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Nonlinear modelling and analysis of thin piezoelectric plates:
Buckling and post-buckling behaviour

Michael Krommer', Yury Vetyukov?® and Elisabeth Staudigl®

Institute of Mechanics and Mechatronics, Vienna University of Technology,
Getreidemarkt 9, A-1060 Vienna, Austria

(Received September 26, 2015, Revised April 21, 2016, Accepted May 6, 2016)

Abstract. In the present paper we discuss the stability and the post-buckling behaviour of thin piezoelastic
plates. The first part of the paper is concerned with the modelling of such plates. We discuss the constitutive
modelling, starting with the three-dimensional constitutive relations within Voigt's linearized theory of
piezoelasticity. Assuming a plane state of stress and a linear distribution of the strains with respect to the
thickness of the thin plate, two-dimensional constitutive relations are obtained. The specific form of the
linear thickness distribution of the strain is first derived within a fully geometrically nonlinear formulation,
for which a Finite Element implementation is introduced. Then, a simplified theory based on the von
Karman and Tsien kinematic assumption and the Berger approximation is introduced for simply supported
plates with polygonal planform. The governing equations of this theory are solved using a Galerkin
procedure and cast into a non-dimensional formulation. In the second part of the paper we discuss the
stability and the post-buckling behaviour for single term and multi term solutions of the non-dimensional
equations. Finally, numerical results are presented using the Finite Element implementation for the fully
geometrically nonlinear theory. The results from the simplified von Karman and Tsien theory are then
verified by a comparison with the numerical solutions.

Keywords: piezoelastic plates; geometrical nonlinearity; buckling and post-buckling behaviour; nonlinear
Finite Elements

1. Introduction

Multifunctional materials and their integration into loading bearing systems of structural
mechanics are the basis for the development and design of so-called smart or intelligent structures.
Such structures are prominent in mechanical, aerospace as well as civil engineering. They react
automatically to changing environmental and loading conditions, a feature which is enabled by
implementing active or passive control strategies into the smart structures. An introductory
overview on these systems and structures can be found in e.g., Crawley (1994) or Tani et al.
(1998); challenges and opportunities for smart structures are discussed in Liu et al. (2005).
Typically, smart structures are used to reduce structural vibrations and noise radiation; we refer to
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Nader (2008), Alkhatib and Golnaraghi (2003), Zenz et al. (2013) and Nestorovi¢ et al. (2015) in
this later respect. Practical applications range from wind turbines, to rotor blades, to flexible robots,
to mention only a few examples.

In the present paper we are not interested in vibrations and vibration reduction of thin
piezoelectric plates, but in the study of the buckling and the post-buckling behaviour of such plates.
For that reason, we focus on the accurate, yet simple electromechanically coupled modelling of
thin piezoelectric plates in the geometrically nonlinear regime, on the reduction of the nonlinear
partial differential equations to nonlinear algebraic equations, on the mathematical analysis of the
solutions of these equations and on the numerical verification of the results.

The analysis of the buckling and the post-buckling behaviour of thin piezoelectric plates is
strongly related to an accurate electromechanically coupled modelling, which on the other hand
must be simple enough to enable a mathematical analysis of the nonlinear behaviour. As we
consider only thin plates with integrated piezoelectric materials, a modelling as a
three-dimensional continuum is neither necessary nor efficient. In such problems it is more
efficient to use the classical theories of structural mechanics with their necessary extension to
account for integrated piezoelectric materials, which can be used as either actuators or sensors.
Such an extension is possible within equivalent single layer theories, see e.g., Krommer (2003),
Batra and Vidoli (2009) or Wu and Ding (2015), layer-wise theories or also hybrid theories
(Carrera and Boscolo 2007). Typically, a-priori assumptions concerning the thickness distribution
of the mechanical and electrical fields are imposed in order to reduce the three-dimensional
continuum to a two-dimensional theory of structural mechanics. In the context of geometrically
nonlinear theories for plates and shells we refer to the rich literature, e.g., Zheng et al. (2004), Tan
and Vu-Quoc (2005), Klinkel and Wagner (2006, 2008), Marinkovi¢ et al. (2007, 2008), Lentzen
et al. (2007) and Arefi and Rahimi (2012). In the present paper an electromechanically coupled
equivalent single layer classical lamination theory is presented in either a fully geometrically
nonlinear regime or within the framework of the von Karman and Tsien kinematic assumption, see
von Karman and Tsien (1941). The later von Karman and Tsien theory is used for the mathematical
analysis, whereas the fully geometrically nonlinear theory is used for numerically verifying the
results of the mathematical analysis.

Concerning the approximation of the governing nonlinear partial differential equations by
ordinary ones, the most commonly used methods are the Rayleigh-Ritz method and the Galerkin
procedure (Ziegler 1998) as well as the Finite Element method (Bonet and Wood 2008). In this
paper we use the Finite Element method for the fully geometrically nonlinear theory; elements
with 4 nodes and 12 degrees of freedom for each node are implemented using bi-cubic shape
functions. These elements were previously used for elastic problems by Vetyukov (2014a). For the
discretization of the von Karman and Tsien theory a problem-oriented form of the Galerkin
procedure using solutions of a corresponding Helmholtz problem with Dirichlet boundary
conditions as Ansatz functions results into equations that are particularly advantageous for the
mathematical analysis. This solution technique was introduced by Irschik (1986) for the related
analysis of the thermoelastic stability of initially curved plates. For an application to shallow shells,
see e.g. Heuer and Ziegler (2004). As the piezoelastic problem is similar to the thermoelastic one,
this special Galerkin procedure is used to derive a suitable set of nonlinear algebraic equations for
quasi-static conditions in the present paper.

Based on the analogy between the thermoelastic problem and the piezoelastic problem
(Tauchert 1992) the analysis of the stability of solutions and the post-buckling behaviour for
piezoelastic plates follows the one for the case of thermoelastic plates; in particular, as presented
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by Irschik (1986). Besides this specific type of analysis, a vast amount of literature concerning
thermoelastic stability of thin structures has been published over the last decades; e.g., Ziegler and
Rammerstorfer (1989), Tauchert (1991), Hause et al. (1998), Heuer and Ziegler (2004) and
Stanciulescu et al. (2012). In relation with the analysis of buckling and post-buckling of
piezoelectric plates we exemplarily refer to Varelis and Saravanos (2002), Jadhav et al. (2012),
Yaghoobi and Rajabi (2013), Jabbaria ef al. (2013) and Panahandeh-Shahraki ef al. (2014), where
in the last of these references thermoelastic buckling of laminated piezoelectric composite plates is
studied.

In the framework of the solution strategy introduced by Irschik (1986), the equations of the
buckling and post-buckling behaviour of a simply supported plate of arbitrary polygonal form are
studied in the present paper in a unifying non-dimensional form, where the special geometry of the
polygonal plate enters via the eigenvalues of a corresponding linear Helmholtz problem with
Dirichlet boundary conditions. This analysis is extended to the case of electromechanically
coupled piezoelectric plates discussing also multi term expansions in the Galerkin procedure and
the stability of multi term solutions, as well as including transverse force loadings of the plate.
Besides the mathematical analysis a numerical Finite Element solution of the fully geometrically
nonlinear equations is presented and the results are used for verifying the ones obtained from the
mathematical analysis of the von Karman and Tsien theory.

Finally, we mention that the present paper is a substantial extension of the recently published
paper by Krommer and Irschik (2015) with respect to: (1) The modelling part of the present paper
considers both, the von Karman and Tsien theory and a fully geometrically nonlinear theory; the
later was not discussed in Krommer and Irschik (2015). (2) The mathematical analysis of the
nonlinear algebraic equations resulting from the von Karman and Tsien theory focuses on two
cases; fixed piezoelectric actuation and varying external force loading as well as fixed external
force loading and varying piezoelectric actuation. The second case was not studied in Krommer
and Irschik (2015). (3) In the second case of fixed external force loading and varying piezoelectric
actuation a transcritical bifurcation is found, which was not discussed in Krommer and Irschik
(2015). (4) The fully geometrically nonlinear theory is numerically solved with Finite Elements
and used to verify the results of the von Karman and Tsien theory.

2. Constitutive modelling

We start our discussion of constitutive equations by introducing an augmented free energy
Q(C,E)per unit volume in the reference configuration as

Q(C,E)= @(C,s)—%eoJ&(C” £), (1)

see e.g., Dorfmann and Ogden (2005). Here, C=F"-F is the right Cauchy-Green tensor and &
the material electric field vector; the later is related to the spatial electric field vector £ by
E=F".£. ®(C,E) is the free energy, J=detF the determinant of the deformation gradient
tensor F and & the permittivity in vacuum. Then, the symmetric total second Piola-Kirchhoff
stress tensor S, which is the sum of the second Piola-Kirchhoff stress tensor S and a second
Piola-Kirchhoff type Maxwell stress tensor, S =DE-C'—(1/2)e,J(EE--C)C™', and the
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material electric displacement vector D are derived from
S=2—, D=-——. ()

These relations are valid for deformable dielectrics in general, and for piezoelectric materials in
particular. However, in piezoelectric materials certain approximations can be imposed due to the
fact that deformations are only moderately large in these materials.

2.1 Voigt's linearized theory of piezoelasticity

In Voigt's linearized theory of piezoelasticity the augmented free energy is approximated by
1
Q(E,S)z@(E,E)—Eeog-S, 3)

in which the transformation between the material and the spatial electric field vector and the
transformation between volume elements have been neglected in the purely electrical part, £ =&
and J=1. The free energy is formulated in terms of the Green strain tensor E rather than in terms of
the right Cauchy-Green tensor C=2E+1. Now, the free energy is expanded into a Taylor series up
to second order terms, see e.g., Kamlah (2001); hence

(I)(E,S)=%E--C--E—£-e--E—%8-x-£. (4)

C, e and y are the fourth rank elasticity tensor, the third rank piezoelectric tensor and the second
rank susceptibility tensor. Obviously, the derivative of the augmented term with respect to any
deformation measure vanishes, and one can compute the total second Piola-Kirchhoff stress tensor
S and the material electric displacement vector D as

0Q 0Q
S=—=C--E-e-£, D=——=n-E+e-E, 5
oF og ©
in which the permittivity tensor 7=&I+ x has been introduced. We also note that in classical
piezoelectricity we do not distinguish between the total second Piola-Kirchhoff stress tensor and
the second Piola-Kirchhoff stress tensor, S=S; hence, both are symmetric.

2.1.1 The plane stress case

As we are interested in thin plates, we impose a plane stress condition on the second
Piola-Kirchhoff stress tensor S=S,+7K+K1+S53;KK; hence, S=S,, in which S, is the in-plane
part of S and K is the unit normal vector in thickness direction in the reference configuration.
Moreover, owing to the thinness of the plate, the thickness component of the electric displacement
vector is assumed to be dominant, D =D, +DK ~DK. Likewise to the stress tensor and the

electric displacement vector, we decompose the Green strain tensor and the electric field vector as
follows
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E=E,+yK+Ky+E KK, £=& +fK. (6)

Accounting for the specific form of the material tensors C, e and y for the case of
piezoelectric materials, which belong to the crystal class 2mm and which are polarized in the
thickness direction, see appendix or Eringen and Maugin (1990), the conditions 7=0 and D, =0

result into =0 and £ =0; hence, E=E,+E; KK and € = EK must hold. Then the augmented
free energy becomes

QE,.E.E)= %(Ez + E33KK)”C “(Ez + E33KK)_ EK-e- '(Ez + E33KK)_ %n33€353’ ™

Computing the derivative of the augmented free energy with respect to Es; results into S,
which must be zero; hence, from S;3=0 we compute E3; as a function of the plane part of the
Green strain tensor E; and of £,. Inserting this result, which we omit for the sake of brevity, into

the augmented free energy we have
1 1
S_Z(EZ,g}):EEZ‘-©~-E2—53§"E2—5§5353, ®)

in which C, e and ¢ are effective material tensors for plane stress, which are defined in the
appendix. Eventually, we derive the constitutive relations for S, and D, as

S,=-==C-E,~ef,, D=--m=e&+eE )

which are the effective plane stress constitutive relations.
2.2 Structural plate level

On the structural level of thin plates we assume the plane part of the Green strain tensor as a
linear function in the thickness direction; hence, E,=&+Zx. This assumption was proven
asymptotically by Vetyukov et al. (2011) for the case of geometrically linear piezoelectric plates. &
is an in-plane strain tensor and x a curvature tensor, for which we will discuss specific expressions
later on. As D = DK holds, the Gauss law of electrostatics simplifies to 9, D, = 0, which ensures

a constant electric displacement D, through the thickness %, of a piezoelectric layer. Therefore,

we compute D, to

ph, P

Reinserting this result into the constitutive relation for D; enables us to find &, as
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£ =

3

—+(z,-2)

P

(11)

o |l
o)

Here, Z,, is the thickness centre of the piezeoelectric layer and V' the voltage, which is
typically applied between the electrodes of a piezoelectric layer; ¢ is a charge per unit area. This
result together with E,=g+Zk is inserted into the plane part of the augmented free energy finding

Jx

V 14 1V v
K——e-€-7Z —e-K———€—.
J h ”7h 2h " h

p p p

S_)(s,x,V,Z)zle--(Q--s+s--((QZ (Z Z)

|ed
™ |Im

2
(12)

|
o ‘Im |

—K- -(@22 —(z,-2)(z,+Zz)

Now we assume the plate to be made of n perfectly bonded layers, which may be piezoelectric
or otherwise purely elastic, and integrate over the total thickness of the plate to obtain

1 1 n ) n 1 n
Q,(e.x.V)= 58-~A-~£+8--B-'K+§K~-D--K—S-~Zkak —k- Yy m'r* —EZCk(Vk)z, (13)
k=1 k=1

k=1

with the material parameters

(28)=3 ¢ (12)az, p'=e', mi=zie, &=,
o (14)
D= Z (C"Z—— dz
]

on the structural plate level. Finally, we introduce stress tensors 7 and g for the thin piezoelectric
plate according to

X

n

=Y [8daz, u=Y{[s.zaz. (15)

2
k=1 p

e

>
oS

k

Inserting the constitutive relations for S, given in Eq. (9) together with E; from Eq. (11) finds
the stress tensors as a function of &, x and V*. Alternatively, one can also compute the identical
result for z7and u as well as for the charge per unit area ¢' from

2, 2, 2,
= —= = == =, 16
Toe s B 4T T (16)

which is straightforward using the augmented free energy from Eq. (13). The result is

M

. g =cV +q] +q], (17)

I'= 1«
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in which we have introduced the abbreviations
I:zkaka H:zmka7 Qf:pi"e’ qz(:mi“K' (18)
k=1 k=1

Our formulation accounts for electromechanical coupling as it includes the piezoelectric
material parameters in the definition of the effective bending stiffness tensor I. Such a theory has
been introduced by Krommer (2003) for the case of thin plates with small deformations and
justified by an asymptotic solution for the linearized three-dimensional theory of piezoelectricity
by Vetyukov ef al. (2011). In the present paper we consider the case of large deformations, such
that it remains to define our strain measures ¢ and x.

3. Geometrically nonlinear thin plates

In the previous section on constitutive modelling we have introduced the plane part of the
Green strain tensor as E,=g+Zx with the argument that the plate is thin. Although this was proven
to be asymptotically correct in Vetyukov et al. (2011), we discuss this assumption in some detail
and we must define the strain measures ¢ and k. To succeed with these two tasks, we introduce the
position vector of a material point of the plate in the reference configuration as a function of
coordinates ¢' and ¢” in a reference plane and of the distance Z from the reference plane. Hence

12 12
R.(¢.9°.2)=R(q,q") +ZK, (19)
and we introduce the differential operator for the reference configuration as
V,=V+KoZ. (20)

Here, V R=A=I-KK holds; A is the first metric tensor of the reference plane in the reference
configuration, R is the position vector of points in the reference plane, and K is the unit normal
vector of the reference plane. In the deformed configuration the position vector is

r,(q.9",2)=r(q".q°)+ Zk. (21)

k is the unit normal vector of the deformed reference surface. Basically, we assume the distance
from the reference surface conserved and lines normal to the reference plane to remain normal to
the reference surface in the course of the deformation. Now we compute the deformation gradient
tensor

F=(V,r,)" =(Vr)" +Z(Vk)" +Kk =F, - Zb +Kk, (22)

with the plane part of the deformation gradient tensor F,=(Vr)" and the material second metric
tensor by=-(V k)T of the deformed reference surface. The Green strain tensor is then

E:%(FT-F—I)z%(FZT-F2—A—ZFZT-bO—Zbg-F2+Zzbg-bO). (23)
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Furthermore, we note that the plane part of the differential operator for the deformed
configuration V isrelatedto V via V=F,"- V; hence, we find

b, =—(Vk)" =—(F/ -VK)" =(F, -b)" =b-F,, (24)

because the second metric tensor b is symmetric. Eventually, the Green strain tensor can be
approximated as

I
EzE(FZT-FZ—A)—ZFZT-b-FzzEz, (25)

if we assume the quadratic term in Z negligible. Now, we identify our strain measures in E;=&+Z«
by comparison; the result is

1
8=5(F2T.F2_A), K=_F2T~b~F2. (26)

A plate theory using these strain measures is geometrically exact within the kinematic
assumptions that we have made above, see Vetyukov (2014) for the case of purely elastic thin
shells. However, the mathematical analysis of the resulting equations is difficult due to the full
geometric nonlinearity. Therefore, we will discuss the implementation of a numerical Finite
Element scheme in the following.

3.1 Finite Element implementation

In general, the geometrically exact nonlinear plate theory does not allow for analytical solutions;
therefore, we implement a Finite Element scheme using the strain measures

1 T T
8=5(F2 ‘F,-A), x=-F -bF, 27)
These strain measures are used in the augmented free energy Q,(&x, %), see Eq. (13), for which
we assume the voltages F* to be given. In case the external forces are conservative, we can
introduce a total energy as

2=3(r(¢",q’) V", p,p.) =2+ . (28)
The total augmented free energy is

2= [Q, (e V" JdA,, (29)

4

and X is the potential energy of the external force loadings p and p.. For the Finite Element
implementation we use elements with 4 nodes. Each node has 12 mechanical degrees of freedom,
which are the position vector r, the base vectors in the deformed configuration J,r and the vectors
of mixed derivatives of the position vector 0, zr, see Vetyukov (2014); 0, denotes the partial
derivative with respect to ¢% o=1,2. The domain of an element is g'x °, in which the local
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coordinates g“ have the range [-1,1]. The position vector within the j-th element is approximated
as

4
r'(@,q°)=2.58" (@ g )" + (g0, + (' ,g7)o,r" + §(g' 7)o, r. (30)
i=1

The four bi-cubic shape functions for the node located at g§'=g>=-1 are shown in Fig. 1.

The element degrees of freedom are borrowed from the global vector of degrees of freedom U,
which contains all mechanical degrees of freedom. The applied voltages at the electroded layers or
patches are collected in the vector V. For all elements with electrical degrees of freedom the
voltages are borrowed from V, which ensures the equipotential area condition at the electrodes. As
the electric potentials are element wise constant, no approximation is needed for the voltages
within the element. Finally, we seek for an extremum of the total energy functional

T=3°+3 - Extremum, (31)

from which nonlinear algebraic equations are derived to compute equilibrium points numerically.
3.2 von Karman and Tsien equations

Besides the numerical solution to the fully geometrically nonlinear theory, we are also
interested in the mathematical analysis of the studied plate problems to give a better insight into
the nonlinear behaviour of thin piezoelectric plates. To enable the latter, the much simpler von
Karman and Tsien theory (von Karman and Tsien 1941) is introduced in this section. In the von
Karman and Tsien theory the displacement vector is approximated by

w(q'.¢’.2)=r(q".¢")-R(g".¢)+ Z(k-K)~u(g' .¢" )+ w(q' .¢ )K-ZVw(¢".¢").  (32)

in which u(g',¢?) is the in-plane displacement vector of material points of the reference surface and
w(q',q>) is the out-of-plane displacement of these points. Then, the strain measures are
approximated by

£= %(Vu+ (V)" +VwVw), &=-VVi. (33)

The balance equations and the boundary conditions of the von Karman and Tsien plate theory
for moderately large deformation can now be easily derived from a variational principle such as
Hamilton's principle. The result for the balance equations is

V-t+p=Pii and V-V-p+V-(1-Vw)+p, = Pi. (34)

The balance equations must hold in the plane domain A,, which constitutes the reference
surface of the thin plate. In Eq. (34) 7and u are the two stress tensors we have already introduced,
and which we will denote as the in-plane force tensor and the moment tensor in the following. p
and p. denote the external distributed in-plane and transverse forces and P stands for the linear
inertia. All entities are assumed as functions of the Lagrangian position vector R(¢g',¢%) of the
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Fig. 1 Shape functions

reference surface. The boundary conditions can be written in a variational form as
(’L’-n—ﬁ)'5u= 0,((/.L'n)-n—n_1)6(Vw~n)=O,

35)

((Vou)'n+V[(,uon)~s]-s+(T~Vw)'n—(7)5w=O.

These boundary conditions must hold along the boundary curve C, of the plane domain 4. n

and s are the unit normal and tangential vector of Cy, respectively. Entities with an overbar are

prescribed forces and moments at the boundary. The constitutive relations for 7 and g have already
been derived, see Eq. (17).

3.2.1 Berger approximation

In order to further simplify our equations we apply the Berger approximation, see Berger
(1955). For that sake, we assume plates with boundaries that are prevented from any in-plane
motion, u=0, and for which the in-plane forces vanish, p=0. Then, it is accepted to assume the
in-plane inertia to be negligible. Furthermore, we consider a symmetric lamination scheme, B=0,
and every layer to be transversally isotropic with respect to the reference surface; this allows us to
write the constitutive relations for the stress tensors as

T:A..g—z=AvAAtr£+A(1—vA)s—Ag, 36)
,LL=]D~K‘—[_lIDVDAI‘I’K‘+D(1—VD)K—A,£L.

Note that A=I-KK is the first metric tensor of the reference plane in the reference
configuration. For details concerning the computation the effective actuation 7 and x and of the
plate material parameters 4, D, v, and vp, we refer to Krommer (2003); for completeness, the
formulas are also given in the Appendix. Due to the isotropic constitutive relations on the plate
level, we can decompose the augmented free energy from Eq. (13) into a membrane energy Us,, a
bending energy Uy, and a purely electrical part, Q=Us,,+Ugs+Q,. The membrane energy is a
function of the first and the second invariant of the strain measure € and of the electric field E;.
Here, the Berger approximation (Berger 1955) can be applied, which assumes the second invariant
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of & to be negligible compared to the square of the first invariant. This approximation was also
used by Irschik (1986) for thermoelastic plates and by Heuer (1994) for thermoelastic shallow
shells. With the Berger approximation, the augmented free energy contains the terms

Q, = —lic"(r/’f)2 , U, = 1 [(4(trey’ —210re) A,
2 2% (37)
U, =%J(D((trk‘)2 =2(1=v,)ll, )2t ) dA,
4

Using Hamilton's principle we derive the balance equations within the assumptions we have
made; they read

V7,=0 and A(DAW—TBW+‘I_1)+PW=p:, (3%)

with the so-called Berger force 7

T,=Atre—1. 39)

B

A is the plane Laplace operator. Taking the boundaries to be simply supported and A, to be
polygonal, the boundary conditions are

u=0, DAw-z,w+u=0 and w=0. (40)

From the first balance relation V 73=0 we conclude that 73 must be constant in the domain of the
plate. Using the boundary condition u=0, integration over the plate domain 4, finds the Berger

force as

1 _ . _ 1
TB=—AngAwdAO—T with sz.[rd/l. (41)

=%
0 4, 0 4,

Therefore, we have reduced the von Karman and Tsien equations to a single fourth order
nonlinear partial differential equation with corresponding boundary conditions. The bracketed term
in the differential equation is denoted as a Marcus moment z4,=DAw- 7w+ 1, see Marcus (1932),
which allows us to write the initial-boundary-value problem as

Al +Pw=p_ , DAw-T w+u=u,, (42)
with the boundary conditions
u, =0, w=0. (43)

We now proceed to the approximate solution of this initial-boundary-value problem.
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3.3 Galerkin procedure

We solve the second order problem DAw- zw+ u= 1y, with the boundary condition w=0 by
using the Galerkin procedure, see Ziegler (1998). As basis functions for the Ritz-Ansatz we use the
orthonormal eigenfunctions of the Helmholtz eigenvalue problem with homogenous Dirichlet
boundary conditions, which is defined within the same polygonal domain 4, as the plate; hence,
the basis functions are computed from

A AW +a W, =0, C,:W, =0, (44)

in which ¢ are the Helmholtz eigenvalues. The Ritz-Ansatz

w(R,t) = Zn: W (R)w, (1), (45)

which satisfies the boundary condition w=0, is inserted into the differential equation resulting into
an error e

e =—DZakawk(t)—TBZWka(t)—(yM—/_1). (46)
k=1 k=1
We find i=1,...,n nonlinear algebraic equations from the orthogonality relations
[ew,da,=o0. 47)

4

Due to the orthonormality of the Helmholtz eigenfunctions W these equations are
Daw +7,w = W= My (48)
with the expansion coefficients of x and 4

= ngl d4, and u, = IyMVK d4,. (49)

4, A4

0 0

Next, the Ritz-Ansatz is inserted into the definition of the Berger force from Eq. (41) finding

A & , —
T,=— ) a, W —T. 50
B 2A0 — k' Tk ( )

It remains to compute the coefficients u,; from the second problem Agy,+Pw=p, with
homogenous Dirichlet boundary conditions £4,=0. Again, we use the Galerkin procedure with the
same Ansatz-functions

1,y (RO = 3 W, (R (). (51)

k=1
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In this problem the error e is
e :_zakVVkuMk(t)-’_PZVVka(t)_pz’ (52)
k=1 k=1

and the Galerkin procedure finds

P
My ==Lir i with p,= [ pWdd, (53)
W e e I

Finally, we combine the equations and find a system of nonlinear ordinary differential
equations

P -y A< 4
;wﬁw,[(Dai—1)+g2akw]szg+gi. (54)

i 0 k=1 i

3.3.1 Non-dimensional formulation

We now introduce a non-dimensional formulation with the non-dimensional parameters

W, ~ B A - B —_ h h ph*
Wo=—"L i =ah’ = ———t=— 1l = —u., D = p., = 55
Wz h ’al al > D 2A07‘[ Drluz D&’pl Dpz’ml fDaiZ ( )
which can be written as
IO U B -
mw, +w/| T, +—) aw |=K. (56)
a,‘ k=1
Here, the new entities
| T . pta
T == l—g and K = p,~—~2,,u, (57)
Il @ ’ la;

have been introduced. The piezoelectric actuation enters by means of ¥ and ji;, and the external
force loading p. by means of p;.

4. Analysis and discussion

In the analysis, we only consider situations, for which a voltage is applied to all piezoelectric
actuators. Without a loss of generality, we restrict ourselves to problems with only one
piezoelectric layer, such that only one actuation voltage V is present in the formulation. Moreover,
we only study the static case in the present paper; hence, all 71; are zero and we have the system
of nonlinear algebraic equations
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1

- | S N
Vv,(r.+7 a, ;)=K., i=1,...,n. (58)
a.

4.1 Single term expansion for the right hand side

We start assuming a single term expansion for the right hand side, #; # 0. In this case a
possible solution is W, # 0 and W, = 0 for k=1, such that we have the single cubic equation

~3 ~ o~ ~ .
T+ T W —K, =0; (59)

all the other equations i=2,...,n are identically satisfied. This equation represents a cusp
catastrophe, see e.g., Troger and Steindl (1991). In contrast to the classical equation, in which 7;
and K, are independent, we are dealing with a problem, for which both of these two entities
depend on the voltage, T; = 7;(V) and K; = £;(V). In particular, K¥; can be decomposed into a
part due to the external forces and a part resulting from the actuation; hence, we have

£ =R, (V)+E . (60)

As the first part in this decomposition depends on the voltage V, we can easily establish a
relation between %;(V) and &, (V). With the relation ¥ = 8.V, in which /8, is a proportionality

factor, we compute ¥; as
1 #) 1, B
F=c|l-— |== Py 61)
1 o ) ! o

Likewise, Ky = ,8~,C,1V with another proportionality factor Em, must hold as well. Then we
find the relation

R, =6 (1-1% )= =K, (%), (62)
B.
which we insert into the cubic equation to obtain
W+ -k, (T)-k =0. (63)

pl

In the present problem the actuation voltage produces both, an in-plane actuation and an
actuation moment; hence, we have a different problem compared to e.g. Irschik (1986) and Heuer
and Ziegler (2004), where only an in-plane actuation was induced due to temperature. In our case
the problem is not symmetric. For the following analysis we use the parameters

@, =0.000513219, 7=3.79544 and %v1:11=—127.412. (64)
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These parameters are computed for a bimorph plate with two identical piezoelectric layers. One
is short-circuited and a voltage is applied to the other one. The dimensions of the rectangular plate
are axbxh=1 mx1.5 mx0.006 m. The numerical results for the equilibrium points are plotted
in Fig. 2(a). The thick line is an equilibrium branch for the specific external loading K, =
0.0807, which is shown in the (%, W;)-plane in Fig. 2(b) together with some neighbouring
equilibrium branches for slightly different values of Kp;. In this graph stable (solid line) and
unstable (dashed line) branches are shown; to determine the stability of equilibrium points we use
the Dirichlet stability criterion for conservative systems, see Ziegler (1998), in this paper.

We can see that in the vicinity of the bifurcation point
=-0.1850, (65)

1

w, =0.2482, l?pl =0.0807 and T
we have a transcritical bifurcation. One should however be careful concerning the stability of the
equilibrium branches, because it is well known that the stability in such problems can only be
correctly determined by considering a multi term solution rather than a single term solution, see
Ashwell (1962), Irschik (1986) and Heuer and Ziegler (2004).

4.1.1 Double term solution

In order to discuss the stability of the equilibrium branches for the single term expansion of the
right hand side, we study multi term solutions next. Hence, we have

]:xl and w,_(rﬁfz(ka;]:o, i1 (66)

One can see that only double term solutions with W, # 0, Ww; # 0, but W, =0 for k # 1,i
exist. In this case the bracketed term in the second equation must vanish

& ¥ = (6, + & ). (67)

T

1.0
0.5
R — - W
-0.5 \
“.E ! _\
10 if
I
-15 i
- : i
'. =20 it
- -5 -04 -02 00 02 04 06
(a) 3D equilibrium chart for the single term solution (b) (¥,, W, )-curve with transcritical bifurcation

Fig. 2 Equilibrium charts for the single term solution
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0.2634

I 0 -1

)

(@) (Wy, Kpq)-curves for different 7, (b) 3D Equilibrium chart for ¥; = —2.5

Fig. 3 Equilibrium charts for the double term solution for different T,

which is possible for only one specific i # 1, ifall &;T; for i > 1 are different; in this paper, we
only study such cases. In particular, we consider the case of W, # 0, because it is known from our
previous work, see Krommer and Irschik (2015), that this is the case that determines the stability
of W;. Eq. (67) with i = 2 represents an ellipse in the (W,, W,)-plane for the case @,T, < 0. In
this case Eq. (67) can be plugged into the equation for Wy; this results into

wl(fl ——Zfzjzfm +E . (68)

TR

This solution for W, with W, # 0 only exits for &,%, < 0, which is satisfied, if T, <0 or
in terms of 7; for

fl<%[1—$)<o. (70)

al

In order to compute numerical solutions, we use again the bimorph plate and note the second
Helmoltz eigenvalue &,=0.00098696; then ¥;<-0.2432 must hold for the existence of solutions
with W, # 0.

Numerical results are presented in Fig. 3. Dashed (or thin solid) lines represent unstable
branches and solid (or thick solid) lines stable ones. In Fig. 3(a) equilibrium branches are shown in
the (Wy, Kpq)-plane for different values of 7;; in particular, for 7,=(-2.5, -1, 0.2634, 1, 2.5). In
Fig. 3(b) the equilibrium branches for 7;=-2.5 are shown in the (W, W, Kp)-space.



Nonlinear modelling and analysis of thin piezoelectric plates... 171

(3]

I 0 =73 2

Wa

(@) (T1, Wy)-curves for different K,y (b) 3D Equilibrium chart for &,; = 0.6

Fig. 4 Equilibrium charts for the double term solution for different i,

From Fig. 3(a) one can see that for ¥;>0 no unstable equilibrium branches are obtained; in
contrast for 7;<0 unstable branches exist. In particular, one can see that due to the existence of
solutions with W, # 0 for 7,;<-0.2432 the single term solution for W; becomes unstable at the
critical values

R
=

=}
A

,zv*‘fmb=i[fl— Zfz] - 2%, -a,(1-7%)4, (71)

prl
1 1

see Krommer and Irschik (2015) for a derivation. At these equilibrium points a bifurcation to
equilibrium branches with W, # 0 occurs, which are unstable as well. This instability is called
snap buckling in the literature, see Heuer et al. (1993), and it occurs due to unstable mode
jumping. This phenomenon is shown in Fig. 3(b), in which the ellipse for solutions with W, # 0
can be observed. Besides the behavior for fixed 7;, we are also interested in the one for fixed Kp;.
The results for the equilibrium branches in the (74, W;)-plane for Kp;=(-1.2, -0.6, 0.6, 1.2) are
shown in Fig. 4(a). For negative K,; we have two separated equilibrium branches; one is stable
(solid lines) and one is unstable (dashed lines). This result is different from the one for the single
term solution, for which the unstable branch present in the double term solution is composed of a
stable branch and a connected unstable branch. For positive K,; we have three equilibrium
branches. Two of them with W, = 0, which are connected to each other by the third branch with
Wy, # 0; this third branch is unstable and the equilibrium points, at which the third branch
bifurcates from the other two branches, separate the stable and unstable branches for the two
branches with W, = 0. The bifurcation in this problem results again from unstable mode jumping.
Fig. 4(b) shows the equilibrium branches for K,; = 0.6 in the (W,, W5, T;)-space, in which the
three branches can be seen (thin solid lines represent unstable equilibrium points).

The behaviour for K,; > 0 is quite interesting, as the positive W;, which we have for a
positive force loading with a zero actuation, ¥,=0.264, is first increased, if the actuation is
decreased 7,<0.264; yet, at a critical value of the actuation f;, which is negative, the equilibrium
becomes unstable and a snap buckling to W; < 1 occurs. In the following we will verify this
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behavior with Finite Element results using the exact geometrically nonlinear formulation. For that
sake, we first have to discuss a problem with a multi term expansion of the right hand side in the
next section.

4.2 Double term expansion for the right hand side

In most practical problems a single term expansion of the right hand side is not sufficient. E.g.,
in case of the plate shown in Fig. 5 the piezoelectric actuation results into a right hand side, for
which all the Ky; belonging to symmetric Helmholtz eigenmodes are non zero. We study such a
case in this section. As an underlying physical plate we use the one from the previous examples,
which is the one shown in Fig. 5.

Besides the piezoelectric actuation, a constant pressure is applied, from which we also obtain
all symmetric K,; non-zero. For this plate, for which both layers are made of PZ7-54, the
stiffness and actuation parameters are given in Table 1 (the 3D material parameters can be found in
the Appendix); we note that the bottom layer is not used as an actuator, but it is assumed to be
short-circuited. With the physical dimensions axbxh=1 mx1.5 mx0.006 m, we can compute the
non-dimensional parameters needed for the analysis; these are given in Table 2.

h

|

Short-circuited piezoelectric layer
Short ted lectric I

L a J

Fig. 5 Plate geometry

Table 1 Stiffnesses and actuation in-plane force and moment for the plate

4 D /v ulv
420322 X 10°Nm’! 1328.93Nm -16.1641Nm™'v! 0.0242462NV"!

Table 2 Parameters for the double term expansion of the right hand side

i eigenvalues @; in-plane forces T; piezoelectric moments Ky; force factors Ky,
1 0.00051322 Ty -0.06539+0.2482 %, Rp1

2 0.00098696 0.1265+0.5200 %, 0 0

4 0.00177653 0.1874+0.28891, -0.006297+0.02390%, 0.02762 K p4
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Ti
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(a) T = —2.5 (b) Ry, = 0.6

Fig. 6 Triple term solution 3D equilibrium chart for the plate with a double term expansion of the right hand
side

Here, we account for 3 terms in the solution, which correspond to the (1,1), (1,2) and (1,3)
Helmholtz eigenmodes, which are the first, the second and the fourth mode; the (1,1) and the (1,3)
mode are symmetric, such that K,; # 0 and Kps # 0 hold. We use the following three

equations for the analysis.

1 k=124 2 (72)
1’~V4£f4"_~~i Z dk ~Z)_’€'V4 =’€p4
(L=
From the second equation we find the equation of an ellipsoid
aW +a,W, +a,w, =-a,7,, (73)

(74)

w4[@(fo)—@fz(fo)}fm(fo) =R,,(&,).

For either 7, fixed or Kp; fixed these two equations represent a straight line in either the
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(W1, Wy, Kp1)-space or the (Wy, Wy, T;)-space, which intersects the curve of the equilibrium points
of solutions computed for W, = 0. At these intersection points the solution branches have a
bifurcation point, at which the first type of solution with W, = 0 bifurcates to the second type of
solution with W, # 0 and the solution becomes unstable; again this can be referred to unstable
mode jumping. Hence, the two bifurcation points define the critical equilibrium points, at which
snap buckling occurs. This behaviour has been analysed for constant ¥, in Krommer and Irschik
(2015), but the case of a constant K, is studied in the present paper for the first time. The 3D
equilibrium charts are shown in Fig. 6.

Stable equilibrium branches are plotted with a solid thick line, unstable ones with a solid thin
line; the straight solid thin line interconnects the two bifurcation points. In Fig. 6(a) the case
Ty = —2.5 is presented, for which the applied voltage is held constant, whereas the pressure is
varied; in Fig. 6(b) the case K,q = 0.6 is presented, for which the pressure is held constant,
whereas the applied voltage is varied. The analysis of the double term expansion in combination
with a triple term solution already allows us to analyse and discuss the static behaviour of the
specific plate under consideration for both actuation and external forces. Nonetheless, the results,
which are based on assumptions like the von Karman and Tsien kinematic hypothesis and the
Berger approximation, must be verified by a theory not making these assumptions. Moreover, a
general theory also enables us to study more general problems with regards to geometry and
material.

5. Numerical results

In this section we present numerical results computed with the Finite Element implementation
presented in section 3.1 for the fully nonlinear formulation. First, the FE implementation is
verified against a result reported in the literature, and secondly, the results presented in section 4
are verified with the Finite Elements.

5.1 Verification of the Finite Element implementation

To verify our geometrically fully nonlinear formulation and the corresponding Finite Element
implementation, we compare our results with results reported in the literature. As an example
problem a square plate made of 6 layers with a symmetric lamination scheme is studied; this
problem has also been studied in Varelis and Saravanos (2002) and Klinkel and Wagner (2006).
The top and bottom layer are made of PZ7-5 and the 4 core layers are made of graphite epoxy
(GE) with the lamination scheme (0°/90°/90°/0°). The material parameters needed for the plane
stress assumption in our model are reported in the Appendix. The thickness of the GE layers is
hee=h/8 and the one of the PZT-5 layers is hpzr=h/4, with h=1mm for the total thickness of the
plate, which has a length L=200mm. The 4 edges are simply supported and prevented from any
in-plane displacement. An identical voltage is applied to the two piezoelectric layers, in a way that
would not result into any deformation within a linear theory. In the nonlinear theory this
undeformed configuration becomes unstable once the voltage reaches a critical value. In the
absence of an imperfection a pitchfork bifurcation can be observed. First, we compute the critical
voltage; the numerical value is presented in Tab. 3 together with the values reported by Varelis and
Saravanos (2002) and Klinkel and Wagner (2006).
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Table 3 Critical voltage
FE (8 X 8) FE (16 X 16) Varelis and Saravanos (2002)  Klinkel and Wagner (2006)
67.944V 67.943V 68.8V 70.58V

Waig / m
0.0012;

0.0010,

0.0008
— pp=0.INm™?

0.0006, — Klinkel and Wagner (2006)

0.0004

0.0002

Fig. 7 Mid-point displacement of the layered plate

The computed critical voltage V,i=67.943V corresponds very well with the results from the
literature; the deviation from the value reported in Varelis and Saravanos (2002) (-1.266%) is less
than the deviation of the one reported in Klinkel and Wagner (2006) from the one in Varelis and
Saravanos (2002) (2.59%). A converged value was already obtained with 8 x§ elements; this

corresponds to the number of elements used in Varelis and Saravanos (2002). In contrast 16 x 16
elements in the plane and 6 elements through the thickness were used in Klinkel and Wagner
(2006). We complete this example with the post-buckling behaviour; for that sake a small
imperfection in terms of a transverse force pz=po=const. is imposed into the plate. Fig. 7 shows
the computed mid-point deflection wpq for po=1 Nm?; in addition the result from Klinkel and
Wagner (2006) is shown as well. Again the results agree very well. Finally, we note that the
imperfection was imposed as a small change in the thickness of the bottom piezoelectric layer in
Klinkel and Wagner (2006).

5.2 Comparison of analytical and numerical results

To verify our analysis based on the von Karman and Tsien equation, we use the previous
example. Solutions are computed for a triple term solution with a double term expansion of the
right hand side (denoted by Present in the figures) and using the Finite Element implementation
(denoted by FE in the figures). We study two cases. First, a constant voltage is applied and the
pressure is varied; in the specific example, the voltage is either zero, for which 7,=0.264 is
obtained, or it is non-zero, for which we have T,=-0.6. The results are shown in Fig. 8.

Secondly, the pressure is held constant with either a zero pressure, K,;=0, or a non-zero one
with K,,=0.15; these results are shown in Fig. 9. From the results, we conclude that the analysis
carried out in this paper provides good results in comparison to a fully geometrically nonlinear
theory; yet, we can also see deviations for the case the deflection goes beyond the thickness of the
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plate. These deviations can be explained by the fact that the von Karman and Tsien theory is
typically valid only for moderately large deformations up to the order of the thickness of the plate
and by the fact that we have also used the Berger approximation. Nonetheless, the simplified
theory enables the mathematical analysis of thin piezoelectric plates in the geometrically nonlinear
regime, the discussion of buckling and of the post-buckling behaviour.

6. Conclusions

In the present paper three main points were addressed. First, we discussed the
electromechanically coupled modelling of thin piezoelectric plates in a geometrically nonlinear
regime. Both, a fully geometrically nonlinear theory and a simplified theory based on the von
Karman and Tsien assumption were derived. Secondly, the von Karman and Tsien theory was used
to analyse the buckling and the post-buckling behaviour of thin piezoelectric plates. Here, the
important aspect of snap buckling and mode jumping was discussed for two cases; a fixed
transverse force loading and a varying piezoelectric actuation as well as a fixed piezoelectric
actuation and a varying transverse force loading. Thirdly, the results obtained from the
mathematical analysis of the von Karman and Tsien theory were numerically verified with
solutions of the fully geometrically nonlinear theory computed with Finite Elements. We consider
the following points as the major findings of this paper

Weenter [ 1

1.5

10

0.5
— Present

A\ Kpi /1

G/l
-05 05 o/l pE -05 05

Fig. 8 Numerical results vs. analytical ones for 7,=0.264 (left) and 7,=-0.6 (right)

Weemer [ 1 Weenter [ 1

2 2

— Present

3T“'“ e FE ] = 3, 1 2‘ru;'r]

25,

Fig. 9 Numerical results vs. analytical ones for K,;=0 (left) and k,,=0.15 (right)
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e In the problems studied in this paper an applied actuator voltage results into an in-pl
ane actuation and an actuation moment; hence, we have a non symmetric problem, for wh
ich we were able to find a transcritical bifurcation for a specific non zero value of the ex
ternal transverse force loading, see Fig.2(b). For this specific transverse force loading a so
lution for the deflection of the plate exists, which is independent of the actuation. Yet, thi
s solution becomes unstable for a critical value of the actuation; at this value a transcritic
al bifurcation of the deflection occurs.

e  The stability of equilibrium solutions of a single term expansion for the deflection m
ust be judged by using at least a double term solution. In particular, we have found the i
nteresting phenomenon that for a constant transverse force loading inducing a deflection in
the positive direction, a snap buckling to negative deflections occurs at a critical value of
the actuation, despite the fact that the actuation increases the positive value of the deflect
ion below the critical value; see Fig. 4.

. In order to study practical problems, multi term expansions and solutions were analys
ed. Such solutions enable to account for multi term expansions of the transverse force loa
ding as well as of the actuation. As before, snap buckling occurs due to mode jumping a
nd the correct analysis of stability requires to consider expansion terms in the solution, wh
ich would be trivial in a geometrically linear theory; see Fig.6.

. Finally, we have verified the results from the mathematical analysis of the von Karm
an and Tsien theory by Finite Element solutions for a fully geometrically nonlinear theory.
Here, we found a good qualitative agreement between the results; see Figs.8 and 9. Yet,
the quantitative agreement was only acceptable for deflections up to the thickness of the p
late. Therefore, one must conclude that the simplified von Karman and Tsien theory shoul
d only be used to analyse and discuss the buckling and the post-buckling behaviour for de

flections with a magnitude close to the thickness of the plate.
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Appendix

For a material belonging to the crystal class 2mm with a polarization in the 3-direction
(such as PZT-5A) the linearized three-dimensional constitutive relations can be written in
matrix form as

o, 0, 9, 9, 0 0 0 0 —e, &,
o, 0, 9, 9, 0o o0 0 -e, £,
o8 0, 0, 9, 0 0 0 —e, &y
o, 6o o0 0 9, 0 0 0 -, O Y
o, =l 0 0 0o 0 Q, 0 —. 0 0 | », | (75)
o, 0O 0 O 0 9o, O 0 0 Vi
D, 0 0 O e, 0 7, O 0 E,
D, 0 0 0 ¢ 0 O 0 7, 0 E,
I D, e & e 0 0 0 0 | E, |

here, the (1,2)-plane is the isotropic plane, and Qsc=(Q11-012)/2 holds. For the plane stress
case and for D;=0 and D,=0, we have E,=0, E»=0, »3=0 and 53=0; moreover, from
033=0 we find the effective constitutive relation as

O Yo rv 0 = &
. Yv Y 0 —e <
22 2
o - 0 0 Yd-v) 0 ’ (76)
12 ) Vi2
D, e e 0 £ £
with: Y = Qn _ Q13Q13 , Yv= le _ Q13Q13 , e=e, - e}les , E=n,t 33633 ) (77)
O Oy O O

Then, the effective stiffnesses 4 and D, the effective Poisson ratios v4 and vp and the
effective actuation zand y are:

n 1 n "
A:;Lkwdz’ vAzszkkale, Z:kﬂgm’

C k (Ek)z k (78)
D:ZL‘ Y7222, - 2z,

k=1

1< ko k (ek)z k Nk kpk
=— YV Z—-———(Z -272))dZ =>7
Yy D;Lk Y2252, - 2)dz, g ; eV,

in which we account for k=1,....,n layers. Finally, the specific material parameters for
PZT-54 are given in Table 4.
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Table 4 Material parameters for PZT-54 (£=8.854x 10"*AsV'm™)

Qll le Q13 Q33 Q44 Q66
121 75.4 75.2 111 21.1 98.2

Elasticity moduli [10°Nm™]

. . . 2 €31 €33 €15
Piezoelectric coefficients [Cm™]
-5.46 15.8 12.32
M 33

Permittivities
1730g, 1700¢,

For the example problem, which is concerned with the composite plate made of four layers of
GE and two PZT-5 layers, the material parameters are given in Table 5.

Table 5 Material parameters for the composite plate

En/Nm'z E22/Nm'2 Vs G]z/Nl'n_2 d31/mV'1 o /80
GE (0°) 1324%X 10° 108X 10° 024 5.6 X 10° - -
PZT-5 62X 10° 62X 10° 0.31 23.6 X 10° -220 X 102 2598

From these parameters we compute the effective plane stress constitutive relation as

0, @, 2, O €, e €,
0yn |7 Qo @ O €y |=| e |B» Ds _|: e ¢ 0 :| €, |tEL;, (79)
0 0 0 nye Y 0 . Vi

. ) —

g e]

in which [C] is the square matrix of Cartesian components of the effective plane stress elasticity
tensor C, [e] the column matrix of Cartesian components of the effective plane stress tensor e of
piezoelectric coefficients and g is the effective plane stress permittivity. The components are
defined as

\l
1/Ey —vip/ Ey 0 ds

[Cl= |-vy/E;,  1/Ey 0 . [el=1C]"  £74 (30)





