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Abstract. This study focuses on the system identification of reinforced concrete bridges using vector 
autoregressive model (VAR). First, the time series output response from a bridge establishes the 
autoregressive (AR) models. AR models are one of the most accurate methods for stationary time series. 
Burg’s algorithm estimates the autoregressive coefficients (ARCs) at p-lag by reducing the sum of the 
forward and the backward errors. The computed ARCs are assembled in the state system matrix and the 
eigen-system realization algorithm (ERA) computes: the eigenvector matrix that contains the vectors of the 
mode shapes, and the eigenvalue matrix that contains the associated natural frequencies. By taking 
advantage of the characteristic of the AR model with ERA (ARMERA), civil engineering can address 
problems related to damage detection. Operational modal analysis using ARMERA is applied to three 
experiments. One experiment is coupled with an artificial neural network algorithm and it can detect damage 
locations and extension. The neural network uses a specific number of ARCs as input and multiple 
submatrix scaling factors of the structural stiffness matrix as output to represent the damage. 
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algorithm 

 
 
1. Introduction 
 

Bridges are exposed to different external loads such as: wind, earthquake, temperature change, 

and various traffic loads. These loads influence the structural system and over time cause change 

in it. The system will suffer different forms of degradation, such as: material degradation, partial 

fracture within the elements, and behavioral changes of one or more structural elements. All kinds 

of local changes in its elements are considered as damage in the structure because they can cause 

change in the overall behavior, parting from the design concept, and severe destruction of the 

whole system according to the extension of the damage (Ye et al. 2012). Because the actual 

external loads are uncertain, the structural system is treated as an output only system. To avoid 

either personal or material loss of the society, many researchers in civil engineering are involved in 

system identification (SI) and structural health monitoring (SHM) (Ye et al. 2013). 
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Modal analysis is one of the most successful branches of SHM and SI. Modal analysis studies 

the changes in the modal parameters of a structure: natural frequencies, mode shapes, mass 

participation factor, and damping ratio to understand the changes within it (Hearn and Testa 1991). 

Modal analysis includes many methods to address and to solve this problem. Two popular methods 

are: the frequency domain decomposition (FDD) (Brincker et al. 2000), which treats the problem 

in frequency domain, and the time domain based identification (Mohanty and Rixen 2004). 

Nowadays, FDD is the popular because it is straightforward and efficient to identify the modal 

parameters. However, it has limitations when it operates on stationary time series data set because 

it relies on confined observations. Furthermore, when a windows technique is used the resulting 

modal parameters are the average of the time frame analyzed and sudden changes cannot be easily 

identified. Instead, time domain based modal analysis solves this data processing problem because 

it takes into account the evolution of stationary and non-stationary time-series (Priestley 1981). 

Autoregressive (AR) model is a stochastic differential equation and it is one of the most 

accurate methods to represent a time series output data set through parameters (Omenzetter et al. 

2003). The strength of the AR model is the presence of parameters that change over time, the 

Autoregressive coefficients (ARCs). The ARCs are used in the eigen-system realization algorithm 

(ERA) to obtain the modal parameters of the structure (Vu et al. 2011). The variation of modal 

response of a structure between two different time intervals implies that some changes has 

occurred within the structure, such as: variation of material properties, ground settlements, 

deformations, or damage in one or more structural elements. In addition, modal analysis through 

the ARCs can identify small sudden changes within the structure. Furthermore, because both the 

data length and the lag of an AR model are flexible the user is not restricted to a specific range size 

and number of coefficients, i.e. model order. 

In this study, modal analysis is done using the AR model and the ERA model together 

(ARMERA). ARMERA is used to detect the damage location within the structural system up to the 

sub-element level. The evolution of the ARCs according to a predefined time step enables the 

computation of practical modal outcomes for the target structure. Furthermore, the presence of a 

large number of ARCs enables the use of optimization algorithms on a large parametric controlled 

model, such as: neural network algorithm, genetic algorithm, response surface methodology, and 

Monte Carlo optimization. Though this study focuses on system identification using ARMERA, 

damage detection methodologies using ARCs are one of the great challenges within civil 

engineering problems. 

For the application of AR model to real structures, time series output data from three 

experiments is used as the input to the model and ERA is conducted on each set of data. The first 

experiment was conducted with a single remote sensing vibrometer (RSV) on a single span 

reinforced concrete bridge to build a single output AR model. Because the ARMERA applied to 

such experiment can only identifies a single DOF system it does not guarantee detailed sampling 

of the modal information. Instead, it can do so when it is applied to multiple outputs of multiple 

sensors, like in the second experiment, which includes four sensors nodes deployed on the same 

reinforced concrete bridge, with a total of ten sensors installed. Finally, the AR analysis with the 

ERA of full bridge scale sensing system is carried out to obtain comprehensive modal information 

of long span reinforced concrete bridge. To validate the result of the ARMERA methodology, the 

modal outcome of frequency domain decomposition is compared with the result of the method 

given in this study. 
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2. Method 
 

In operational modal analysis ARMERA needs the time series of the output data that is 

obtained from the target structure. Because bridges are too large to install sensors on each element 

a limited number of channels are available. However, with a sufficient coverage the capability of 

the system of sensors can produces a suitable output data. The multiple time series are aggregated 

together to form the AR model. AR model is a Markov process of a stochastic differential 

equations, each equation had its own number of ARCs. The ARCs compose the state matrix used 

in the eigenvalue decomposition that extracts the modal parameters searched. 

 

2.1 System identification through ARMERA 
 

2.1.1 AR model 
The AR model, time series representation of random process, successfully calculates the 

current stochastic value at time t based on the previous values at time t-i. In this study, the 

influence of the input excitation of the target structure is ignored and the AR model only take into 

account the output, either acceleration and/or velocity. 

The output only time series AR model with p number of prior physical quantities is defined as 

Eq. (1) (Brockwell and Davis 2002).  

1

( ) ( )
p

ii

i

x t x t i


                              (1) 

where, x(t) is the value of the time series at current time t, p is the lag and the model order,  ii is 

the ARCs of size m× p, and x(t−i) is the observation of the values of the time series data of the i-th 

previous steps. 

In this study, the main interest within AR model is  ii which are ARCs for constructing the 

state matrix. Both Yule-Walker’s algorithm and Burg’s algorithm are regarded as the most 

effective method for the estimation of the ARCs. In this study, Burg’s algorithm is used for 

calculating ARCs because it proved to be more accurate than Yule-Walker algorithm. 

 

2.1.2 Burg’s algorithm 
In the output only AR model shown in Eq. (1), Burg’s algorithm minimizes the prediction 

errors of both the forward and the backward steps and the ARCs [11, …,  pp] are computed by 

Eqs. (2)-(7) (Brockwell and Davis 2002). 
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1 1( ) ( ) ( 1)i i ii iv t v t u t                              (4) 

where, ui(t) and vi(t) are respectively the forward predictions on the error and the backward 

prediction error. 
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where,  ii is Burg’s estimation for the partial autocorrelation functions. 

2 2 2( 1) (1 ) ( ) ( 1) ( )ii i id i d i v i u n                           (7) 

After computing the forward and the backward predictions using Eqs. (2)-(7), the ARCs at 

p-lag value are obtained. If the statistical properties of the modal properties at different time steps 

are similar, the time series data set is regarded as stationary and ARCs also are similar regardless 

of the scope of the data. 

 

2.1.3 Modal parameters identification using ERA 
After computing ARCs using Burg’s algorithm, the system matrix of the AR model is 

assembled as in Eq. (8). (Neumaier and Schneider 2001) 

11 22 1 1
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                     (8) 

The eigenvalue decomposition of the system matrix gives the modal parameters as the matrix 

of eigenvalues and matrix of the eigenvectors (Juang and Pappa 1985). 
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                        (9) 

The matrix of the eigenvectors L at Eq. (9) had a size of p× p and it contains the mode shapes 

of the p eigenvalue. 

 

Natural frequencies 

2 2Re ( ) Im ( ) ln( )
;where 
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Mode shapes 
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Damping ratios 
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2.1.4 Vector autoregressive model 
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With multiple autoregressive model of p lag, the m numbers of the ARCs sets for each AR 

model [1 2 ⋯ m] are computed by Burg’s algorithm. Now the system state matrix of m 

number of AR model is assembled with m sets of ARCs as Eq. (14). (Neumaier and Schneider 

2001) 
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               (14) 

 

2.1.5 Time domain variation 
If a structure is not damaged, its stiffness and damping ratio do not change overtime, and the 

ARCs, which are the parameters representing the time series output data, are stationary. Instead, if 

the structure is damaged or is subject to degradation, different p-lag number of ARCs, which are 

generated by Burg’s algorithm, have different values. This difference can be used to estimate 

whether damage is present, its extent, and location. In a stationary time series process, each ARCs 

obtained from the stationary time-series data set has its own mean and standard deviation, which 

are constant over time. The standard deviation takes into account the stiffness change within the 

structure due to temperature change, daily changes and seasonal changes. A change in the mean or 

standard deviation of the ARCs means that something happened to the structure, such as: 

degradation of the materials, change in the boundary conditions, or damage in one or more 

structural elements. 
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Direct comparison between the ARC of the intact and current structure cannot identify what 

exactly happened. It is probable that something happened but the location and type of the damage 

cannot be determined only by comparing ARCs or their statistical properties. Even though the 

focus of the paper is bounded on the system identification using ARMERA, a more sophisticated 

algorithm is required to identify the source of the property changes. 

 

2.2 Neural network algorithm 
 

ARMERA is regarded as one of the most accurate methods to calculate modal parameters with 

time series output data. ARMERA can be used to solve structural engineering problems including 

damage detection algorithm, which is one of the great challenging topic within civil engineering 

field, because it has the advantage of stationary time series data sequences and abundant number 

of coefficients, i.e., ARCs. While many algorithms exist to estimate the damage location, neural 

network (Lee et al. 2011) is deemed an efficient algorithm to perform this task due to the recent 

advances in its performance, computational efficiency, and computational power. Artificial neural 

network, which is inspired to biological neural networks, leads the research in damage 

identification techniques for civil structures. The p-lag number of ARCs forms the input layer of 

the artificial neural network algorithm. The algorithm has several hidden layer, the exact number 

varies with the complexity of the structure under investigation, and in the output the submatrix 

scaling factors (SSF) are identified (Yun and Bahng 2000). 

These tentative SSFs are used to calibrate the stiffness matrix of a finite element model, which 

represents the real structure. The result of the modal analysis of the model are compared with the 

modal properties of the experimental ERA to compute the errors within the neural network during 

the training period. The next step is to iterate different output data set inside the neural network 

algorithm to obtain updated SSFs. This process ends when the modal assurance criteria (MAC) is 

satisfied (Allemang 2003). The MAC value correlates the experimental mode shapes and 

numerical mode shapes and computes whether the updated numerical model is a well fit to the 

actual structural model. The MAC of the i-th mode is described as Eq. (15) 
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       

T
e n

i i

i
T T

e e n n

i i i i
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  
  



      
      

                     (15) 

where, i
eandi

n are the i-th complex mode shape vectors of the experimental model and the 

numerical model respectively. 

The MAC value calculated after operating forward propagation of neural network is used as the 

criteria to update the parameters of the hidden layers in the neural network. 

 

2.2.1 Submatrix scaling factor 
The submatrix considered in this study is not the element stiffness matrix but a further level 

below. A SSFs does not multiply the element stiffness matrix but one of the submatrix 

representing a specific force-displacement relationship. The substructural identification method 

takes into account the force-type based submatrix division: the axial force submatrix KN, the two 

shear-bending moment submatrices KMy,Vz and KMz,Vy, and the torsional moment submatrix KT. For 

a 2D frame structure this matrixes assembled as follow, Eq. (16) 
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The global stiffness matrix of a 3D frame structure, which is assembled from the element 

stiffness matrices after a coordinate transformation, is divided by the force level submatrices Eq. 

(17) 
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1 1

q
t

j i j in n
j i

K s K


   
 

                           (17) 

where q is the number of elements, n is the number of nodes in the system. 

The stiffness matrix obtained represents the updated model and the SSFs, are computed by the 

neural network algorithm. 

 

2.2.2 Modal analysis using script based finite element analysis tool 
A finite element model (FEM) based on Ansys parametric design language (APDL) (Yun 2004) 

and the parametric tool command language (tcl) of Opensees (McKenna 2011) are used for the 

study. The two FEA software are used due to their parametric characteristics that make them 

suitable to be used with the neural network algorithm by exchanging the ARCs, the modal 

parameters, and the SSFs within a single iterative framework. The advance in computational 

power enables a rapid computation of both the FEM and the ARMERA. After a series of repeated 

forward and backward propagation inside the neural network algorithm and FEA using the SSF 

obtained, the trained neural network algorithm can detect the possible location and type of the 

damages, when the statistical parameters of the ARCs change. 

 

 

3. Experiments 
 

Three experiments were performed on two different bridges; the first test bed is a short span 

reinforced concrete bridge and the second one is a long span reinforced concrete cable stayed 

bridge. The work done on the bridge is to obtain time series output data either in acceleration or 

velocity response at designated locations. The input excitation or any kind of external loading on 

the bridges was ignored when the AR models were built. The acquired temporal data are used in 

the output only AR models and Burg’s algorithm on multiple AR models computes the ARCs for 

each p-lag numerical model. The ERA of these ARCs gives the experimental modal parameters: 

natural frequencies, mode shapes and damping ratio. 

  

3.1 The Short span reinforced concrete bridge 
 

The first test-bed is a reinforced concrete bridge on the UNIST campus shown in Fig. 1. The 

bridge is a simple bridge with a single span of 60m, and the traffic on the bridge is exclusively 

pedestrian. The arch shaped yellow steel is attached along the bridge but it is only esthetic purpose 

of the campus and does not affect structural behavior of the bridge system.  

 

3.1.1 Remote sensing vibrometer 
The first experiment on the bridge was done with a remote sensing vibrometer (RSV). The 

experimental setup is shown in Fig. 2. The purpose of the experiment was to obtain the temporal 
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data set from the bridge structure so that the ARMERA could be structured for a single output 

system. 

The RSV’s data were acquired with a 480 Hz of sampling frequency and the laser head was 

165 m from the bridge. The experiment was repeated 3 times and each data set is 5 minutes long. 

The output response is the time domain velocity data of a single point on the bridge; the yellow 

steel arc bridge was the target because of its good reflectivity. 

The time series velocity data of the bridge were used to build the AR model of the output only 

single temporal data to extract the ARCs using Burg’s algorithm. The algorithm was written in 

Matlab and computed with different p-lag number of ARCs. The ARCs were assembled in the 

system state matrix, Eq. (14). The eigenvalue decomposition of the state matrix computed the 

modal parameters in the form of the mode shape vector and diagonal eigenvalue matrix including 

information of natural frequency. The Fig. 3 shows the identified frequencies of the bridge based 

on different p-lag, i.e. model order, from 40 to 80. Because the output response puts into the 

algorithm is just a single velocity data, the ARMERA gives one distinct frequency result, which is 

7.39 Hz. 

 

 

   

Fig. 1 Short reinforced concrete bridge 

 

 

 

   

Fig. 2 Experimental setting up 
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Fig. 3 Natural frequency of the bridge regarding RSV 

 

 

The Fig. 4 shows the behavior of 5 different ARCs for 60,000 data sets, each data set is 1,000 

steps long. The ARCs from 11 to 55 have different values, they are different parameters but each 

ARC has its own stationary pattern with its mean and its standard deviation, as shown in Table 1. 

Although, the flow has sudden alteration section occasionally, it doesn’t mean that the bridge has 

been damaged. The plunge states indicate that the system is subject to some disturbance, such as 

pedestrian traffic on the bridge. 

 

 

   

Fig. 4 ARC flow regarding RSV 
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Table 1 Mean and standard deviation of ARCs 

 ARC1 ARC2 ARC3 ARC4 ARC5 

Mean 0.9363 0.5194 0.3565 0.1121 0.2899 

Standard deviation 0.1848 0.1526 0.0706 0.0660 0.0756 

 

 

3.1.2 The Wi-Fi sensor system experiment 
The second experiment on the reinforced concrete bridge was conducted using 4 sensors node. 

The purpose of the second experiment was to build ARMERA for vector autoregressive (VAR) 

model, including not only natural frequencies but Also mode shapes. The sensing system for SHM 

was derived from the wireless sensing technology of the DuraMote system (Torbol et al. 2013). 

Wireless sensing network was composed by: a base station, four Roocas, the data aggregators, and 

four gophers, the sensor units. Each sensors unit was equipped with 3 accelerometer to cover all 

axes. The topography of the network is shown in Fig. 5. 

The four vertical acceleration data are used to build four AR model for the vertical mode, and 

Burg’s algorithm gives p-lag number of ARCs for each data set. These ARCs compose the state 

matrix of the VAR model and the eigenvalue decomposition of the matrix computes the modal 

properties. 

The Fig. 6 shows the natural frequencies of the vertical modes of the bridge for the model 

orders from 53 to 80. When a sufficient number of sensors is used more accurate and complete 

modal results are obtained. In comparison with the result of the FDD (Brincker et al. 2000) shown 

as Fig. 7, the result of ARMERA methodology is considered to be within the purview of FDD 

result and it is even more lapidary than the result of FDD. 

 

 

 

   

Fig. 5 Sensing network system 
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Fig. 6 Natural frequency result from ARMERA 

 
 

 

   

Fig. 7 Natural frequency result from frequency domain decomposition 

 
 
3.2 Long span reinforced concrete bridge 
 

The purpose of the third experiment is to apply ARMERA to a long span reinforced concrete 

bridges. The experiment was done on a cable stayed bridge. The length of main span of the bridge 

is 270 m and 6 sensors node were placed on the deck. Since this case contains a large number of 

output signals, the VAR is more complex than the previous experiment. The ARMERA result of 

the third experiment is shown in Fig. 8. When compared with the results of FDD, the frequencies 

from ARMERA are close to the values from FDD. 
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Fig. 8 Natural frequency result from ARMERA 

 
 

 

  

 

Fig. 9 Natural frequency result from frequency domain decomposition 

 
 
4. Conclusions 
 

In this study, ARMERA is used for the experimental modal analysis to compute both the modal 

parameters and the autoregressive coefficients, ARCs. The simple eigenvalue decomposition of a 

large system matrix composed by ARCs gives accurate modal information. Even when a small 
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number of the data set is used, ARMERA is sensitive enough that it can compute the modal 

information in the relevant data range. The stationary properties of ARCs computed by Burg’s 

algorithm can be used to detect changes within the structure itself overtime. If a large number of 

ARCs is used the algorithm is sensitive enough to assess the condition of the system numerically. 

An additional algorithm is necessary to convert the numerical estimation in physical parameters 

that can be understood; in this study artificial neural network is used. Due to this advantage it is 

possible to use this method to solve several civil engineering problems like damage detection. 

Though the scope of the study is only the modal analysis through the ARMERA, the damage 

detection using ARMERA with a model updating algorithm is the future challenge. While the 

ARM is well established, coding the model updating algorithm and reaching good performance 

with it will be a challenge. 

In the future, because singular value decomposition on a large state matrix takes intensive 

computational effort and because training a large neural network also takes intensive 

computational effort, parallel programming on GPGPU using CUDA or OpenCL will be used to 

address this issues. 
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