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Abstract.  Structural damage detection (SDD) is a challenging task in the field of structural health 
monitoring (SHM). As an exploring attempt to the SDD problem, a hybrid self-adaptive 
Firefly-Nelder-Mead (SA-FNM) algorithm is proposed for the SDD problem in this study. First of all, the 
basic principle of firefly algorithm (FA) is introduced. The Nelder-Mead (NM) algorithm is incorporated 
into FA for improving the local searching ability. A new strategy for exchanging the information in the firefly 
group is introduced into the SA-FNM for reducing the computation cost. A random walk strategy for the 
best firefly and a self-adaptive control strategy of three key parameters, such as light absorption, 
randomization parameter and critical distance, are proposed for preferably balancing the exploitation and 
exploration ability of the SA-FNM. The computing performance of the SA-FNM is evaluated and compared 
with the basic FA by three benchmark functions. Secondly, the SDD problem is mathematically converted 
into a constrained optimization problem, which is then hopefully solved by the SA-FNM algorithm. A 
multi-step method is proposed for finding the minimum fitness with a big probability. In order to assess the 
accuracy and the feasibility of the proposed method, a two-storey rigid frame structure without considering 
the finite element model (FEM) error and a steel beam with considering the model error are taken examples 
for numerical simulations. Finally, a series of experimental studies on damage detection of a steel beam with 
four damage patterns are performed in laboratory. The illustrated results show that the proposed method can 
accurately identify the structural damage. Some valuable conclusions are made and related issues are 
discussed as well. 
 

Keywords:  structural damage detection (SDD); firefly algorithm; Nelder-Mead algorithm; self-adaptive; 

finite element model (FEM) 

 
 
1. Introduction 

 
Structural health monitoring (SHM) technology provides practical platform to evaluate the 

safety and durability of a structure (Ou and Li 2010, Li et al. 2012). It can serve as a tool to 

develop the methods of life-cycle performance design, evaluation, maintenance and management 

of a structure (Li et al. 2015). Structural damage detection (SDD) is one of the core techniques in 

the field of SHM and has been widespread concerned by the researchers all over the world (Farrar 

and Worden 2007). The vibration-based SDD methods are the methods which identify the 
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damages based on the dynamical characteristic and/or the dynamical responses (Ye et al. 2013). 

Lots of the vibration-based SDD methods have been proposed (Farrar et al. 2001, Yan et al. 2007) 

and used for different load conditions, such as earthquake (Li et al. 2009), wind (Wang et al. 

2014) and so on. Generally, the methods can be divided into two groups, i.e. statistics-based SDD 

methods (Fugate et al. 2001, Ye et al. 2012, Dorvash et al. 2014) and model-based SDD methods. 

The statistics-based methods are not based on structural models, they are always identify the 

structural damage only based on the statistical characters of dynamic response signals, such as 

time series-based method (Gul and Catbas 2011, Yu and Lin 2015), Hilbert-Huang transform 

method (Chen et al. 2014), higher statistical moments method (Yu and Zhu 2015, Yu and Zhu 

2016), multi-single techniques (Yi et al. 2013), etc. Another group method is usually implemented 

by finite element analysis; therefore, the identified results are based on the accuracy of structural 

finite element model (FEM).  

The model-based methods can be divided into dynamic fingerprint based methods (Cao et al. 

2014) and model updating based methods (Yu and Yin 2010). The model updating based methods 

are often converted into mathematical problem solving constrained multi-objective optimization 

(Jung et al. 2010, Wang et al. 2010). The multi-objective optimization problem can be always 

converted into a single-objective optimization problem with the priori articulation of preferences, 

such as, weighted sum method, weighted min-max method (Marler and Arora 2004), etc. When 

the structural responses are free from noise pollution and the FEM is accurate for the real structure, 

most of objective functions are equivalent. Actually, the noise pollution is inevitable, therefore, 

how to design a single-objective function or how to evaluate the single-objective function is very 

important for SDD. The mathematical model of the traditional constrained optimization methods is 

very complex and cannot be used to solve the high dimensional and complex optimization 

problems. Fortunately, some swarm intelligence (SI) optimization algorithms are adopted to solve 

the large-scale civil engineering structural optimization problems (Yu et al. 2012), such as PSO 

algorithm (Shirazi et al. 2014, Tang et al. 2013), ACO algorithm (Yu and Xu 2011), GAFSA 

algorithm (Yu and Li 2014), GA algorithm (Yi et al. 2011), MA algorithm (Yi et al. 2012), WA 

(Yi et al. 2016) algorithm, etc. But there are still some disadvantages, for example, PSO is easy to 

fall into the local extreme point and it needs too long computation time. While for both ACO and 

GAFSA, it is hard to determine the key parameters for SDD. The performances of SI algorithms 

mainly depend on the key parameters (Yang 2014). However, for the structural optimization 

problems, it is very hard to select the effective key parameters for the SI algorithms.  

Inspired by the flashing patterns and behavior of the fireflies, firefly algorithm (FA) is first 

developed by Yang and widely used (Yang 2010, Fister et al. 2013). However, the FA application 

in the SDD field seems not so much. For FA, there are two important components: exploitation 

and exploration. Exploration means that the search space is sufficiently investigated on a rough 

level, while exploitation means that the interesting areas are searched more intensively in order to 

allow for a good approximation to an optimum (Yang et al. 2015). For the classical FA, the 

exploration component is ensured by the random behavior, while the attraction behavior enhances 

the exploitation component. However, for any two fireflies, if the distance is very small, the 

attraction will be very strong, therefore the weaker one will approximately move randomly close to 

the brighter one. In other word, the weaker firefly will do exploitation behavior with poor 

efficiency approximately as the pure random search algorithm done. The balance of exploitation 

and exploration mainly depended on the key parameters of FA. Therefore, the performance of FA 

is mainly determined by the key parameters tuning and control. The methods for parameter control 

can be divided into three groups, i.e. fixed control method, random control method and 
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self-adaptive control. The self-adaptive control method means that the parameter values will vary 

according to the iterations and/or the characters of the swarm, and it has been widespread 

concerned by the researchers (Chen and Ding 2015). However, at the moment, there is no efficient 

method in general for parameter tuning and control. 

As an exploring attempt to the SDD problem, a hybrid self-adaptive Firefly-Nelder-Mead 

(SA-FNM) algorithm is proposed for the SDD problem in this study. The Nelder-Mead (NM) 

algorithm is incorporated into FA for improving the local searching ability. A new strategy for 

exchanging the information is used to reduce the computation cost of FA. Both the strategies of 

random walk and self-adaptive method are introduced to improve the performance of SA-FNM. 

After that, the SA-FNM is used to solve the SDD problem. Both the numerical simulations and 

experimental verification are performed. 

 

2. Self-adaptive firefly-nelder-mead algorithm 
 

2.1 Basic firefly algorithm 
 

Firefly algorithm is a new SI optimization algorithm inspired by nature fireflies flashing 

behavior. In FA, the fireflies abide by the following three rules: 1) all fireflies are unisex so that 

one firefly will be attracted to other fireflies regardless of their sex; 2) Attractiveness is 

proportional to their brightness, thus for any two flashing fireflies, the less brighter one will move 

towards the brighter one. The attractiveness is proportional to the brightness and they both 

decrease as their distance increases; 3) For a specific problem, the brightness of firefly is 

associated with the objective function.  

The light intensity of a firefly will decrease with the increasing distance of viewer. In addition, 

light is also absorbed by the media. Therefore, it can be defined as 

 
2

0

γrI r I e                               (1) 

where 0I  is the original light intensity, r  is the distance between any two fireflies and γ  is the 

light absorption coefficient. The attractiveness is proportional to the light intensity, which is 

defined as 

 
2

0

γrβ r β e                               (2) 

where 0β  is the attractiveness at 0r  and always set as 0 1β  . The i-th firefly is attracted to the 

j-th firefly, and the movement is formulated by 

   
2

01 (t) (t) ( 0.5)d d γr d d

i i j i dx t x t β e x x α L rand                         (3) 

where α  is the randomization parameter and always be controlled as Eq. (10). dL  is the d-th 

dimension length of the searching region, rand  is a random number generator uniformly 

distributed in [0,1] . r  is the distance between i-th firefly and j-th firefly, which is defined as the 

Cartesian distance as 

i jr  x x                               (4) 
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2.2 Strategy for improving the basic firefly algorithm 
 

2.2.1 Nelder-Mead algorithm 
In order to improve the local searching ability, the NM algorithm is introduced into combined 

with FA. The NM algorithm, introduced by Nelder and Mead in 1965, is a non-derivative 

searching method for multidimensional unconstrained minimization. According to the NM 

algorithm, the worst point of n-simplex will be replaced by a better one calculated by four basic 

conversions, i.e., reflection, expansion, contraction and shrink. In the proposed algorithm, only 

2-dimension NM algorithm and three basic conversions (reflection, expansion and contraction as 

shown in Fig. 1) are used. The basic process is proposed as follows: 

a) For any two fireflies, as shown in Fig. 2(a), if the distance satisfies NMr r and 0r  , the 

weaker ones will move as the NM algorithm done, else it will move as the basic FA done. Here 

NMr is the critical distance between FA and NM. 

b) For the NM algorithm, a random point will be created near to the better one, and its possible 

region is decided as a hyper-sphere. The center point is the better position and the radius is the 

distance between the two fireflies, as shown in Fig. 2(b). 

c) For the NM algorithm, the two fireflies and the random point are taken as the input-data for 

2-dimension NM algorithm with three basic conversions, i.e., reflection, expansion and contraction 

for one generation. If any point (created by reflection, expansion, outside-contraction or 

inside-contraction) is found better than the best point among the 3 points of a 2-simplex, the 

weaker one will move to the better one, else the weaker one will move to the random point. 

 

2.2.2 Exchange of information  
In the basic FA, one firefly will be attracted by all the better ones, therefore, the time 

complexity of FA is 
2( )O N , where N  is the number of fireflies. As a matter of fact, the 

attraction between any two fireflies is very small when the distance is large. In order to reduce the 

computation cost of SA-FNM, a new strategy of exchange information is proposed as follows:  

a) Each firefly is attracted by only one in a group.  

b) For any one firefly, if the distance to the best firefly is small than rNM and not equal to zero, 

it will be attracted by the best firefly with NM algorithm, else it will be attracted by the one with 

best attractiveness β(r). The time complexity of improved SAFA-NM is O(N). 

 

2.2.3 Random walk 
A random walk strategy is introduced to improve the behavior of the best firefly. The best 

firefly will be regard as a random walker. The random walker will move randomly step by step in 

the feasible region to find the better fitness value. The best firefly will be replaced by a position 

with a better fitness value. The process can be defined as 

   d d

r d

r

x t+1 = x t +α × L rand,

t =1,2,3, ,N


                     (5) 

where  dx t  is the d-th dimension of the position at t-th step. t , rN  are the t-th step and the 

maximum steps, respectively. rα  is the step length. dL  is the d-th dimension length of the 

searching region.  is a random generator uniformly distributed in  1,1 .  rand
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Fig. 1 Basic conversions of NM algorithm 

 

  

(a) Criterion for firefly movement (b) Possible region of random point 

Fig. 2 Criterion for firefly movement and possible region of random point in SA-FNM 

 

 

Fig. 3 Generation trends of three key parameters for a constant maximum group radius 
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2.2.4 Self-adaptive strategy 
The light intensity is absorbed by the surrounding and the information will decrease with the 

increasing distance. Therefore, the distances among the fireflies play an important role in the 

SA-FNM. In the group based SI algorithm, the group radius is always used to describe the distance 

feature of the swarm. The group radius is defined as 

2
1

1 N

i

R
N 

 
  

 
 i cx x                             (6) 

where N  is the number of fireflies; ix  is the position of i-th firefly; cx  is the swarm group 

center and always defined as 

1

1 N

i
iN 

 
  

 
cx x                                (7) 

There are three key parameters to be tuned for better performance of SA-FNM. They are light 

absorption γ , critical distance NMr  and randomization parameter α , respectively. Generally, the 

SA-FNM will do a global searching with the large γ , small NMr  and large α , otherwise the 

SA-FNM will do a local searching with small γ , large NMr  and small α . The algorithm is 

usually good at global searching during the front generations, while it has a good ability at local 

searching during the last generations. The three key parameters can be turned and controlled 

according to the maximum group radius as 

 
 

 
2

ln 0.01 0.1
, 0.1 1

12

t

G

y

y max

γ t υ
υ R

 
         

 

                    (8) 

 
4

4 10
2 , 10 0.1 1

0.1

t

G

NM r max rr t υ R υ




 
          

                   (9) 

 
410

0.9
0.9

t

G

α t
 

  
 

                           (10) 

where t , G  are the t-th generation and maximum generations, respectively. maxR  is the 

maximum group radius during the first 1t   generations. The self-adaptive strategy of  α t  is 

widely used in the basic FA. The generation trends of three key parameters are shown in Fig. 3. It 

clearly shows that both the light absorption and randomization parameter are reduced during the 

generation, while the critical distance has an opposite trend. The flowchart of SA-FNM can be 

summarized as shown in Fig. 4. 

 

2.3 Benchmark function study 

 
In order to evaluate the performance of SA-FNM, a suite of three famous benchmark functions 
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are employed as shown in Table 1. All the global minimum values are equal to zero. The 

benchmark function Sphere is single-peak function, while other benchmark functions are 

multi-peak function, which have multiple local minimum values. Both the basic FA and the 

SA-FNM are used to solve the problems. The maximum generation 200G   and the population 

size 25N  . The number of random walk 20rN   and the step length 0.1rα  . 50-time runs are 

calculated for each case. 

It can be found from Table 2 that the SA-FNM can find the minimum value for all the 

benchmark functions. Compared to the basic FA, the SA-FNM can find a much better result with 

less computation cost. Therefore, the SA-FNM can be hopefully applied to the continuous 

optimization on SDD in the following section. 

 

 

 

 

Fig. 4 Flowchart of SA-FNM 
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Table 1 Three benchmark functions 

Function Function expression 
Argument 

range 

Global 

minimum 
Landscape 

Sphere 
2 2

1( )f x,y x y    5,5  1( ) 0f x,y    

Rastrigin 
   

 

2 2

2 , 10cos 2

10cos 2 20

f x y x y πx

πy

  

 
  5,5   2 , 0f x y    

Ackley 

 

  

2 20.2 0.5( )

3

0.5 cos(2 ) cos(2 )

( , ) 20 20
x y

πx πy

f x y e

e e

 



 

 

  5,5  3( , ) 0f x y    

 
 
Table 2 Performance comparisons on FA and SA-FNM 

Function Calculated performance FA SA-FNM 

Sphere 

Best fitness value 125.352 10  1426.803 10  

Average fitness value 102.199 10  13217. 6 013   

Average CPU time 1.087 s  0.426s  

Rastrigin 

Best fitness value 103.866 10  00.000 10  

Average fitness value 25.970 10  21.990 10  

Average CPU time 0.883s  0.366s  

Ackley 

Best fitness value 62.905 10  00.000 10  

Average fitness value 53.206 10  00.000 10  

Average CPU time 1.912s  0.543s  
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3. Description of SDD problem 
 

3.1 SDD Mathematic model 
 
Generally, for a SDD problem, only the stiffness is considered to reduce while ignoring the 

change of the mass, as 

0

N

i i
i

α K K K                             (11) 

where K , 0K is the global stiffness matrix of the damaged and undamaged structure, respectively. 

iα  is the coefficient of i-th element stiffness damage, iK  is the expanded stiffness matrix of the 

i-th element in the global coordinate system. The motion equation of the damaged structure can be 

expressed as follows 

0j j jλKφ M φ                              (12) 

where 0M is the mass matrix of structure, jφ  is the j-th mode shape of structure,  
2

2j jλ πf  

and jf  is the j-th frequency of structure. Therefore,  ,
j

α α

jλ φ  can be obtained by solving Eqs. 

(11)-(12) with the damage coefficient vector of element stiffness  1 2 3, , , , Nα α α α α .  

Similar to the model updating methods, the objective functions used in most of the former 

research of SDD problem are try to minimize the difference between the test values and the 

calculated values from FEM without using the healthy information. Actually, the model updating 

problem is try to minimize the model error, therefore, the initial model error do not play an 

important role in the results. However the SDD problem is focus on the change of the real 

structure and the accuracy of the calculated FEM will affect the identified results. Therefore, it is 

better to consider the healthy information in the objective function because some of the model 

errors are contained in the healthy information. Then the SDD problem can be transformed into the 

following constrained optimization problem: 

     
1

min , ,

: 0 1, 1,2,3, ,

s
a ah t th a ah t th

i i i i i i i i
i

j

f α DF ER f f f f

subject to α j N



       

  

 φ φ φ φ
           (13) 

where s  is the number of measured modes. 
th

if  and 
th

iφ  are the i-th nature frequency and mode 

shape of the real healthy structure, respectively. 
t

if  and 
t

iφ  are the i-th nature frequency and 

mode shape of the test structure. 
αh

if  and 
αh

iφ  are the i-th nature frequency and mode shape of  

the FEM healthy state. 
α

if  and 
α

iφ  are the i-th nature frequency and mode shape of the FEM 

with damage vector α . All the mode shapes should be normalized by the same method. The 

function of  ,a ah t th

i i i iDF  φ φ φ φ  and  a ah t th

i i i iER f - f , f - f  are defined as follows: 
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 
   

2

2

2

,

a ah t th

i i i i
a ah t th

i i i i th

i

DF
   
   
 
 

φ φ φ φ
φ φ φ φ

φ
                  (14) 

 
   

2
a ah t th

i i i ia ah t th

i i i i th

i

f - f - f - f
ER f - f , f - f =

f

 
 
 
 

                  (15) 

 

3.2 Multi-step method 
 
In order to identify the structural damage more exactly, the multi-step method will be studied in 

this paper. The multi-step was proposed by Shirazi (2014). In the study, the information of healthy 

elements will be found in the previous step. A self-adaptive scheme is also used to avoid 

identifying a damaged element as a healthy one. However, the faulty judgment may be occurred 

especially for the small damage. Actually, the essence of multi-step is a reducing dimension 

method with preferences. The purpose of multi-step is to find a better point according to the 

objective function. Therefore, the final result should be taken as the one with best fitness value 

among all the step results, but not the last step result. More information of the proposed multi-step 

method is illustrated as below. 

First of all, the SA-FNM will be used to solve the SDD problem. Then the undamaged elements 

will be picked out by the threshold value ξ . This process can be expressed as 

,

i

i

i

damage, α ξ
element

undamage α ξ


 


                       (16) 

 

 

 

Fig. 5 Finite element model of two-storey rigid frame 

966



 

 

 

 

 

 

A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection 

Then the undamaged elements will be setting as known conditions for the next step. It means 

that the Eq. (13) can be rewritten as 

     
1

min , ,

0 1,
:

0,

s
a ah t th a ah t th

i i i i i i i i
i

j

j

f α DF ER f f f f

α j damaged elements
subject to

α j undamaged elements



       

  


 

 φ φ φ φ
          (17) 

The above problem can be solved by SA-FNM and this process can be redone as a next step. 

The result of the best fitness value among all the step results will be taken as the final result. 

 
 
4. Numerical Simulations on SDD 
 

4.1 SDD on two-storey rigid frame 
 

The FEM of two-storey rigid frame is shown in Fig. 5. Both the height and width at each storey are 

1.41 m and the structure is divided into 18 elements. The structure is simulated with the following 

parameters as shown in Table 3.  

The parameters of SA-FNM are set as follows: maximum generation 200G   and swarm 

population 40N  . Number of random walk 20rN   and step length 0.1rα  . The threshold 

value max( ) 5%iξ α   and iα  is the results of the front step. Two-steps are used to improve the 

identified results. The identified result is taken as the best fitness value of 5-time running results. 

Some asymmetric damage and symmetric damage cases are studied, respectively, as shown in 

Table 4. The first five modes are used to build the objective function. Only the horizontal 

freedoms of the column and the vertical freedoms of the beam are picked out for calculating. Two 

noise levels 0% and 1% are added to the mode shapes to study the anti-noise performance of 

proposed method. The frequency and mode shapes with noise pollution can be calculated as 

(1 )n Lf f N Rand                              (18) 

(1 )n LN  φ φ Rand                            (19) 

where nf , nφ  are the frequency and mode shape with noise pollution, respectively. f , φ are 

the frequency and mode shape without noise pollution, respectively. LN  is the noise level. Rand  

is a random generators uniformly distributed in  1,1 . 

 
 
Table 3 Simulation parameters of two-storey rigid frame 

 Elastic modulus Moment of inertia Cross-sectional area Density 

Column 211 102  mN  
5 41.26 10 m  

3 212. 8 09 m  3 8590 mkg  

Beam 211 102  mN  
5 42.36 10 m  

3 23.2 10 m  3 5937 mkg  
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Table 4 Four cases for simulation of two-storey rigid frame 

Case Type Damage extents @ element 

1 

asymmetric 

5%@8 

2 15%@8, 15%@17 

3 10%@8, 20%@11, 15%@17 

4 symmetric 10%@5, 10%@11 

 

 

Fig. 6 SDD results for element 8 damaged by 5% 

 

 

Fig. 7 SDD results for elements 8 and 17 damaged by 15% and 15%, respectively 

 

 

Fig. 8 SDD results for elements 8, 11 and 17 damaged by 10%, 20% and 15%, respectively 
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Fig. 9 SDD results for elements 5 and 11 damaged by 10% and 10%, respectively 

 
 

The SDD results of asymmetric damage cases are shown in Figs. 6-8 and the symmetric cases 

are shown in Fig. 9. As shown in Fig. 6, it can be seen that the SA-FNM can identify the single 

damage location and weak damage extent with better noise immunity. The damage location and 

extent can be accurately identified for no noise cases. It means that the SA-FNM can find the 

global optimal value of the objective function. Small misjudgment will be occurred at some 

elements if the noise pollution is considered. The damage extents at the misjudgment elements are 

quiet smaller than the identified damage extents at the real damage elements. The main reason for 

the issues is that the mode shapes are not sensitive to the minimal changes of the structure, 

therefore, the mode shapes component in objective function is sensitive to the noise and the 

extreme point of the objective function easily changes if the noise pollution is considered. From 

Figs. 7 and 8, the same conclusions can be made for the two and multi-damage condition. It can be 

seen from Fig. 9 that the SA-FNM can identify both the damage location and damage extents for 

symmetric damage cases, while the misjudgment ratio is larger than asymmetric damage 

conditions if the noise pollution is considered. 

 
4.2 SDD on a steel beam 
 
A steel beam with 3 meter long is shown in Fig. 10. The beam was uniformly divided into 20 

elements. The line density 
19.07920 kgρ mA    and the flexural rigidity 

5 21.53092 10 mEI N   . 

The coefficients of vertical spring are 
7 1

0 1 1.5 10k k N m    , respectively. The spring 

coefficients of torsional spring are 
4 1

01 11 1.5 10k k N rad    , respectively. 

 
 

 

Fig. 10 Finite element model of steel beam 
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Table 5 First five frequencies of steel beam 

Model 
Frequencies 

1st mode 2nd mode 3rd mode 4th mode 5th mode 

Real steel beam /rf Hz  23.7439 89.1031 190.7966 316.6420 452.9506 

Calculated FEM /cf Hz  23.7601 89.0725 190.5597 315.8576 451.3579 

Error   100%c r rf f f   0.07% -0.03% -0.12% -0.25% -0.35% 

 
 
Table 6 Four cases for steel beam SDD simulations 

Cases Type Damage extents @ element 
Noise level 

Frequency Mode shape 

1 Single damage 15%@3 
0% 0% 

0.5% 0.5% 

2 Two damage & asymmetric 15%@3, 20%@15 
0% 0% 

0.5% 0.5% 

3 Two damage & symmetric 20%@3, 20%@18 
0% 0% 

0.5% 0.5% 

4 Multi-damage 20%@3, 25%@10, 15%@15 
0% 0% 

0.5% 0.5% 

 
 

The model error was considered in this section. For the calculated FEM, the coefficient of left 

vertical spring 
7 1

0 1.45 10k N m    and the coefficient of right torsional spring 
4 1

11 1.55 10k N rad   . Comparisons on first five frequencies of steel beam are shown in Table 5. 

Four damage cases are set as shown in Table 6. In order to study the anti-noise performance of 

proposed method, small noise level is added into frequency and shape mode as well. The first five 

modes are used to build the objective function. Only the vertical freedoms of the beam are picked 

out for calculating. The parameters of SA-FNM are set as the same in section 4.1.  

The SDD results without and with model error are shown in Table 7. It can be seen that the 

SA-FNM can accurately identify the damage location and damage extent for four damage cases 

without model error. That means the SA-FNM can effectively find the global optimal value of the 

objective function. From the SDD results with model error, it can be seen that most of the 

elements detection results are not influenced by the model error at supports. Most of the damage 

extents at damaged elements are slightly small than the true ones. Therefore, the proposed 

SA-FNM method is not sensitive to the model error at supports. 
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Table 7 Comparison on damage detection results  

True damage Identified damage 

Extents @ element With model error? Correct location 
Wrong location 

 (if extent>1%) 

15%@3 
No 15%@3 - 

Yes 14.8%@3 - 

15%@3,  20%@15 
No 15%@3,  20%@15 - 

Yes 14.8%@3,  20%@15 - 

20%@3,  20%@18 
No 20%@3,  20%@18 - 

Yes 19.7%@3,  19.9%@18 1.1%@2 

20%@3,  25%@10, 

15%@15 

No 20%@3,  25%@10, 15%@15 - 

Yes 
19.8%@3,  25%@10, 

14.8%@15 
1.9%@1 

 
 

The SDD results with model error and noise pollution are shown in Figs. 11-14. From Fig. 11, 

it can be seen that the identified accuracy is reduced when the noise pollution is considered at true 

damage element. Misjudgments occur at some elements sometimes. The main reason for the 

phenomenon is that the first five modes data are not sensitive to a minimal change in the steel 

beam. Therefore, the extreme point of the objective function is easily shifted under noise pollution. 

From Figs. 12-14, the same conclusions can be made for two and multi-damage cases. Taken all 

the SDD results considered together, it can be seen that large misjudgments always occur at 

element 1 and element 20, which indicates that the SDD results on elements near to the supports 

are more sensitive to the noise. 

 
 
 

 

Fig. 11 SDD results for element 3 damaged by 15% 
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Fig. 12 SDD results for element 3 and element 15 damage by 15% and 20%, respectively 

 
 

 

Fig. 13 SDD results for elements 3 and 18 damaged by 20% and 20%, respectively 

 
 

 

Fig. 14 SDD results for elements 3, 10 and 15 damaged by 20%, 25% and 15%, respectively 

 
 
5. Experimental validations 
 

5.1 Experimental setup 
 

To verify the proposed method in laboratory, a series of experiments on a hinge supported beam were 

carried out, as shown in Fig. 15. The span of the test steel beam is 3 m. The cross section is a rectangular 

tube with 140 mm width and 60 mm height. The wall thickness is 3 mm.  

As shown in Fig. 16, a vibrator (HEV-200) together with a power amplifier and a force sensor 
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(PCB, 208C02) were mounted on the beam at 1.65 m from the left support. A periodic Chirp 

excitation vertically with a bandwidth from 0 Hz to 512 Hz is generated by LMS Test.Lab. The 

acceleration sensors (PCB, ICP 333B30) were mounted on the middle line of lower surface. Each 

complete model test contains two step runs. Eleven sensors were mounted on points 1, 3, 5, 7, 9, 

11, 13, 15, 17, 19, 21 for the first run. They were mounted on points 2, 4, 5, 6, 8, 10, 12, 14, 16, 

18, 20 for second run. The point 5 is used as a reference point for merging the two runs. The 

sampling frequency was 2048 Hz and the sampling duration is 1s for each data block. In order to 

reduce the effect of noise, the frequency response function was taken as the average of 100 times 

run and the average type is linear amplitude average. All the responses were collected by LMS 

Test.Lab and stored into the personal computer. 

 
 
 

 

Fig. 15 Experimental setup 

 
 
 

 

Fig. 16 Simple diagram of experiment 
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5.2 Model updating 

 
The initial FEM of the steel beam can be set up as the steel beam in section 4.2, as shown in 

Fig. 10. Six parameters are selected to be updated. They are steel density, elastic modulus, two 

vertical spring coefficients and two torsional spring coefficients. The objective function for model 

updating is defined as 

     
3

1

min , ,p t p t

i i i i
i

f DF ER f f


   p φ φ                     (20) 

where t
if  and t

i  are the i-th test nature frequency and mode shape, respectively. p
if and p

i  

are the i-th calculated nature frequency and mode shape, respectively. p is the parameters vector 

for updating. The parameters of SA-FNM are the same as in section 4.1. The constraint conditions 

for all the updating values are shown in Table 8. The comparisons on the first three frequencies 

from both experimental and updated FEM are shown in Table 9. The first three mode shapes of 

measured and the updated FEM are shown in Fig. 17. From Table 9 and Fig. 17, it clearly shows 

that the SA-FNM method can effectively solve the model updating problem of the steel beam. 
 
 
 

 

Fig. 17 Comparisons on first three mode shapes of steel beam 

 
 
 
Table 8 Constraint conditions for updating values 

Updating value Constraint Updating value Constraint 

Density 
3/kg m   6500, 8500  Vertical spring coefficient /N m   1 6,1 8e e  

Elastic modulus Pa   1.5 11, 2.5 11e e  Torsion spring coefficients /N rad   1 2,1 5e e  
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Table 9 Comparison on first three frequencies of steel beam 

 
Frequencies 

1st order 2nd order 3rd order 

Test Hzf t /  23.650 88.667 188.572 

Updated FEM Hzf p /  23.788 88.232 188.375 

Error   100/  ttp fff %  0.58% -0.49% -0.10% 

 
 

5.3 SDD of steel beam 

 
The updated FEM can be employed as the benchmark of health structure to simulate the 

damage cases. The structural damage can be made by reducing the cross-section of the beam as 

shown in Fig. 18. The true damage extent is estimated by the reduced percentage of beam 

stiffness. The reduced stiffness can be approximately calculated by change in the inertia moment 

as follow 

1 d
t

h

I
α

I
                                 (21) 

where tα  is the true damage extent. hI , dI are the inertia moment of healthy and damaged 

cross-section, respectively. As shown in Fig. 19, the inertia moment of healthy and damaged 

cross-section can be calculated as follows 

3 3

12
h

BH bh
I


                              (22) 

3 3 3

1 22

3
d

Be bf te
I

 
                           (23) 

where 

 

2 2

1

2

2 2

td bt
e

td bt





                            (24) 

Four damage patterns are considered in the laboratory, as shown in Table 10. The cutting 

positions were selected at 0.4 m and 2.2 m from the left end support. The true damage extents 

were calculated by Eqs. (21)-(24). The measured nature frequencies under four damage patterns 

were shown in Table 10. It shows that the first three frequencies decrease with increasing damage 

extent. All the SDD parameters for the proposed algorithm are taken as the same in section 4.1. 
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(a) Simple diagram (b) Experimental picture 

Fig. 18 Cutting mode for making damage 

 

 

Fig. 19 Cross-section used to approximately estimate true damage extent 

 
Table 10 Four damage patterns for experimental study 

Patterns Cutting depth @ position Damage extent @ Element 
Measured frequencies/Hz 

1st order 2nd order 3rd order 

1 3mm@0.4m 70.1%@3 23.506 86.869 181.350 

2 30 mm@0.4m 95.2%@3 22.654 78.822 165.046 

3 30mm@0.4m, 3mm@ 2.2m 95.2%@3,  70.1@15 22.241 74.902 161.505 

4 30mm@0.4m, 30mm@2.2m 95.2%@3,  95.2@15 19.918 66.492 155.469 

 
 

The SDD results are shown in Figs. 20-23. As shown in Fig. 20, it can be seen that the 

SA-FNM method can accurately identify the single damage location and damage extent. The 

identified damage extent at element 3 is smaller than the true damage extent. Because the true 

damage extent calculation method used here is an approximate estimation method. Some 

misjudgments are identified at the healthy elements. The damage extents at the misjudgment 

elements are quiet smaller than the identified damage extent at element 3. The main reason for the 

issues is that there are noises in the measured data. From Figs. 21-23, the some conclusions can be 

made for single and two damage patterns. Also it can be seen that all the identified damage extents 

of element 4 are bigger than 40%. It seems that the cutting gap for three cases of 30 mm depth at 

0.4 m not only affects element 3 but also element 4, which is more consistent with the real damage 

situations. Therefore, the introduction of the SA-FNM into the SDD problem is feasible and 

effective. 
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Fig. 20 SDD results for cutting 3mm@0.4m 

 

 

Fig. 21 SDD results for cutting 30mm@0.4m 

 

 

Fig. 22 SDD results for cutting 30mm@0.4m and 3mm@2.2m, respectively 

 

 

Fig. 23 SDD results for cutting 30mm@0.4m and 30mm@2.2m, respectively 
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6. Conclusions 
 

A hybrid self-adaptive Firefly-Nelder-Mead (SA-FNM) algorithm is proposed for structural 

damage detection (SDD) in this study. The basic principle of firefly algorithm (FA) is introduced. 

The Nelder-Mead (NM) algorithm is incorporated to improve the local searching ability of FA. 

Some new strategies on information exchange, random walk and self-adaptive method are then 

used to improve the performance of SA-FNM for solving the SDD problem. Combined with the 

properties of SDD problem, the multi-step method is proposed. A two-storey rigid frame structure 

without model error and a steel beam with model error are taken as examples for numerical 

simulations. Finally, a series of experimental studies on damage detection of a steel beam are 

performed in laboratory for further verifying the practicability of the proposed SA-FNM method. 

The following conclusions can be made.  

1) The performance of both the basic FA and the proposed SA-FNM are assessed using three 

test functions. The results show that both the computational accuracy and computation cost due to 

the proposed SA-FNM are better than ones by the basic FA. 

2) A two-storey rigid frame is adopted to do numerical simulations for single, two and multiple 

damages of structure. The results show that the proposed SA-FNM method can effectively identify 

damage location and damage extent. Tiny misjudgment will be occurred if the noise pollution is 

considered. 

3) A steel beam with model error is also taken as example for numerical simulation study. The 

results show that the small model error at supports will mildly affect the SDD results. The 

identified accuracy will be reduced with considering the noise pollution. The elements near to the 

end supports are more sensitive to the measured noise. 

4) To verify the proposed method in laboratory, a series of experiments on a hinge supported 

beam are carried out. It can be found that the first three frequencies will decrease with increasing 

damage extent. The results of model updating show that the SA-FNM can effectively solve a 

model updating problem of steel beam. The illustrated SDD results show that the SA-FNM can 

effectively identify both damage location and damage extent with a better noise immunity. 

Therefore, the introduction of the SA-FNM into the SDD problem is feasible and effective. 
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