Smart Structures and Systems, Vol. 17, No. 6 (2016) 1031-1053
DOI: http://dx.doi.org/10.12989/sss.2016.17.6.1031 1031

Canonical correlation analysis based fault diagnosis method for
structural monitoring sensor networks

Hai-Bin Huang', Ting-Hua Yi"' and Hong-Nan Li"?

!School of Civil Engineering, Dalian University of Technology, Dalian 116023, China
?School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China

(Received November 30, 2015, Revised April 4, 2016, Accepted April 10, 2016)

Abstract. The health conditions of in-service civil infrastructures can be evaluated by employing structural
health monitoring technology. A reliable health evaluation result depends heavily on the quality of the data
collected from the structural monitoring sensor network. Hence, the problem of sensor fault diagnosis has
gained considerable attention in recent years. In this paper, an innovative sensor fault diagnosis method that
focuses on fault detection and isolation stages has been proposed. The dynamic or auto-regressive
characteristic is firstly utilized to build a multivariable statistical model that measures the correlations of the
currently collected structural responses and the future possible ones in combination with the canonical
correlation analysis. Two different fault detection statistics are then defined based on the above multivariable
statistical model for deciding whether a fault or failure occurred in the sensor network. After that, two
corresponding fault isolation indices are deduced through the contribution analysis methodology to identify
the faulty sensor. Case studies, using a benchmark structure developed for bridge health monitoring, are
considered in the research and demonstrate the superiority of the new proposed sensor fault diagnosis
method over the traditional principal component analysis-based and the dynamic principal component
analysis-based methods.

Keywords: structural health monitoring; sensor fault diagnosis; canonical correlation analysis; dynamic or
auto-regressive characteristic; contribution analysis

1. Introduction

Over the past two decades, advances in sensor technology and signal-processing techniques
have witnessed the rapid development of structural health monitoring (SHM) methodology
(Worden et al. 2008, Ni et al. 2010, Ni et al. 2012, Yi et al. 2013a, Li et al. 2014, Dessi and
Camerlengo 2015). The health conditions of in-service civil infrastructures can be evaluated by
employing the SHM system, after that some proper treating measures are implemented to ensure
the safe and sustainable operation of the monitored infrastructure. Among various SHM
technologies, the vibration based one has been most widely studied for estimating the structural
damage information and modal parameters (Li and Law 2012, Yi et al. 2013b, Li et al. 2015
Rahbari et al. 2015, Yamaguchi et al. 2015). In principle, the performance of an SHM system
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depends heavily on the quantity and quality of the health-monitoring data acquired from the sensor
network. Hence, the problem of optimal sensor placement has gained considerable attention in
recent years (Yi et al. 2011, Soman et al. 2014, Yi et al. 2015). Based on the optimal sensor
placement technique, the sensor network can be properly installed to the civil infrastructure to
guarantee the quantity of the health-monitoring data. Another technique which is called the sensor
fault diagnosis method, however, also deserves significant attention along with the functional
degradation and disabler of the sensors installed to the monitored structure. As an important
practical aspect of SHM, sensor fault diagnosis method can be used for showing whether the
quality of the health-monitoring data collected from the sensor network is eligible for the
subsequent structural health evaluation procedure.

Unfortunately, limited attention has been paid to the sensor fault diagnosis technology, which is
well studied in fault tolerant control area of smart civil structures (Wang and Song 2011, Huo et al.
2012, Pereira and Serpa 2015), by researchers in the SHM field. Generally, sensor fault diagnosis
technique includes two major sub-procedures, namely the sensor fault detection sub-procedure
used to decide whether a fault or failure occurred in the sensor network and the sensor fault
isolation sub-procedure employed to identify the faulty sensor among the sensor network.
Considering that errors introduced by sensor faults cause a loss of performance and erroneous
conclusions, Abdelghani and Friswell (2004) proposed two residual generation schemes. These are
the modal filtering technique and the parity space technique of monitoring the additive type of
sensor faults. The efficacy of these two approaches was then demonstrated on a simulated
cantilevered beam and also on an experimental sub-frame structure. Abdelghani and Friswell
(2007) studied another type of sensor fault, namely multiplicative faults. In this research, a new
residual generation and evaluation technique for sensor fault detection was proposed, and a
correlation index was then established to isolate the faulty sensor. This approach had been
experimentally validated on a sub-frame structure. Kerschen et al. (2005) presented a data-driven
sensor validation approach for SHM systems by applying principal component analysis (PCA) to
model the structural monitoring data. They used the angle between the principal subspaces as the
feature for sensor fault detection. The isolation of the sensor fault was implemented by removing
one sensor in turn, and the faulty sensor was the removed sensor in the case with the minimum
angle. Sharifi et al. (2010) proposed a PCA-based sensor fault diagnosis method in the residual
subspace rather than the principal subspace specifically for smart structures. They computed the
fault probability of each sensor with a Bayesian probabilistic decision to analyze these residuals.
As single or multiple sensors could be estimated from the remaining sensors with sufficient
training data from the sensor network, Kullaa (2010) proposed a method for sensor validation, i.e.,
sensor fault detection, isolation and correction, using minimum mean square error estimation. The
combination of the spatial and temporal correlations of the sensor output data improved the
performance of this approach. Considering the shortcomings of using only one
latent-variable-based monitoring method (primarily the PCA-based technique), Hernandez-Garcia
and Masri (2014) applied three latent-variable-based statistical monitoring approaches (the PCA,
the independent component analysis, and the modified independent component analysis-based
approaches) to detect and isolate faulty sensors in the SHM system. Hotelling’s T> or I’
statistic and the squared prediction error (SPE) statistic were used for each of these three methods.
They were evaluated and compared using case studies from an analytical truss model and a
cable-supported bridge. Rather than using physical redundancy, Smarsly and Law (2014) presented
an autonomous and fully decentralized approach toward sensor fault diagnosis in wireless SHM
systems. They used analytical redundancy, which is the inherent information in the multivariate
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redundant measurement system. Each sensor output in this method was predicted using the output
of other sensors based on the back propagation neural network. This was embedded in each of the
wireless sensor nodes installed on the monitored structure, and the residuals between the real and
predicted sensor output values were used to autonomously detect and isolate the bias and drift
sensor faults in real time. Huang et al. (2015) proposed a sensor fault diagnosis method based on
statistical hypothesis test and the missing variable approach. In this research, the sensor fault
detection process was first represented as a statistical hypothesis-testing problem, after which two
fault detectors were deduced through the Bayesian linear model and the generalized likelihood
ratio test method to examine whether a fault occurred in the sensor network. The missing variable
approach was finally used to build a fault isolation index to identify the faulty sensor. Multivariate
statistical process control-based fault diagnosis technology has been widely studied in many fields,
such as chemical process monitoring (Yin et al. 2012, Lau et al. 2013). The multivariate statistical
process control methodology has immense potential particularly in sensor fault diagnosis for SHM
systems, due to that the structural response is monitored inherently as a multivariate measurement
process by the professionally designed sensor network.

The PCA-based multivariate statistical process control is perhaps the most popular and broadly
studied method for its theoretical simplicity and computational efficiency for model building.
Nevertheless, the potential drawback of this method remains in two aspects: (1) it does not take the
dynamic characteristic into account; (2) the two traditional fault detection statistics of it, i.e., the
T? statistic and the SPE statistic, are not sensitive to small or tiny faults. This paper presents a
sensor fault diagnosis method, which takes the dynamic characteristic hidden in the
health-monitoring data into account, based on the canonical correlation analysis (CCA) technique.
To our best knowledge, this is the first application of CCA to harness the dynamic properties for
developing sensor fault diagnosis method. The remainder of the paper is organized as follows.
Section 2 briefly reviews the theoretical background of CCA. Section 3 first illustrates the
dynamic characteristic of the structural accelerometer measurements through the auto-regressive
model, and then employs the CCA technique for dynamic modeling of the health-monitoring data.
Based on this, two statistics are built for sensor fault detection and two corresponding fault
isolation indices are deduced to identify the faulty sensor. Section 4 elaborates the implementation
process of the proposed sensor fault diagnosis method. Section 5 considers case studies using the
benchmark structure developed for bridge health monitoring to validate the effectiveness and
capability of the proposed sensor fault diagnosis methodology. Section 6 gives the summaries and
conclusions in detail.

2. Brief review of canonical correlation analysis

CCA is a statistical technique to measure the underlying correlation between two sets of
multidimensional variables. For the sake of completeness, a brief theoretical background of CCA
is given in this section (Hardoon et al. 2004, Correa et al. 2010, Huang et al. 2010, Sweeney et al.
2013).

Considering two multidimensional datasets X* and X° with the same number of sampling
points, CCA measures their linear relationships through their auto-covariance and cross-covariance

matrices. In CCA, the dimensions m, and m, of the respective data vectors x* € X* and

x" € X" can be different, but they are both assumed to be zero-mean processes. In case they are
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not, the centering procedure is easy to implement by removing their mean vectors from each
data-point of them.

CCA finds two bases in the m_- and m, -dimensional spaces where x* and x" have the

maximum correlation. More precisely, it first finds an m, -dimensional projection vector #, and
an M, -dimensional projection vector v, such that the 1-dimensional projected signals u' x°

and v/ x" are maximally cross-correlated. Therefore, the aim of CCA is to find the maximum
correlation coefficient p between these two projected signals

T
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where R, =E{xabe} is the cross-covariance matrix of x* and Xx°, R, =E{xaxaT} and

R,, :E{xbbe} are their auto-covariance matrices, with E{} representing the expectation

operator.
Obtaining the maximum correlation coefficient can be characterized as an optimization

problem that finds the projection vectors u, and v,
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Next, CCA finds the projection vectors u, and v, such that the cross-correlation between
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u,x* and v,x’ is maximized, whereas wu,x" is uncorrelated with u, x*, and w,x’ is

uncorrelated with v, x". A similar optimization problem can then be established as
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The subsequent projection vectors u; and v, where j< min(ma, mb) , can be found through
the same way with additional constraints uR,u; =0 and v/Ryv, =0 for i=12,.,]-1.1t

turns out that these projection vectors, as well as the corresponding canonical correlation
coefficients, can be obtained by solving the following eigenvalue decomposition problem

(RuR,Ry R, Ju=p'u )
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(RpR,RIR,, )y =p’v (5)

. 2 . .
where R, =E{xbxaT}:R§b . The eigenvalues p~ are squared canonical correlation

coefficients and the eigenvectors # and v are normalized canonical correlation basis vectors.
Generally, only the non-zero solutions are of interest, and their number r is equal to the smaller

. . b . .
of the dimensions of x* and X°,i.e., r=min(m,,m,).

3. Establishment of sensor fault diagnosis method

To build a multivariate model, which considers and utilizes the dynamic or auto-regressive
characteristics hidden in the health-monitoring data, CCA is introduced as a supervised
dimensionality reduction technique. The sensor fault diagnosis method that mainly focuses on the
fault detection and isolation objectives is then established.

3.1 Dynamic characteristic in accelerometer measurement

Because the accelerometer measurement is always employed as an important part of vibration
monitoring for civil infrastructures, it is a research objective in this paper. The dynamic
characteristic, reflecting the correlations between the currently observed and future possible
accelerometer responses, is an essential property of the monitored structure. Therefore, it should
be considered in building the multivariate statistical model, based on which a fault diagnosis
method can be established, of the structural accelerometer measurements to promote the fault
diagnosis performance.

The auto-regressive model is a frequently applied technique that predicts the possible future
response of a monitored structure based on the current measurements employing the dynamic

characteristic. Given that x(t)eﬂi’m denotes an accelerometer measurement at time t, the

auto-regressive model can be mathematically represented as follows (Thanagasundram et al. 2008,
Roy et al. 2015)

x(tr1)=3 Ax(t—i+1)+e(t+1) ©)

i=1
where A, is the ith model coefficient matrix, x(t +1) is the future response to be predicted,

e(t+1) is the model residual error and p is the model order that can be determined through the
Akaike information criterion (Chiang et al. 2001).

3.2 Dynamic modeling via canonical correlation analysis

When the dynamic characteristic is about building a correlation model between two
multivariate observation datasets, the CCA technique is used for this purpose. This section
proposes to employ CCA to build a multivariate statistical model, which considers the dynamic
characteristic hidden in the accelerometer measurements, to develop an innovative sensor fault
diagnosis method with applications to SHM.
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To model the dynamic characteristic hidden in the structural accelerometer measurements via

CCA, the current and future observation vectors x° and x" at time t are first defined as
follows

X () =[x (1), 6" (t=1)sex" (L= p+1)] eR™ (7)
x'(t)=x(t+1)eR" (®)

where P is the auto-regressive model order. The current and future observation datasets can then

be assembled from the fault-free training dataset.

A data pre-whitening procedure could be implemented for the current and future observation
datasets to simplify the CCA computational process shown in Eq. 4 and Eq. 5 (Karhunen et al.
2013). The pre-whitening procedure for the current and future observation vectors is
mathematically represented as follows:

X (t)=0°x°(t) ©9)
x'(t)=0"x"(t) (10)
where x°(t) and x'(t) are the whitened data-points of the current and future observation

vectors, respectively, Q° and Q' arethe corresponding whitening matrices.
To calculate the whitening matrices Q° and 0", the principal component analysis technique

is always utilized to model the datasets to be whitened:

R, =EB{x"x"} =P AP (11)
R, =E{x'x""}=P'A'P" (12)

where R, and Ry are the auto-covariance matrices of the current and future observation

datasets, respectively, P° and P' are the transformation matrices of principal component

analysis, 4° and A" are the diagonal matrices that contain the variances of the principal
components in descending order. The whitening matrices can then be represented as

Qc :(Ac)’l/2 PCT (13)
I (14)

After the pre-whitening procedure, any two variables in the pre-whitened dataset are statistically
uncorrelated.

The CCA technique is then applied to model the correlations between the current and future
observation datasets which are pre-whitened

(RUR4R{R Ju=p’u (15)

(R;flRfcﬁ;clﬁcf )" =p’v (16)
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ococeT

where R = E{x x } and R, = E{)EUE”} are the auto-covariance matrices of the current

and future observation datasets, respectively, after being pre-whitened, R, = E{)EC)E”} is the
cross-covariance matrix of X° and X' with R, = E{x'¥"}=R].

The auto-covariance matrices corresponding to the pre-whitened current and future observation

datasets are actually two identity matrices, i.e., R, =1, and R, =1, . Considering that

R, =R], the CCA computational process shown in Egs. (15) and (16) is then simplified as

follows
(ﬁcfﬁ;)u=p2u 17)
(R R )v=p" (18)

The eigenvalue decomposition problem shown in Egs. (17) and (18) could be further reduced to
a singular-value decomposition problem as follows

R, =E{xx'"}=vzV" (19)

where U =[u1,u2...,ump]eiﬁmpxmp is a matrix consisting of all the left singular vectors,

V=[v,v..,v,]€eR™™ is a matrix consisting of all the right singular vectors, and
~ T ~

Py =[Z |0] e R™™ is the singular-value matrix with X' =diag(p,,p0,,...p,) a diagonal matrix

and 0eR™" " a zero-matrix.
The canonical correlation variables z and r, which respectively correspond to the current
and future observation vectors, could then be generated as follows

() =Ux° (1) =U"Q°x"(t) = Jx°(t) (20)
r(t)=V'x"(t)=V"Q"'x" (t)=Lx" (t) 1)

where J and L are the canonical correlation generative matrices corresponding to the current
and future observation vectors, respectively. They are mathematically represented as

J=U"Q° (22)
L=V"Q' (23)

Through the above two matrices, the canonical correlation variables could be calculated
expediently. Every two components of these canonical correlation variables are also statistically
uncorrelated for the following reasons
R, =E{z'|=U"E{x'x"|U=1T (24)

44 mp

R, =E{m"|=V'E{x'% "}V =1

(25)

m
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3.3 Fault detection scheme

This section, based on the CCA model built through analyzing the fault-free measurement data,
defines two fault detection statistics to monitor the quality of the current sensor output data and to
detect the corresponding sensor faults. The current observation vector defined in the previous
section is chosen to accomplish this purpose.

The first m components of the canonical correlation variable z are defined as the systematic
part that is closely correlated with the future observation vector and assembled into a column
vector z, as well as the others are defined as the noisy part and assembled into a column vector
z, . Therefore, the canonical correlation variable z could be represented as the following block

form at time t

) =[= O} 1)] (26)

The generative process of the canonical correlation variable z could also be mathematically
represented as the following block form

o {28 o

z, ()= Jx" (1) (28)

or

z,(t)=J,x°(t) (29)

where J is called the system generative matrix which contains the first m rows of J, and

J, is called the noise generative matrix which contains the last m( p- 1) rows of J .

The fault detection statistic for the systematic canonical correlation variable, i.e., the T52
statistic, is defined as

T =]z, =x"(J]J)x (30)

S

If the health-monitoring data follows a Gaussian distribution, the control limit (or called the
threshold) for TS2 could be calculated through the following F -distribution (Antoine and Clinar
1997)

2y ()= MR )

g - Foompn (@) 31)

where « is called the significance level, this parameter is generally set to a pimping value, e.g.,
0.01.

The fault detection statistic for the noisy canonical correlation variable, i.e., the Tn2 statistic,
could be similarly defined as follows
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Tn2=z:zn=xCT(JnTJn)x° (32)

If the health-monitoring data has a Gaussian distribution, the control limit for T. could also
be calculated via the F -distribution as follows

z m(p-1)(m*p” 1)

T2
m’p

n,lim (a)

When the health-monitoring is not Gaussian distributed, the kernel density estimation (KDE)
technique (Chen et al. 2000) could be employed to estimate the probabilistic distribution and then

Fop-mm (@) (33)

to calculate the control limits for both T, and T. statistics. In this paper, the KDE technique is
used to compute the control limits as it can handle both Gaussian and non-Gaussian distributions.

3.4 Fault isolation scheme

After a fault is detected to occur in the sensor network, fault isolation procedure should be
implemented to identify the specific faulty sensor. This section, through the contribution analysis
methodology (Qin 2003), proposes two fault isolation indices that can be used to identify the
faulty sensor among the sensor network.

Egs. (30) and (32) could be further represented in the following forms

T =x (J1J, ) x° =x"dx° (34)

S
T, =x (J:Jn)xCZxCTQxC (35)

where @ e R™™ and @ eR™™ are matrices corresponding to the system and noise

generative matrices, respectively. Their definitions are used to derivate the contribution analysis
based fault isolation indices

@ =JJ, (36)
@ =J"T 37)

According to Egs. (34) and (35), the TS2 and Tn2 statistics could be further decomposed into
the following summation type

mp mp
2 cT c c T ..C
To=x 'in é., :zxi P (38)
i=1 i=1
mp mp
T, =" 'inc¢n,i = quc : :,ixc (39)
= =1

where ¢, € R™ and ¢; €R™ arethe ith columnsof @ and @, respectively.

Therefore, the contributions of the ith variable in the current observation vector x° to the

T, and T, statistics can be defined as cont,; and cont

. respectively, and are given as

n,i »
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follows
cont,; = X’ - @, x° (40)
cont,; =X’ - @ x° 41)

The fault isolation indices corresponding to the T. and T, statistics are defined as follows

p

CONTS Zconts j+m(k-1) ZXT+m k-1) s +m(k 1)xC (42)
k=1
P

C()NTn, ZCOIltm j+m(k-1) kZ:,X;m k-1) n J+ITI(k l)xc (43)

When the value of the fault isolation indices CONT; and CONT, ; corresponding to a

specific sensor reaches the maximum, the faulty sensor is isolated through the indices.

4. Sensor fault diagnosis procedure
The proposed sensor fault diagnosis method consists of two sub-procedures, that is the fault
detection sub-procedure and the fault isolation sub-procedure. This section describes the

implementation processes of these two sub-procedures in detail.

4.1 Fault detection sub-procedure

[ Training Dataset | | I Training stage I Monitoring stage
| Centering process l | Training Dataset 2 | l Tuslingf)alascl ]
: l = I Centering process
Construct x* and ¥’ for | 3 - =
o Centering process I )
each sampling instant
Construct x for each
l y sampling instant
Calculate the whitening Construct x< for each I
matrices (* and sampling instant Compute the statisti
C e the statistics
| ! T? and T?
Solving CCA problem & Compute the statistics
compute . and L '|"3 and |,
Define the matrices Compute the thresholds | |
J,and J, using KDE technique I There is a fault ]

Fig. 1 Flowchart of the fault detection sub-procedure
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Three datasets are used for the fault detection sub-procedure, i.e., Training Dataset 1, Training
Dataset 2 and the Testing Dataset. Training Datasets 1 and 2 are used for the training stage whereas
the Testing Dataset is used for the monitoring stage. A flowchart of the fault detection
sub-procedure is shown in Fig. 1. And the detailed implementation process is illustrated as
follows:

Training stage using Training Dataset 1:
Step 1: Calculate the mean vector of Training Dataset 1 and then center this dataset by
removing the mean vector from all data-points.

Step 2: Construct the current and future observation vectors x° and x", respectively, at each
time instant using Eq. (7) and Eq. (8), and then assemble the corresponding current and future
observation datasets.

Step 3: Calculate the whitening matrices Q° and Q' for the current and future observation
vectors, respectively, using Egs. (13) and (14).

Step 4: Solve the CCA problem shown in Eq. (19) using the singular-value decomposition
technique, and compute the canonical correlation generative matrices J and L, respectively,
using Egs. (22) and (23).

Step 5: Define the first m rows of J as the system generative matrix J, define the last
m(p—l) rows of J as the noise generative matrix J,, and preserve J, and J, for the

subsequent fault detection and isolation stages.

Training stage using Training Dataset 2:
Step 1: Center Training Dataset 2 by removing the mean vector of Training Dataset 1 from all
data-points.

Step 2: Construct the current observation vector x° at each time instant using Eq. (7).
Step 3: Compute the two fault detection statistics T52 and Tn2 defined in Egs. (30) and (32)

for the current observation vector Xx° constructed in Step 2.
Step 4: Compute and preserve the thresholds for both the TS2 and T statistics using the

KDE technique after the T. and T’ statistics for all of the current observation vectors are
computed.

Monitoring stage using the Testing Dataset:

Step 1: Center the Testing Dataset by removing the mean vector of Training Dataset 1 from all
data-points.

Step 2: Construct the current observation vector x° at the current monitoring time instant
using Eq. (7).

Step 3: Compute the two fault detection statistics T52 and T defined in Eqs. (30) and (32)

for the current observation vector Xx° constructed in Step 2.
Step 4: Decide whether there is a fault occurred in the sensor network by judging if the T, or

T? statistic exceeds their corresponding thresholds: go to the fault isolation sub-procedure if there

is a fault or back to step 2 and continue to monitor the next current observation vector if there is
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not.
4.2 Fault isolation sub-procedure

The fault isolation sub-procedure is used to identify the specific faulty sensor after a fault is
detected in the sensor network. Only the Testing Dataset is used for the fault isolation
sub-procedure. The jth sensor is identified as the faulty sensor if its corresponding fault isolation

index CONT,; or CONT, ;, computed from Eqs. (42) and (43), obtains the largest value.

njo

5. Case studies

To validate the effectiveness and capability of the new proposed sensor fault diagnosis method,
case studies using the benchmark model developed by the University of Central Florida for bridge
health monitoring (Catbas et al. 2008) are considered in this section. This benchmark model has
been widely used for demonstrating various algorithms in different structural health monitoring
aspects, e.g., damage identification and finite-element model updating (Gul and Catbas 2011,
Erdogan et al. 2014).

The physical structure of the benchmark model is a steel grid of which the girders and support
columns are constructed using steel sections S3x5.7 and WI12x26 , respectively. The
three-dimensional view of this benchmark structure is shown in Fig. 2(a), it is seen that there are
totally two spans and six support columns in the structure. The corresponding plan view of the
steel girders is shown in Fig. 2(b) which gives the detailed size.

The finite-element model of this benchmark structure consists of 182 elements and 177 nodes
and was created as a MATLAB (The Mathworks 2014) toolbox by the developer. This makes it
very convenient for the researchers to generate health-monitoring data. A number of damage cases
with different levels can be simulated with the associated numerical benchmark model. Various
sensors, such as accelerometers, displacement gages and strain gages, could be placed on the
model to collect static and dynamic responses.

1.8288m

5.4864m

(a) Three-dimensional view (b) Plan view with detailed size

Fig. 2 Diagram of the benchmark structure (adapted from Catbas et al. 2008)
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Fig. 3 Sensor location on the finite-element model of the benchmark structure; the symbol S# represents

sensor #

Table 1 Corresponding relationship of the sensor and finite-element node number

Sensor number

Node number

Sensor number

Node number

1 63 9 105
2 66 10 108
3 72 11 114
4 75 12 117
5 84 13 126
6 87 14 129
7 93 15 135
8 96 16 138

The acceleration responses, at different locations of the numerical benchmark model, under
random excitations were first simulated. Meanwhile, the responses with additional Gaussian noises
were employed in this section as sensor output data. For the choice of the noise level, the
signal-to-noise-ratio was set to as low as 20dB. Notice that only the vertical acceleration
measurements were used for the purpose of validation and no accelerometer was placed at the
support nodes because their vertical accelerations were almost zero. There were totally 16
accelerometers installed on the structure and the sensor location on the finite-element model of the
benchmark structure can be seen in Fig. 3. The sensor placement information for this benchmark
model is shown in Table 1, where the corresponding relationship of the sensor and finite-element
node number is given in detail.

Three datasets, i.e., Training Dataset 1, Training Dataset 2 and the Testing Dataset, were
generated through the numerical benchmark model. Training Datasets 1 and 2 were fault-free
monitoring datasets, and both lasted for 40 seconds. The Testing Dataset lasted for 80 seconds, of
which the first 40 seconds consisted of normal data, and the last 40 seconds used for simulating
faulty data.
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Fig. 4 Correlation coefficients of the canonical correlation variables of the current observation vectors
with those of the future ones

Table 2 Mathematical representation of the bias and gain modes of sensor fault

Fault type Mathematical representation

Bias X (1) =x(t)+B-o+n(t)
Gain X; (t):(HG)’[X(t)*W(t)]

Training Dataset 1 was used to build the CCA model and then to compute the canonical
correlation generative matrices. Fig. 4 shows the correlation coefficients of the canonical
correlation variables of the current observation vectors with those of the future ones. It can be seen
that only the first 16 canonical correlation coefficients are non-zero (notice that only the first 20
canonical correlation coefficients are plotted on the figure as the remaining values still equal zero),
which means that the first 16 column vectors of the canonical correlation generative matrix
corresponding to the current observation vectors are used to form the system generative matrix and
that the remaining are used to form the noise generative matrix.

Training Dataset 2 was used to compute the control limit values via the KDE technique. The
Testing Dataset was then used to validate the capability of the proposed CCA based sensor fault
diagnosis method.

There are two types of sensor fault modes, i.e., the bias and gain sensor fault modes, which are
the typical modes of the additive and multiplicative sensor faults (Abdelghani and Friswell 2004,
Abdelghani and Friswell 2007, Kullaa 2010), respectively. Both of these were considered in this
section. Table 2 summarized the mathematical representation of these two sensor fault modes. The

variable x, (t) represents the faulty sensor output, x(t) is the nominal sensor measurement,

n7(t) is the measurement noise, and o represents the standard deviation of the term  x(t)+7(t).

The terms B and G controls the magnitudes of the bias and gain faults, respectively. For fault
simulation, the relatively small magnitudes of the bias and gain faults were chosen, e.g., B=0.5 and
G=0.5, to show the superiority of the proposed method.
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5.1 Diagnostic results for bias fault

Sensors 1-8 were considered in turn as the research objects for the purpose of validation in this
section. A fault case, where a bias fault occurred in each of the aforementioned 8 sensors with
B=0.5 from 40 s to 80 s, was simulated.

The receiver operating characteristic (ROC) curve technique (Lu et al. 2009) was used to
evaluate and compare the fault detection performances of the two proposed fault detection
statistics with the traditional principal component analysis (PCA)-based statistics (Qin 2003, Yin et
al. 2012), as well as the dynamic principal component analysis (DPCA)-based statistics (Ku et al.
1995).

Generally, the area under the ROC curve (AUC) is applied to quantify the fault detection
performance of a statistic. The AUC value of an arbitrary fault detection statistic ranges from 0.5
to 1.0. When the AUC value equals 0.5, the fault detection performance of this statistic becomes
the worst, i.e., the statistic is a random detector. When the AUC value equals 1.0, the fault
detection performance of this statistic becomes the best, i.e., the statistic is a perfect detector.

Table 3 shows the AUC values of the PCA-, DPCA- and CCA-based fault detection statistics
for the bias fault case. The AUC values of the PCA- and DPCA-based statistics are just above 0.5,
indicating that their fault detection performances are very poor. The AUC values of the CCA-based
statistics, however, are very close to 1.0, indicating that the fault detection performances of the
new proposed statistics are nearly perfect and preferable to the PCA- and DPCA-based ones.

As a special example, the bias fault occurring in sensor 2 was studied in detail. Fig. 5(a) shows
the fault-free waveform graph of sensor 2, whereas Fig. 5(b) shows the faulty sensor output with
B=0.5.

The fault detection results of the PCA- and DPCA-based T> and SPE statistics are shown in
Fig. 6. The fault detection rates of these four statistics are 1.50%, 1.15%, 1.37% and 4.08%. This
also demonstrates that their fault detection abilities are quite inferior.

Table 3 Comparison of AUC values for the PCA-, DPCA- and CCA-based methods (Bias fault case)

PCA based method DPCA based method CCA based method
Sensor #

T SPE T SPE T; T
1 0.5662 0.5338 0.5843 0.6637 0.9954 0.9956
2 0.5643 0.5338 0.5810 0.6539 0.9954 0.9956
3 0.5635 0.5346 0.5875 0.6188 0.9954 0.9956
4 0.5634 0.5398 0.5811 0.6520 0.9954 0.9956
5 0.5635 0.5403 0.5808 0.6539 0.9954 0.9956
6 0.5636 0.5353 0.5878 0.6168 0.9954 0.9956
7 0.5646 0.5328 0.5809 0.6503 0.9954 0.9956
8 0.5660 0.5347 0.5839 0.6608 0.9954 0.9956
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Fig. 5 Sensor 2 output of the testing data without or with a bias fault
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Fig. 7 Fault diagnosis results of the proposed CCA-based method for the bias fault case

The fault diagnosis results of the proposed CCA-based method are shown in Fig. 7. The fault
detection results of the CCA-based Tf and Tn2 statistics are shown in Figs. 7(a) and 7(b),

respectively. The fault detection rates of these two statistics are both 100%, which demonstrates
that their fault detection performances are almost perfect. The fault isolation results of both
CONT,; and CONT, ;, which are shown in Figs. 7(c) and 7(d) respectively, indicate that the

nj>

faulty sensor is successfully identified as sensor 2.
5.2 Diagnostic results for gain fault

The same with section 5.1, sensors 1-8 were still considered for the purpose of validation in this
section. A fault case, with a gain fault occurred in each of the aforementioned 8 sensors with
G=0.5 from 40 s to 80 s, was simulated.

Table 4 shows the AUC values of the PCA-, DPCA- and CCA-based fault detection statistics
for the gain fault case. The AUC values of the PCA-based statistics are just above 0.5, which
indicates that their fault detection performances are very poor. The AUC values of the
DPCA-based statistics exceed 0.6 or 0.7, which indicates that the fault detection performances
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obtain a small increase when the dynamic characteristic is considered but are still not excellent.
However, the AUC values of the CCA-based statistics are very close to 1.0. This indicates that the
fault detection performances of the new proposed statistics are nearly perfect and preferable to the
PCA- and DPCA-based statistics.

As a special example, the gain fault that occurred in sensor 6 is studied in detail. Fig. 8(a)
shows the fault-free waveform graph of sensor 6, whereas Fig. 8(b) shows the faulty sensor output
with G=0.5.

The fault detection results of the PCA- and DPCA-based T? and SPE statistics are shown in
Fig. 9. The fault detection rates of these four statistics are respectively 2.30%, 1.68%, 3.54% and
7.73%, demonstrating that their fault detection abilities are quite inferior.

The fault diagnosis results of the proposed CCA-based method are shown in Fig. 10. The fault
detection results of the CCA-based TS2 and Tn2 statistics are respectively shown in Figs. 10(a)
and 10(b). The fault detection rates of these two statistics are 92.36% and 99.98%, respectively.
This also demonstrates that their fault detection performances are nearly perfect. The fault
isolation results of CONT,; and CONT, which are shown in Figs. 10(c) and 10(d)

nj >
respectively, indicate that the faulty sensor is successfully identified as sensor 6.

Table 4 Comparison of AUC values for PCA-, DPCA- and CCA-based methods (Gain fault cases)

PCA based method DPCA based method CCA based method
Sensor #

T2 SPE T SPE T? T
1 0.5990 0.5450 0.6513 0.7011 0.9691 0.9955
2 0.5905 0.5561 0.6639 0.7110 0.9887 0.9956
3 0.5860 0.5498 0.6638 0.6840 0.9856 0.9955
4 0.5866 0.5590 0.6275 0.7062 0.9637 0.9956
5 0.5874 0.5571 0.6297 0.7079 0.9713 0.9956
6 0.5873 0.5500 0.6634 0.6936 0.9850 0.9954
7 0.5924 0.5527 0.6622 0.7096 0.9877 0.9956
8 0.5979 0.5438 0.6499 0.7070 0.9840 0.9955
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Fig. 8 Sensor 6 output of the testing data without or with a gain fault
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Fig. 9 Fault detection results of the PCA- and DPCA-based statistics for the gain fault case

6. Conclusions

Diagnosing various types of sensor fault prior to the application of any SHM algorithm is of
great significance as it avoids false health evaluation results for the monitored infrastructures and
reduces unnecessary maintenance costs due to false alarms. However, the sensor fault diagnosis
technology has not received the attention that it deserves in the SHM field. This paper proposed an
innovative sensor fault diagnosis method based on the CCA technique. The investigations carried
out in this paper indicated the following conclusions:

(1) The dynamic behaviors hidden in the health-monitoring data were characterized by the
auto-regressive model that predicted the future data-points through the current observed
data-points. Hence, a statistical correlation property existed between the future and the current
observation data-points. The CCA technique was suitably used to build a multivariate statistical
model to characterize the correlations the current and future observation data-points. Based on this,
a sensor fault diagnosis method that considered the dynamic or auto-regressive characteristics was
established.

(2) Solving the above CCA model provided two generative matrices, i.e., the current and the
future canonical correlation generative matrices. The current canonical correlation generative
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matrix was used to establish the sensor fault diagnosis method. This matrix was then divided into
two sub-matrices consisting of the systematic and the noisy parts of the generative matrix,
according to the size of the canonical correlation coefficients. The fault detection purpose of the
sensor network was realized through the definition of two statistics corresponding to the system
and the noise generative matrices. The faulty sensor identification objective was achieved by the
derivation of two fault isolation indices through using the contribution analysis methodology.

(3) Case studies were carried out to validate and demonstrate the efficacy of the new proposed
sensor fault diagnosis method using the benchmark structure developed by the University of
Central Florida for bridge health monitoring. The ROC curve was then employed as a standard
technique to compare the fault detection performances of the PCA-based, the DPCA-based and the
CCA-based statistics. Both the bias and the gain types of sensor fault were simulated to occur in
the testing dataset. The comparison results using ROC curve showed that the new defined
CCA-based statistics were the best and almost perfect fault detectors. Two special fault examples
still showed that these two statistics could perfectly or successfully detect the corresponding
sensor fault. In contrast, the PCA-based and the DPCA-based statistics did not perform on par. The
fault isolation results also demonstrated that the faulty sensor was successfully identified through
the new proposed fault isolation indices.
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Fig. 10 Fault diagnosis results of the CCA-based method for the gain fault case
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