can be observed. First, we compute the critical 
voltage; the numerical value is presented in Tab. 3 together with the values reported by Varelis and 
Saravanos (2002) and Klinkel and Wagner (2006). 
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 In the problems studied in this paper an applied actuator voltage results into an in-pl
ane actuation and an actuation moment; hence, we have a non symmetric problem, for wh
ich we were able to find a transcritical bifurcation for a specific non zero value of the ex
ternal transverse force loading, see Fig. 2(b). For this specific transverse force loading a so
lution for the deflection of the plate exists, which is independent of the actuation. Yet, thi
s solution becomes unstable for a critical value of the actuation; at this value a transcritic
al bifurcation of the deflection occurs. 
 The stability of equilibrium solutions of a single term expansion for the deflection m
ust be judged by using at least a double term solution. In particular, we have found the i
nteresting phenomenon that for a constant transverse force loading inducing a deflection in
 the positive direction, a snap buckling to negative deflections occurs at a critical value of
 the actuation, despite the fact that the actuation increases the positive value of the deflect
ion below the critical value; see Fig.  4. 
 In order to study practical problems, multi term expansions and solutions were analys
ed. Such solutions enable to account for multi term expansions of the transverse force loa
ding as well as of the actuation. As before, snap buckling occurs due to mode jumping a
nd the correct analysis of stability requires to consider expansion terms in the solution, wh
ich would be trivial in a geometrically linear theory; see Fig. 6. 
 Finally, we have verified the results from the mathematical analysis of the von Karm
an and Tsien theory by Finite Element solutions for a fully geometrically nonlinear theory.
 Here, we found a good qualitative agreement between the results; see Figs. 8 and 9. Yet, 
the quantitative agreement was only acceptable for deflections up to the thickness of the p
late. Therefore, one must conclude that the simplified von Karman and Tsien theory shoul
d only be used to analyse and discuss the buckling and the post-buckling behaviour for de
flections with a magnitude close to the thickness of the plate. 
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Appendix 
 
For a material belonging to the crystal class 2mm with a polarization in the 3-direction 

(such as PZT-5A) the linearized three-dimensional constitutive relations can be written in 
matrix form as 
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here, the (1,2)-plane is the isotropic plane, and Q66=(Q11-Q12)/2 holds. For the plane stress 
case and for D1=0 and D2=0, we have E1=0, E2=0, 23=0 and 13=0; moreover, from 
33=0 we find the effective constitutive relation as 
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Then, the effective stiffnesses A and D, the effective Poisson ratios A and D and the 
effective actuation  and  are: 
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in which we account for k=1,...,n layers. Finally, the specific material parameters for 
PZT-5A are given in Table 4. 
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Table 4 Material parameters for PZT-5A (0=8.854×10-12AsV-1m-1) 

Elasticity moduli [109Nm-2] 
Q11 Q12 Q13 Q33 Q44 Q66 

121 75.4 75.2 111 21.1 98.2 

Piezoelectric coefficients [Cm-2] 
e31 e33 e15    

-5.46 15.8 12.32    

Permittivities 
　 11η 　　 　　 33η 　     

1730 0ε 1700 0ε     

 
 

For the example problem, which is concerned with the composite plate made of four layers of 
GE and two PZT-5 layers, the material parameters are given in Table 5. 

 
 

Table 5 Material parameters for the composite plate 

 E11/Nm-2 E22/Nm-2 　 12ν  G12/Nm-2 d31/mV-1 　 zε / 0ε

GE (0°) 132.4✕ 109 10.8✕ 109 0.24 5.6✕ 109 - - 

PZT-5 62✕ 109 62✕ 109 0.31 23.6✕ 109 -220✕ 10-12 2598 

 
 

From these parameters we compute the effective plane stress constitutive relation as 

   
(79) 

in which [C] is the square matrix of Cartesian components of the effective plane stress elasticity 
tensor C, [e] the column matrix of Cartesian components of the effective plane stress tensor e of 
piezoelectric coefficients and  is the effective plane stress permittivity. The components are 
defined as 
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