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Abstract.    The classical Kalman filter (KF) provides a practical and efficient state estimation approach for 
structural identification and vibration control. However, the classical KF approach is applicable only when 
external inputs are assumed known. Over the years, some approaches based on Kalman filter with unknown 
inputs (KF-UI) have been presented. However, these approaches based solely on acceleration measurements 
are inherently unstable which leads poor tracking and so-called drifts in the estimated unknown inputs and 
structural displacement in the presence of measurement noises. Either on-line regularization schemes or post 
signal processing is required to treat the drifts in the identification results, which prohibits the real-time 
identification of joint structural state and unknown inputs. In this paper, it is aimed to extend the classical KF 
approach to circumvent the above limitation for real time joint estimation of structural states and the 
unknown inputs. Based on the scheme of the classical KF, analytical recursive solutions of an improved 
Kalman filter with unknown excitations (KF-UI) are derived and presented. Moreover, data fusion of 
partially measured displacement and acceleration responses is used to prevent in real time the so-called drifts 
in the estimated structural state vector and unknown external inputs. The effectiveness and performance of 
the proposed approach are demonstrated by some numerical examples. 
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1. Introduction 
 

The state estimation of a dynamic system in a stochastic frame is important for structural health 
monitoring and vibration control (Azam et al. 2015). In practical cases, it is impossible to measure 
all structural responses; hence a state estimation of partially observed dynamic system is essential. 
In this regard, the Kalman filter (KF), which was proposed by R. E. Kalman in the early sixties 
(Kalman 1960), provides a particularly practical and efficient state estimation algorithm with 
partial measurements of structural responses. Moreover, KF has the ability to inherently take the 
uncertainty in the model into account, which is not possible in the deterministic approaches (Naets 
et al. 2015). However, in the classical KF approach, the external input forces are assumed either 
known or broadband, so that they can be modeled as a zero mean stationary white process. In 
many cases, no measurements of the input forces are available or the broadband assumption is 
violated.  
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Over the years, some researchers have proposed various improved KF with unknown inputs to 
circumvent the above limitation of the classical KF approach, e.g., Gillijns and Moor (2007) 
derived a recursive filter with the structure of the Kalman filter for joint input and state 
identification using linear minimum-variance unbiased estimation for optimal control applications; 
Pan et al. (2010) also derived a Kalman filter with unknown inputs approach by the weighted 
least-squares estimation method. The least-squares estimators for states and unknown inputs are 
proven inherently optimal in the minimum-variance and unbiased sense. Wu et al. (2009) 
employed the Kalman filter to establish a regression model between the residual innovation and 
the input excitation. Based on the regression model, a recursive least-squares estimator is proposed 
to identify the input excitation forces. Lin et al. (Lin et al. 2010, Ma et al. 2003) also studied input 
force estimation of linear and nonlinear structural systems based on the Kalman filter (KF) with a 
recursive estimator, in which the KF generates the residual innovation sequences and the estimator 
uses a least-squares algorithm to evaluate the time histories of the exciting forces; Lourens et al. 
(2012) developed an augmented Kalman filter (AFK) for force identification in structural 
dynamics, in which the unknown forces are included in the state vector and estimated in 
conjunction with the states. Ding et al. (2013) presented a discrete force identification method 
based on average acceleration discrete algorithm. The method is formulated in state space and the 
external excitation acting on a structure is estimated with regularization method; Liu et al. (2014) 
transferred the implicit Newmark- algorithm to an explicit form in the inverse analysis of dynamic 
force identification with better performance; Wang et al. (2015) developed a novel method for 
force identification based on the Galerkin weak formulation in which the conventional implicit 
Newmark method for the forward dynamic analysis was transformed into an equivalent explicit 
form for more accurate force identification. The authors (Lei et al. 2012, 2014, 2015) also 
investigated the identification of structures as well as the unknown external excitations. However, 
many of previous approaches are not based on the direct extension of the classical KF and the 
derivations of the analytical solutions are quite complex (Gillijns and Moor 2007; Pan et al. 2010). 
Moreover, it has been demonstrated that most previous KF-UI approaches based solely on 
acceleration measurements are inherently unstable which leads poor tracking and so-called drifts 
in the estimated unknown external inputs and structural displacements. These drifts are caused by 
acceleration’s insensitivity to any quasi-static component in the inputs (Azam et al. 2015). 
Although regularization approaches (Mao et al. 2010, Liu et al. 2015, Wang and Xie 2015, Sun et 
al. 2015) or post-signal processing schemes (Lei et al. 2012, 2014, 2015) can be used to treat the 
drift in the identified results, these treatments prohibits the on-line and real-time identification of 
coupled structural state and unknown inputs. Naets et al. (2015) introduced the addition of 
dummy-measurements on a position level to circumvent the unreliable identification results. Azam 
et al. (2015) proposed a dual Kalman filter approach, in which a fictitious process equation serving 
for calibration of the input force is introduced. However, the selections of proper 
dummy-measurements and the fine-tuning the regularization parameters in fictitious process are 
quite subjective. 

In this paper, it is aimed to extend the classical KF approach to circumvent the limitation of the 
classical KF and the drawbacks of previous KF-UI based approaches for real time estimation of 
structural states and unknown inputs. Based on the scheme of the classical KF, an improved 
Kalman filter with unknown excitations (KF-UI) is derived. Since acceleration and displacement 
measurements contains high and low frequencies vibration characteristics respectively, data fusion 
of measured acceleration and displacement can make full use of these two types of measured 
signals (Jiang et al. 2011). Therefore, data fusion of partially measured displacement and 
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acceleration responses is used to avoid in real time the so-called drifts in the identified state and 
unknown external inputs in the presence of measurement noises. Some numerical examples are 
used to demonstrate the effectiveness and versatilities of the proposed approach. 

 
 

2. Brief review of the classical KF 
 

The derivation of the improved Kalman filter with unknown excitations (KF-UI) is based on 
the scheme of the classical KF. Therefore, the classical KF is briefly reviewed in this section. 

The equation of motion for a linear structural system can be expressed in the discrete form in 
state space as 

1 +k k k k k k  X X f w                              (1) 

where Xk is the state vector at time t k t   with t  being the sampling time step. Ak is the state 
transformation matrix, kf is the external excitation vector with influence matrix Bk, and wk is the 
model noise (uncertainty) with zero mean and a covariance matrix Qk.  

In practice, only partial structural responses can be measured. The discrete form of the 
observation equation can be expressed as 

      Yk=CkXk+Dkfk+k                                       (2) 

where Yk is the measured response vector, Ck and Dk are two known measurement matrices 
associated with structural state and external force vectors, respectively, and kv is the measurement 
noise vector, which is assumed a Gaussian white noise vector with zero mean and a covariance 
matrix Rk.  

The classical KF consists of the two procedures. The first one is the time update (prediction) 
procedure, in which 

1| |
ˆ

k k k k k k k  X X f                              (3) 

where 1|k kX and |
ˆ

k kX denote the predicted 1k+X  and estimated kX  at time at time t k t  , 

respectively. Then, the prediction error of 1|k kX  is +1| +1 +1|k k k k k  e X X  with the prediction error 

covariance matrix +1| +1| +1| T
k k k k k k   P E e e   . From Eqs. (1) and (3), it is known that 

+1| |
ˆ T

k k k k k k k P P Q                             (4) 

where | | |
ˆ ˆ ˆ T

k k k k k k   P E e e  and | |
ˆˆ

k k k k k e X X . 

The second process of KF is the measurement update (correction) procedure, in which 

1| 1 1| 1 1 1 1| 1
ˆ ( )k k k k k k k k k k 1 k           X X K Y C X D f                   (5) 

where 1| 1
ˆ

k k X is the estimated +1kX given the observations (Y1, Y2,…, Yk+1), Kk+1 is the Kalman gain 
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matrix which can be derived as 

 +1 1 +1 +1k k+1|k k+ k k+1|k k+1 k


 T TK P C C P C R                       (6) 

and the covariance matrix of the error 1| 1 +1 1| 1
ˆˆk k k k k    e X X  is obtained by 

1 11| 1 1|
ˆ ( )k kk k k k   

 P I K H P                         (7) 

in which I denotes a unit matrix 
In the above scheme of the classical KF, the external input vector f is assumed to be known. 

This is the limitation of the classical KF. 
 
 
3. Data fusion based KF-UI 
 

When the external inputs to a linear structural system are unknown, the state equation of the 
system in the discrete form can be expressed as 

  1 +u
k k k k k k  X X f w                          (8) 

where uf denotes the unmeasured external input vector. 
 
3.1 Derivation of the improved KF-UI from the direct extension of the classical KF 
 
Analogous to the scheme of the classical KF described in the above section, 1|k kX is first 

predicted as 

1| | |
ˆˆ u

k k k k k k k k  X X f                           (9) 

where |
ˆ u

k kf denotes the estimated uf at time at time t k t  . 

Based on the observation equation at time t=(k+1)t 

1 1 1 1 1+u
k+1 k k k k k     Y C X D f v                       (10) 

and the estimated +1kX in the measurement update (correction) procedure is derived as 

1| 1 1| 1 1 1 1| 1| 1
ˆˆ ( )u

k k k k k k k k k k 1 k k            X X K Y C X D f                 (11) 

where 1| 1
ˆ

k k X is the estimated +1kX  given the observations (Y1, Y2,…, Yk+1) and Kk+1 is the Kalman 

gain matrix. 
Under the condition that the number of response measurements (sensors) is larger than the 

number of unknown external excitations in Eq. (10), 1 1
ˆ u

k+ |k+f  can be estimated by minimizing the 
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following error vector as 

    
1 1 1 1| 1 1 1| 1

+1 +1 +1 1 1| +1 +1 1 1 1

ˆˆ

ˆ       

u
k+ k+ k k k k k k

u
k k k k k k k k k k+ |k+

=      

  

 

    

y C X D f

C K Y C X C K D fI I


       (12) 

Then, 1 1
ˆ u

k+ |k+f can be estimated from Eq.(12) based on least-squares estimation as 

  
1 +1

T 1
1| 1 1 +1 +1 +1 1 1|

ˆ =
k k

u
k k k k k k k k k


     f S D R I C K Y C X              (13) 

in which  
1 +1

1T 1
1 +1 +1 +1k kk k k k


    S D R I C K D  

By inserting +1kY in Eq. (10) into Eq. (13), the error of the estimated 1| 1
ˆ u
k k f can be derived as  

   
1| 1 1 +1

T 1
+1 +1 +1 1 +1| 1ˆ = +

k k k kk k k k k k k  


  f Xe S D R I C K C e v              (14) 

where 
1| 1 1 1| 1

ˆˆ
k k

u u
k k k     fe f f  and +1| +1 +1|k k k k k Xe X X .  

From Eqs. (10) and (11), the error +1| 1
ˆ

k k
Xe can be estimated as  

  
 

1| 1 1 1

1 1

T 1
1 1 1 +1 +1 +1 +1|

T 1
1 1 1 +1 +1 1

ˆ

        

k k k k

k k

k k k k k k k k

k k k k k k

   

 


  


   

  

    

X Xe I K D S D R C I K C e

K I D S D R I C K v


                (15) 

Then  

      
   

1| 1 1 1 1| 1 1

1 1 1 1

T 1 T 1
1 1 1 +1 +1 +1 +1 +1 1 1 1 +1

TT 1 T 1
1 1 1 +1 +1 1 1 1 +1 +1

ˆ =
k k k k k k k k

k k k k

TT

k k k k k k k k k k k k

k k k k k k k k k k

      

   

 
     

 
     

   

         

X XP I K D S D R C I K C P I K C I K D S D R C

       + K I D S D R I C K R I D S D R I C K


(16) 

To minimize the error covariance matrix 
1| 1

ˆ
k k 

XP , 1kK  should be selected as 

 
1| 1|

T T 1
1 1 1 1 1( )

k k k kk k k k k 


     X XK C C C R P P       (17) 

Therefore, the estimated 
1| 1

ˆ
k k 

XP in Eq. (19) can be simplified as 

   
1| 1 1 1 1|

T 1
1 1 1 +1 +1 +1

ˆ =
k k k k k kk k k k k k    


   X XP I K D S D R C I K C P           (18) 

The covariance matrix for error 
1| 1

ˆ
k k 

fe can be derived as 

   

 
1| 1 1 +1 +1 1 1

1 +1 1 1

T 1 T
+1 +1 +1 +1 +1| 1 +1 +1 +1

T T
+1 +1 +1 +1

ˆ

         

k k k k k k k

k k k k

TT T
k k k k k k k k k k

T T
k k k k

    

  

 




   

  

f XP S D R I C K C P C R I C K R D S

S D I C K R D S S



   (19) 
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Also, the error covariance matrix 
1| 1

ˆ
k k 

XfP can be estimated as 

   1| 1 1| 1 1| 1 1| 1 1 1 1
ˆ ˆ ˆ ˆ

k k k k k k k k

T T

k k kE
          

      
Xf Xf X fP P e e K D S              (20) 

From Eqs. (8) and (9), the error +1|k k
Xe  is derived as 

| |+1|
ˆ ˆ+ +

k k k kk k k k kX X fe e e w                       (21) 

and the error covariance matrix 
1|k k

XP can be obtained by 

  | |

| |

1|

ˆ ˆ

ˆ ˆ
k k k k

k k k k

T
k

k k k k kT
k



          

X Xf

X

fX f

P P
P   Q

BP P
 

                     (22) 

In summary, the analytical derivation of the above KF-UI is completely based on the classical 
KF and the recursive procedures of the proposed KF-UI are analogous to those of the classical KF 
described in the above section. The resulting filter has the structure of the classical Kalman filter, 
except that the true value of the input is replaced by an optimal estimate. When the inputs are 
available, the proposed KF-UI reduces to the classical Kalman filter Therefore, the proposed 
KF-UI is a direct extension of the classical KF, which greatly simplifies the complex derivations in 
previous KF-UI approaches (Gillijns and Moor 2007, Wu et al. 2009, Pan et al. 2010). 

 
3.2 Data fusion of acceleration and displacement measurement in the improved KF-UI 
 
In practice, accelerometers are most often used in structural dynamics applications. However, 

previous KF-UI approaches by using sparse noisy acceleration measurements are inherently 
unstable which leads poor tracking and the so-called spurious low-frequency drifts in the estimated 
of unknown inputs and structural displacement. These drifts are caused by acceleration’s 
insensitivity to any quasi-static component in the inputs. 

The detectability analysis shows that the typical case where forces are reconstructed from 
acceleration measurements through Kalman filtering on a structure will inevitably lead to 
divergence issues (Naets et al. 2015). This conclusion can also be considered from a physical point 
of view. At any given time it is not clear whether acceleration is the effect of external forces or 
from the elastic restoring force due to a certain position. Therefore, the joint input and state 
estimation based solely on to sparse noisy acceleration measurements is an ill-posed identification 
problem. 

Although either regularization scheme or post-signal processing can be used to treat the 
spurious low-frequency drift problem, these approaches prohibit the on-line identification of 
structural state and unknown inputs. In this paper, it is proposed to add partial measured 
displacements to the acceleration measurements since acceleration and displacement 
measurements contains high and low frequencies vibration characteristics, respectively. Data 
fusion of measured displacement and acceleration responses, are used in the observation equation, 
i.e., Eq. (10) is expressed as: 
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demonstrated that the so-called drifts in estimated structural state and input are avoided by the 
improved KF-UI with data fusion of 10% noisy acceleration and displacement measurements. 
 
 
5. Conclusions 

 
In this paper, an improved KF-UI algorithm using data fusion of partial acceleration and 

displacement measurements is proposed. The analytical derivation of the proposed KF-UI is a 
direct extension of the classical KF and the resulting filter has the structure of the Kalman filter, 
except that the true value of the input is replaced by an optimal estimate, so it greatly simplifies 
the complex derivations in previous KF-UI approaches. Moreover, the data fusion based KF-UI 
prevents the so-called drifts in the estimated structural state vector and unknown external inputs by 
previous approaches. Therefore, the proposed KF-UI provides an efficient algorithm of real time 
joint estimation of structural states and the unknown inputs, which is also important for optimal 
structural vibration control under known external inputs. Such analytical recursive solution for 
date fusion based KF-UI is not available in the previous literature. Some numerical examples have 
demonstrated the effectiveness and performance of the proposed approach. Even in the presence of 
high level of measurement noises, the joint estimations of structural states and the unknown inputs 
are still quite accurate. 

In the proposed KF-UI, it is requested that (i) the number of response measurements (sensors) 
should be larger than the total number of unknown external inputs, and (ii) the acceleration 
responses at unknown excitation locations should be measured, The first requirement is reasonable 
to avoid the ill-posed identification of unknown inputs while the removal of the later requirement 
needs further investigations. Also, displacement measurement may be absent in practical 
engineering, but strain data can be easily measured. Displacement measurement can be replaced by 
strain data in the proposed KF-UI based on data fusion. These researches are undertaken by the 
authors. 
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