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Abstract.  Advances in sensor technologies have led to the instrumentation of sensor networks for bridge 
monitoring and management. For a dense sensor network, enormous amount of sensor data are collected. 
The data need to be managed, processed, and interpreted. Data management issues are of prime importance 
for a bridge management system. This paper describes a data management infrastructure for bridge 
monitoring applications. Specifically, NoSQL database systems such as MongoDB and Apache Cassandra 
are employed to handle time-series data as well the unstructured bridge information model data. Standard 
XML-based modeling languages such as OpenBrIM and SensorML are adopted to manage semantically 
meaningful data and to support interoperability. Data interoperability and integration among different 
components of a bridge monitoring system that includes on-site computers, a central server, local computing 
platforms, and mobile devices are illustrated. The data management framework is demonstrated using the 
data collected from the wireless sensor network installed on the Telegraph Road Bridge, Monroe, MI. 
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1. Introduction 
 

As sensor technologies mature, there have been increasing interests in the deployment of 

sensors for large scale infrastructure monitoring. Many bridges are now instrumented with dense 

sensor network to collect valuable information for management purposes (Jang et al. 2010, Zhou 

and Yi 2013, Koh et al. 2013). The advent of wireless sensor technologies has led to significant 

reduction in the installation cost of sensor network on bridge structures (Lynch and Loh 2006, 

Lynch et al. 2009). Developments of advanced nondestructive evaluation technologies have 

facilitated the assessment of the integrity and health of a structure by enabling the detection of the 

onset of damages (Sohn et al. 2015). With the permanent installation of sensors, recent research 

efforts have been attempted to extract statistically meaningful information and to apply data-driven 

predictive analysis with the collected long term sensor data (Cross et al. 2013, O'Connor et al. 
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2014). Until now, structural health monitoring research efforts have been mostly focused on the 

developments of new sensor technologies and data analysis techniques. Very little efforts have 

been devoted to deal with the fundamental issues of data management. The data issues need to be 

dealt with properly in order to facilitate long term lifecycle bridge monitoring and management. 

Information models and interoperability standards have been proposed to support data 

management platform in various engineering disciplines (Ray 2002, Cheng et al. 2010). In the 

building and construction domains, building information modeling (BIM) has been widely 

employed to support integrated project delivery process and data exchange (Eastman et al. 2011). 

The development of BIM standard has enabled software to support data exchange among different 

application platforms. Research efforts have also been initiated towards developing bridge 

information modeling (BrIM) standards for bridge structures (Chen and Shirolé 2006, Shirolé et al. 

2008, Samec et al. 2014). Current BrIM efforts focus primarily on the geometric information and 

material properties (Karaman et al. 2013, Ali et al. 2014). Standard markup language, such as 

XML, is employed as the modeling language to facilitate data interoperability. In order to be useful 

for comprehensive bridge lifecycle management, BrIM needs to be extended to include 

descriptions of sensor data and integrated with a bridge monitoring system. 

One conventional approach to handle sensor data in structural monitoring applications is to 

employ traditional relational database management systems (RDBMS). The key advantages of 

RDBMSs are their reliability, convenient query language, and the extensive user base. For 

example, Smarsly et al. (2013) have proposed a cyber infrastructure for wind turbine monitoring 

using MySQL database, and Li et al. (2006) have utilized SQL Server 2000 for health monitoring 

system for the Shandong Binzhou Yellow River highway bridge. However, recent studies have 

identified the limitations of RDBMSs, in particular, for the scalability and flexibility issues (Hecht 

and Jablonski 2011, Han et al. 2011, Padhy et al. 2011). With the amount of data collected from a 

dense sensor array, using RDBMS as a backend database for a bridge monitoring system is neither 

efficient nor desirable. Furthermore, the basic data structure for schema representation in RDBMS 

as tables is inefficient to handle the BrIM and XML-based schemas, which typically involve 

hierarchical and unstructured data structure. 

Advances in cyber physical systems and cloud computing services share many significant 

technologies that can be deployed for the management of infrastructure monitoring data. Cloud 

computing can be broadly defined as a utility over a network model that has emerged as a 

cost-effective and efficient model to enable and deliver business and engineering services (Law et 

al. 2016). Driven by the need for storing, managing and retrieving large online data records with 

heterogeneous formats, much research have been devoted to develop non-relational database and 

non-traditional file management systems. Examples of open source databases that have been 

deployed by cloud service providers include Apache Cassandra, Apache H-Base and MongoDB 

(Grolinger et al. 2013). These non-traditional database systems are noted as NoSQL (Not only 

SQL) database systems which are designed to handle unstructured data, which are the types of data 

commonly found in engineering models and structural monitoring systems. Recent studies have 

shown that NoSQL database systems have significant advantages over RDBMS in terms of 

flexibility and scalability (Hecht and Jablonski 2011, Han et al. 2011, Padhy et al. 2011). For 

example, Le et al. (2014) proposed an Internet of Things (IoT) platform to handle the data 

collected by sensors and concluded that NoSQL database systems, such as Apache Cassandra, 

consistently have better performance than relational database systems for handling and managing 

sensor data. Furthermore, NoSQL database systems have been shown to have better scalability in 

handling massive IoT data and have better query performance for sensor network data (Li et al. 
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2012, Thantriwatte and Keppetiyagama 2011) 

This study investigates a NoSQL data management framework which is designed for bridge 

monitoring applications. The system is designed not only to support the management of bridge 

monitoring data but also to facilitate data utilization by engineering design and analysis platforms. 

Based on the needs of the data management framework, Apache Cassandra and MongoDB are 

selected as the backend database systems to support pertinent data archiving and efficient querying. 

For interoperability purpose, we adopt OpenBrIM 2.0 (an open source XML based BrIM schema) 

to represent the bridge information and SensorML (a standard for sensor and IoT applications) to 

describe sensor information. In addition, software tools and interfaces are developed to support 

automated data flow and to enhance data interoperability. To demonstrate software integration, 

external analysis modules such as structural analysis and machine learning modules are employed. 

Lastly, a mobile interface is developed to allow users to easily access information stored in the 

database and to retrieve meaningful information from the server. The NoSQL database 

management system is demonstrated using the bridge information model and the monitoring data 

of the Telegraph Road Bridge (TRB) in Monroe, Michigan. 

 

 

2. Selection of data management tools 
 

This section discusses a sensor data management framework and the selection of data standards 

and the data management tools. There exist many NoSQL database systems, each has its own 

strengths and disadvantages. Careful evaluation of the tools is necessary for successful 

development of a data management system. Furthermore, use of standard modeling languages to 

store the metadata is important to facilitate interoperability of managed information. In this section, 

we first describe the overall data management system infrastructure for bridge monitoring 

applications. NoSQL database tools are then selected based on the defined requirements. Lastly, 

open standards for bridge information modeling and engineering applications are introduced to 

store the metadata of the system. 

 

2.1 Sensor data management system framework 
 

There have been few research efforts focusing on the data management infrastructure for 

structural monitoring (McNeill 2009, Zhang et al. 2012, Smarsly et al. 2013, Law et al. 2014). As 

shown in Fig. 1, a typical data management system for infrastructure monitoring consists of four 

main components: (1) onsite computers, (2) main (data repository) server, (3) local (desktop) 

computers, (4) and web or mobile user interfaces. The role for each of the components can be 

described as follows: 

 An onsite computer is an autonomous in situ system that stores sensor data temporarily and 

serves as a buffer between the sensor network and the main server. If necessary, the onsite 

computer also performs pre-process of raw data or simple analysis. Once the measured sensor 

data is transmitted from the sensor network installed on bridge structure, the onsite computer 

stores the data to its file or data management system and sends the data to the main server. 

 The main server plays a pivotal role for a bridge monitoring system: the main server not 

only persistently stores all the sensor data, the analysis results, and other metadata including 

bridge information model and sensor information, but also allows local desktop computers or 

end-users to easily access the database and to retrieve the data. Therefore, the main server 
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needs to adopt a database system which is scalable and flexible to handle the amount of the 

data which are continuously acquired from the sensor network. Furthermore, the system should 

adhere to the standard data structure commonly used to represent engineering models and 

sensor data and to facilitate easy data exchange and utilization.  

 A local (desktop) computer serves as a computing platform that engineers employ to carry 

out the computational tasks involved in the bridge monitoring and management system. While 

the role of the main server is to maintain its desirable performance and stability as a 

centralized data archive, a local desktop computing platform periodically retrieves sensor data 

along with relevant metadata from the server, performs analysis, and sends the analysis results 

back to the main server.  

 Finally, a user interface allows the mobile users or engineers direct, real time access to the 

computational tools as well as the in-situ information at the bridge site a via web-interface or a 

mobile device.  

According to the data requirements, the main data server will potentially handle significant 

amount of data records, which are not necessarily homogeneous or of the same data types. 

Therefore, the backend database for the main server should primarily focus on flexibility and 

scalability that would allow long term data archival and extendibility that will support multi-tier 

service developments. On the other hand, an onsite computer or a local desktop computer only 

needs to temporarily store a limited amount of data. Therefore, the focuses of the database system 

for an onsite or a local desktop computer are not necessarily related to the long-term archiving of 

large amount of data, but should be on efficient data retrieval to support data parsing and analysis. 

 

2.2 Selection of NoSQL database tools 
 

There are many existing NoSQL database systems with different features and properties. Since 

NoSQL database tools have been developed to support specific data types required by the 

applications, selecting an appropriate database tool for specific application is very important for 

successful deployment of data management system (Hecht and Jablonski 2011). Based on the data 

types, current NoSQL database tools can be categorized into column family stores, 

document-oriented stores, key-value stores, and graph databases (Hecht and Jablonski 2011, Han 

et al. 2011, Padhy et al. 2011). 

 

 

 

Fig. 1 Data management system for infrastructure monitoring 
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 The column family databases have the advantages for large scale distributed data storage. 

 The document oriented databases support schema-less data structure and powerful query 

performance for heterogeneous data format.  

 The key-value stores show very fast read and write speed utilizing in-memory operation. 

 A graph database is optimized to manage data records that can be represented as a graph 

data structure. 

In this study, we employ Apache Cassandra, a column family database to satisfy the data 

requirement of the main server, and MongoDB, a document oriented database to satisfy the data 

requirement of the onsite computer and the local computer. Key-value stores, while suitable for 

efficient data retrieval, are ruled out in this study, because of their limited data capacity. Lastly, the 

data schemas, to be described in the latter section, do not lend themselves suitable for the graph 

database. 

 

2.2.1 Apache Cassandra: Database system for supporting persistent archiving 
Apache Cassandra database, one of the most popular column family data storage systems, has 

been developed and utilized to support large scale management and data processing systems 

(Hewitt 2010, Hecht and Jablonski 2011). The fundamental data structure of Apache Cassandra 

consists of key space, column family, row, and key-value pairs. Although Apache Cassandra does 

not support all the functionalities of RDBMSs, Apache Cassandra is able to handle many of the 

emergent big data issues. For example, Apache Cassandra database system shows not only 

consistent performance regardless of the size of the data, but also fast performance based on hash 

algorithm and efficient write operation (Hewitt 2010, Hecht and Jablonski 2011, Le et al. 2014). 

Moreover, the system is highly available by guaranteeing failure at any single point would not 

cause total system failure (Hewitt 2010). On the other hand, Apache Cassandra currently supports 

only limited query and data aggregation.  

Furthermore, the flexible data schema of Apache Cassandra has the advantages on storing 

heterogeneous data by allowing different attribute sets for different rows (Hewitt 2010). In the 

bridge monitoring applications, bridge metadata such as bridge information model and sensor 

information usually involves hierarchical and heterogeneous data, respectively. The flexible data 

schema feature of Apache Cassandra is particularly useful for managing metadata for bridge 

monitoring. As an example, in the building and construction application, Cheng and Das (2013) 

have implemented the BIM-PDE server using Apache Cassandra.  

Because of availability, scalability and schema flexibility, many organizations have shifted to 

Cassandra NoSQL database system to manage high volume of data (read and write) transactions 

(Branson 2014, Datastax 2011, Datastax 2012). In this study, we employ Apache Cassandra to 

support long term data archival and system extendibility in the main server. 

 

2.2.2 MongoDB: Database system for supporting efficient data retrieval 
MongoDB is another popular document oriented database systems designed for schema-less 

data structure with high performance and scalability. The data structure of MongoDB consists of 

the database, collection, and binary JSON (BSON) schema-less documents (Chodorow 2013). The 

JSON document enables easy change or extension of the data model and human-understandable 

data structure such as object-oriented data format. MongoDB also has the advantages on 

representing complex data structure by enabling relationships between documents and supporting 

hierarchical data structure. Moreover, MongoDB dramatically improves read and write 

performances at the cost of join operation and transactions (Chodorow 2013). Although MongoDB 
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does not support some of query and aggregation functions of RDBMSs, it still supports a rich set 

of query operations including indexing, range query, and aggregation operations. With the flexible 

schema and high performance, MongoDB is particularly suitable when expensive queries and 

transactions are not required. 

Based on its flexibility, performance and scalability, MongoDB has been widely used in many 

fields including Internet of Things (IoT) applications and real-time analysis (Chodorow 2013, 

Hows et al. 2014). To support flexible data schema and high query performance, the database 

management system for bridge management employs MongoDB for onsite computers and local 

engineers‟ desktop computers. 

 

2.3 Selection of standardized modeling language 
 

Information models and interoperability standards have been proposed as a means to support 

integrated project delivery process and lifecycle management in engineering domain. By adhering 

to the data exchange standard, information models can be translated into different file formats for 

different applications in a seamless manner, which can reduce work loads and human errors on 

manual file conversion (Eastman et al. 2011, Bernstein et al. 2012). There have been several 

research efforts to develop information modeling standards for bridge engineering applications 

(Chen and Shirolé 2006, Shirolé et al. 2008, Karaman et al. 2013, Ali et al. 2014). To facilitate 

interoperability, semantically meaningful languages, such as extensible markup languages (such as 

XML), are employed to represent the bridge model. Research efforts have also been attempted to 

integrate bridge management information to bridge information models (Marzouk and Hisham 

2011, Samec et al. 2014), and these efforts show great potentials of Bridge Information Modeling 

to better support integrated data management for bridge monitoring. 

 

 

 

Fig. 2 One of the PLVM of the undamaged structure 

674



 

 

 

 

 

 

A NoSQL data management infrastructure for bridge monitoring 

 

In this study, we utilize the open-source XML-based OpenBrIM data schema to represent the 

bridge model and the relevant information (Chen 2013). OpenBrIM describes a bridge information 

model as a set of hierarchical objects, where an object contains information such as coordinates or 

material properties. OpenBrIM also allows users to define template element for parametric design. 

Although the BrIM model written in XML usually involves complex data structures, which are not 

easy to manage using traditional RDBMS, the flexible data schema of NoSQL database systems 

can elegantly handle the complex BrIM data. 

While the current OpenBrIM schema can describe the basic elements of bridge information 

model, it lacks essential elements for bridge monitoring and management applications such as 

sensor metadata and analytical model information. Therefore, we need to supplement the database 

system with additional components, so that the system can manage the necessary information for 

bridge monitoring. To achieve this goal, we adopt Sensor Model Language (SensorML), a standard 

for defining measurement and post-measurement processes proposed by the Open Geospatial 

Consortium (OGC), to store the sensor information in the main server (Open Geospatial 

Consortium, 2014). SensorML is written in XML, and it provides extensive metadata for storing 

sensor information. In addition, we also investigate the data schema of CSI Bridge (2015) to add 

analytical model information to the data management system. Fig. 2 illustrates the overall data 

management framework reflecting the selected database tools and standard modeling languages. 

 

 

3. Infrastructure system for bridge monitoring 
 

This section describes the detailed architectural design for the bridge monitoring system based 

on NoSQL database tools. Data schema and interface software are developed to facilitate data 

utilization and data integration. We also employ several programming libraries to support remote 

connection to the NoSQL database systems as well as seamless data flow. In this section, first, data 

schema descriptions for sensor data, bridge information model, and sensor information are 

described. We then focus our discussion on the architecture of the proposed system and its 

individual components.  

 
3.1 Data schema description 
 

An appropriate data schema can significantly facilitate system automation and improve data 

management efficiency. It should be noted that with NoSQL database, the defined data schema can 

be easily revised and scaled according to user needs. There are three basic types of data in the 

monitoring system: sensor data, sensor information, and bridge information model. The analysis 

results can share the same schema for the sensor data. In the proposed system framework, 

MongoDB installed on an onsite computer and a local computer requires data schema for the 

sensor data, while Apache Cassandra requires data schema for sensor information and bridge 

information model in addition to the sensor data. The standard modeling languages such as 

OpenBrIM and SensorML are employed to define the data schema for interoperability. 

 

3.1.1 Sensor data (MongoDB) 
Fig. 3 describes the data schema for sensor data defined for MongoDB. In the current 

implementation, the database is named after the bridge structure. In addition, we use a single 

collection named repos to manage the sensor data. We take advantage of MongoDB‟s hierarchical 
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data structure to categorize sensor data for ease of data retrieval (Jeong et al. 2015b). The root 

node for a single data acquisition (DAQ), named daqevent, contains the timestamp of the DAQ 

event. The non-leaf nodes, named group and sensor, not only categorize sensor data according to 

user defined sensor group and sensor id/channel, but also provide metadata of DAQ such as 

sampling rate. The leaf document named sensordata collects a list of measured data over a certain 

time period along with the timestamp. Currently, the interface program is tuned to allow each 

document to store the sensor data measured over a period of one second (Jeong et al. 2015a). For 

example, if the sampling rate of a sensor is 5Hz, then the measured data is discretized into buckets 

where each bucket has five consecutive data and is stored in a single sensordata document. Since 

the upper limit of data size of a document is 16MB, this discretization strategy is required to 

prevent exceeding the maximum data size which can be caused by sensors that have high sampling 

rate (Jeong et al. 2015a). 

 
3.1.2 Sensor data (Apache Cassandra) 
Fig. 4 shows the data schema defined for sensor data in Apache Cassandra. In the current 

implementation, the key space is named after the bridge structure, and the column family is named 

sensordata. While the consistent hashing algorithm of Apache Cassandra has great advantages on 

managing big data with distributed computing nodes, the partitioning strategy could deteriorate the 

query performance for sequential data by distributing them to different physical locations. To deal 

with this problem, we implement a time-series data modeling scheme for Apache Cassandra 

(McFadin 2015). As shown in Fig. 4, the row key is defined according to the sensor id and the year 

and month of timestamp in the form of sensorID|yyyymm. Furthermore, the timestamp of the 

sensor data is used for the name of a column, while the corresponding sensor data is used for the 

value of the column. With this time-series modeling scheme, the time-series data can be stored 

sequentially to disk in sorted order, thereby enhancing range query efficiency. Currently, the 

interface program is tuned to make each column to store up to one second of time-series data 

acquired by a single sensor channel. 

 

 

 

Fig. 3 Data schema of sensor data on MongoDB 
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Fig. 4 Data schema of sensor data on Apache Cassandra 
 

 

3.1.3 Sensor information 
The main server also manages the sensor information such as sensor id, sampling rate, and 

output type, and allows user to utilize those information by different applications including data 

analysis and management of sensor. For interoperability, we implement SensorML, a standard for 

IoT applications, and define a list of metadata for bridge monitoring applications (Open Geospatial 

Consortium 2014). To manage sensor information, a column family named sensorinformation is 

prepared in Apache Cassandra. Fig. 5 illustrates the data schema defined for the sensor data. A 

single row is assigned to store a single sensor‟s metadata. The primary key that uniquely identifies 

a sensor consists of the sensor id and the installation date of the sensor, since there could be 

different sensors sharing the same sensor id over time. In addition, index is defined on the output 

of a sensor (e.g., strain, acceleration, and temperature), since same type of sensors are often 

utilized together. Although the sensor information is typically heterogeneous, the flexible data 

schema of Apache Cassandra can handle the unstructured information elegantly. For example, the 

sensor information of u42ch0 in Fig. 5 contains incomplete data set due to the lack of output_uom 

entity. While traditional relational database systems enforce identical set of attributes to every 

single row, the flexible data schema of Cassandra allows different attribute set for each row, and 

thus, elegantly handles incomplete data sets that do not contain all the components defined by 

SensorML (Hecht and Jablonski 2011, Hewitt 2010). 

 

3.1.4 Bridge information model 
Bridge information model repository in the main server stores all the information about a 

bridge structure including, but not limited to, geometric and analytic model information. For 

example, an element in a bridge information model includes not only the detailed coordinate 

information (geometric information), but also the connectivity and load information (analytic 

model information). This study employs OpenBrIM 2.0 schema by Chen et al. (2013) as the basis 

for the data schema representing the bridge information model. OpenBrIM uses XML as the 

language-neutral data format to facilitate data exchange and improve interoperability. Since the 

OpenBrIM lacks schema for analytical model, we investigate the data schema of CSI Bridge 

(2015), a finite element (FE) analysis program, and extracts the important elements that are needed 

for structural analysis. 
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Fig. 5 Data schema of sensor information on Apache Cassandra 
 

 

Fig. 6 shows the data schema for BrIM repository in the Apache Cassandra database. Bridge 

information model data is stored in a column family named bridgeinformation. Most of the rows in 

the column family represent a unit element of the bridge information model, and their row keys are 

defined according to the id of the elements. Each row stores the element‟s attributes such as 

geometry and nodal connectivity in separate columns. The value of each column is a XML string 

containing appropriate information based on OpenBrIM schema. Some special rows contain 

general information for FE analysis including node information, material properties, and load 

information. Although a bridge information model usually involves objects that may have different 

attributes-value pairs, their heterogeneous object sets can be handled rather flexibly within a single 

column family with Apache Cassandra (instead of using multiple relational tables) (Hewitt 2010). 

 

3.2 System architecture 
 
Fig. 7 shows the overall architecture of the bridge monitoring system. As described in Section 2, 

the system consists of four major components including onsite computers, main server, local 

computers, and user interfaces. Interface software tools are developed to support many functions 

including data processing, network handling, and connection to the database systems. In addition, 

the interface software for each component is developed to enable seamless data flow. Various 

Application Programming Interface (API) tools are available for implementation. For example, 

MongoDB provides APIs supporting many programming languages to help the users to easily 

utilize the database system. Similarly, Apache Cassandra provides convenient APIs as well as a 

Cassandra Query Language (CQL), which is very similar to the structured query language (SQL). 

In this study, Python is chosen as the primary programming language to implement the functions 

needed for the proposed system including data processing and data transmission. 
 
3.2.1 Onsite computer 
An onsite computer receives the sensor data from sensor network, stores the data in MongoDB, 

and sends the data to the Apache Cassandra database in the main server. For this study, we employ 

an older version of MongoDB (version 2.0.6) since the onsite computers and controllers installed 

in some bridge monitoring and sensor network systems employ older versions of the Microsoft 

operating system and do not support a recent version (version 2.2 or higher) of the MongoDB 

system. Two interface programs written in Python are developed to automate the data flow (Jeong 

678



 

 

 

 

 

 

A NoSQL data management infrastructure for bridge monitoring 

 

et al. 2015b). The first program, named onsite.py, is in charge of sending new sensor data to the 

MongoDB‟s repository. Once the new sensor data is transmitted from a sensor network, onsite.py 

parses the raw sensor data into the defined data schema and is stored in the database using 

PyMongo, a MongoDB API for Python. 

Similarly, the second program, named tomain.py, parses the sensor data in the MongoDB into 

the defined data schema for Apache Cassandra and sends the data to the main server. The 

tomain.py employs an API for Apache Cassandra called Cassandra Driver. Since the in situ 

condition is not necessarily stable, we implement error handlers that can handle errors due to 

unstable network connection. In addition, bridge monitoring system typically involves large 

amount of sensor data, even though the network speed on site is typically slow in comparison to 

the data rate. To handle a timeout error due to slow network connection, we loosen the connection 

timeout constraint of Cassandra Driver. The second program also records whether a data bucket 

has been successfully sent to the main server, so that we can prevent unnecessary duplicate data 

transmission to the Cassandra database when the onsite system is accidently rebooted. 

 

 

 

Fig. 6 Data schema of bridge information model on Apache Cassandra 
 

 

 

Fig. 7 System architecture of cyber infrastructure 
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3.2.2 Main server 
The main server serves a central data repository of the bridge monitoring system. Apache 

Cassandra (version 2.0.16) is implemented as the backend database for the main server. Apache 

Cassandra in the main server is designed to store mainly four kinds of data such as sensor data, 

sensor information, bridge information model, and analysis result. Apache Cassandra keeps 

listening to the request from onsite computers and local computers through allocated ports on the 

network. Once a request from Cassandra Driver API is delivered, Apache Cassandra automatically 

handles the request and sends the appropriate response back to the device. Since the size of sensor 

data is usually quite large, the setting of Cassandra is tuned to use as much as memory as possible 

for efficient data processing.  

In addition to the Cassandra database, the main server also implements HTTP server to handle 

requests from the users using BaseHTTPServer, a Python module for Internet protocol. The HTTP 

server keeps listening to the user request from a user‟s mobile device. Once a URL request is 

received, the HTTP server parses the URL into query and parameter, retrieves relevant data from 

Apache Cassandra database using Cassandra Driver, and returns the data to the user. Currently, the 

HTTP server only supports simple GET requests to query sensor data and sensor information.  

 

3.2.3 Local computer 
A local computer is essentially a desktop-based computing platform that retrieves data, perform 

analysis, and push the analysis results back to the Apache Cassandra in the main server. Since 

some data analysis modules require very expensive computational costs, the decentralized strategy 

helps the main server to be isolated from such operations and to maintain its performance as the 

central data repository. To automate data flow from Apache Cassandra database in the main server 

to the analysis software in the local computer, several interface programs written in Python are 

developed (Jeong et al. 2015b). In addition to Cassandra Driver, we use MATLAB Engine (an 

interface between MATLAB and Python), scikit-learn (a tool for machine learning in Python), and 

rpy2 (an interface to R for Python process) to demonstrate a diverse set of data analysis platforms. 

In addition, the local computer also employs MongoDB in case the user wants to temporarily store 

the data in the local computer. 

 

3.2.4 User interface 
Development of user interface is an important task to facilitate the utilization of bridge 

monitoring data for bridge management and decision making processes. In this study, we develop 

a prototype iOS application using Swift 2, a programming language for iOS. This application 

deploys many Swift APIs including view controller (UIViewController), button (UIButton), table 

(UITableView) and map view (UIMapView). The application provides functions to retrieve sensor 

data and sensor information from the main server. For example, if a user touches “sensor 

information” button on the screen, the application sends a GET request to the HTTP server in the 

main server using the networking API of iOS. The HTTP server then processes the request and 

return relevant data to the user‟s mobile device. Once the mobile device receives the data, the 

application displays the retrieved sensor information as tables for viewing. Currently, the prototype 

application supports simple data retrieval for sensor data and sensor information. 
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4. Implementation 
 

To test the data management infrastructure, we use the sensor data sets collected from 

Telegraph Road Bridge (TRB) in Monroe, Michigan (shown in Fig. 8 (a)) and its bridge model 

(modelled in CSI Bridge (2015)) and sensor information (previously stored in Microsoft Excel). 

The sensor network installed on the Telegraph Road Bridge consists of 14 accelerometers, 40 

strain gauges, and 6 thermistors, as described by O‟Connor et al. (2014, 2015). Fig. 8(b) shows the 

layout of the sensor network (O‟Connor et al. 2015). The data sets include seven weeks of sensor 

data: one week per month from August 2014 to February 2015. The sensor network acquires data 

for a one-minute time duration on every 2 hours interval. While the accelerometers collect the 

measurements at the sampling rate of 200 Hz, the sampling rate of the strain gauges and the 

thermistors is set at 100 Hz.  

 

4.1 Data management: storage and retrieval 
 

To simulate the in situ bridge monitoring scenario, a script written in Python that periodically 

sends the sensor data sets to the onsite computer. As discussed in Section 3, once the sensor data is 

delivered to the onsite computer, the interface program (onsite.py) on the onsite computer 

automatically re-structures the raw data according to the defined data schema for MongoDB and 

stores the parsed data to MongoDB. Fig. 9 shows a screenshot of the onsite.py in operation. Once a 

data set for a single data acquisition event is stored in MongoDB in the onsite computer, another 

interface program on the onsite computer (tomain.py) parses the data set stored in MongoDB to the 

defined data schema for Apache Cassandra and uploads the data to the Apache Cassandra database 

in the main server. Fig. 10 shows a screenshot of the tomain.py in operation. The sensor data stored 

in Apache Cassandra in the main server can be retrieved using Cassandra Driver (for local 

computer) or URL request (for mobile device). Fig. 11 shows an example of data retrieval for a 

desired time period using a mobile device. 

 

 

  

(a) Side view 
(b) Type and location of sensors installed on Telegraph 

Road Bridge (O‟Connor et al. 2015) 

Fig. 8 Telegraph Road Bridge, Monroe, MI 
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Fig. 9 onsite.py: Python script storing sensor data to MongoDB in on-site computer 
 

 

 

Fig. 10 tomain.py: Python script storing sensor data to Apache Cassandra database in main server 
 

 

 
 

(a) User interface for querying (b) Retrieved sensor data 

Fig. 11 Sensor data retrieved from Apache Cassandra in main server using mobile device 

 

 

The bridge information model is parsed into the defined data schema and stored in the Apache 

Cassandra in the main server. For storing the bridge information model, we export the FE model 

into Microsoft Excel format using CSI Bridge‟s exporting function. The exported model is then 

converted into the defined data schema and stored in the Apache Cassandra in the main server. 

Once the data are stored, the bridge information model can be retrieved in different file formats. 

Figs. 12(a) and 12(b) show the retrieved FE model (Excel file format) visualized using CSI Bridge 
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(2015) and the retrieved BrIM geometry model (XML file format) visualized using the OpenBrIM 

viewer, respectively. In this study, we develop and utilize Python scripts to convert, store, and 

retrieve the bridge information model. Similarly, sensor information also needs to be stored in the 

Apache Cassandra in the main server according to the defined data schema. To conduct this task, 

we develop a Python script to parse and send the sensor information to the main server. Fig. 13 

shows the sensor information retrieved using CQLSH, a command line client for Apache 

Cassandra. 

 

4.2 Data analysis using long term sensor data 
 

To demonstrate the utilization of local computer as a computing platform (typically employed 

by engineers), we employ two analysis modules: modal analysis module and machine learning 

module. The implementation of these modules for the Telegraph Road Bridge has been previously 

illustrated using a cyber-enabled wireless monitoring system (O‟Connor et al. 2014, Zhang et al. 

2016). In this study, we employ the modules by utilizing the proposed NoSQL data management 

infrastructure for bridge monitoring. We utilize a Matlab-based Subspace Identification module 

(Overschee 2012) to extract modal properties from the acceleration data stored in the main server. 

The modal properties are computed on the local computer using the following steps (Jeong et al. 

2015b) 

 

(1) Retrieve the sensor IDs of all the accelerometers that operated during the defined period.  

(2) Retrieve the sensor data collected by the sensors identified in step (1). 

(3) Send the retrieved sensor data to the Matlab-based Subspace Identification module 

(Overschee 2012) and calculate the modal properties. 

(4) Upload the calculated modal properties to Cassandra database in the main server. 

(5) Retrieve the sensor IDs of all the thermistors that operated during the same period. 

(6) Retrieve sensor data collected by the sensors identified in step (5). 

(7) Plotting the first modal frequencies calculated in step (3) along with the temperature data 

acquired in step (6). 

 

The first modal frequencies computed using sensor data collected from August 2014 to February 

2015 are plotted in Fig. 14(a) along with the temperature measurements.  

 The analysis results stored in the Apache Cassandra in the main server can be utilized for 

additional analyses. We employ Gaussian Process for Machine Learning (GPML) module in the 

local computer to predict the effect of temperature changes on the bridge‟s behavior. The Gaussian 

Process Regression interface written in Python retrieves the first modal frequencies along with the 

temperature measurements from the Apache Cassandra in the main server. The retrieved data sets 

are then sent to the GPML module provided by the scikit-learn (a Python-based machine learning) 

package (Pedregosa et al. 2011). Once the GPML module completes the analysis, the prediction 

results for the first modal frequencies for different temperatures are returned. Fig. 14(b) illustrates 

the prediction results for the natural frequencies based on the sensor data collected from August 

2014 to February 2015. The predicted first natural frequencies show the bilinear relationship 

between temperature and the frequency with the pivot at 0°C; the results are in good agreements 

with the study by O‟Connor et al. (2014). 
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(a) Finite element model (b) Bridge information model (geometry) 

Fig. 12 Bridge information model retrieved from Apache Cassandra in the main server 

 

 

 

Fig. 13 Sensor information retrieved from Apache Cassandra in the main server 
 

 

4.3 Influence line analysis using sensor data and bridge model 
 

To take advantage of the integrated bridge monitoring infrastructure, we conduct influence line 

analysis, which compares bridge responses collected by the sensors with analytically computed 

response using the FE model. In this analysis, we utilize sensor data collected from a field test for 

identification of vehicle-bridge interaction (Hou et al. 2015). In the dynamic loading test, a single 

test truck instrumented with GPS sensor crosses the Telegraph Road Bridge without other traffics. 

The test truck passes the middle lane of the bridge at approximately 60 mph. The specification of 

the test truck can be found in Fig. 15 and Table 1 (Hou et al. 2015). When the test truck crosses the 

bridge, strain gauges (installed as described in Fig. 16) measure the dynamic strain response of the 

bridge (Hou et al. 2015), and the collected data sets are stored in the Apache Cassandra in the main 

server. On the other hand, the corresponding vehicle load and vehicle lane are defined in the FE 

model of the Telegraph Road Bridge (as shown in Fig. 17) for the simulation. The FE model is 

then sent to the Apache Cassandra in the main server. 

 

 
Table 1 Test truck load description (unit: pound) (Hou et al. 2015) 

Steer Axle Drive Axle Trailer Lead Axle Trailer Rear Axle Total 

9,460 17,620 17,820 17,600 62,500 
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(a) 1st modal frequency along with temperature 

measurement (SSI module) 

(b) Prediction of 1st modal frequency according to 

change of temperature (GPML module) 

Fig. 14 Data analysis result computed by using SSI module and GPML module in local computer 

 

 

 

Fig. 15 Test truck dimension (Hou et al. 2015) 
 

 

  
(a) Plan view (b) Section view 

Fig. 16 Location of strain gauges 
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Once all the necessary data are stored in the main server, we plot the influence lines for sensor 

data by retrieving the collected sensor data and plotting the strain response along with the truck 

location. Next, we download the FE model from the server and conduct static and dynamic FE 

analysis to compute the influence line for the sensor locations. Regarding the FE analysis, direct 

integration method (Hilber-Hughes-Taylor method) without damping is employed, and 0.03 

second is selected for the time step for the integration. Furthermore, since strain cannot be directly 

obtained from analysis results of CSI Bridge, we calculate the strain indirectly using the stress 

response obtained from the analysis. Finally, we compare the measured response and analytical 

response of the bridge by overlaying the obtained influence lines. Figs. 18(a), 18(b), 18(c), and 

18(d) show the overlays of the influence lines at a sensor location (channel 0), respectively. The 

results show that the measured response is very similar with the analytical response, although the 

analytical response shows slightly higher maximum response than the measured response. 

 

 
(a) Vehicle load configuration 

  
(b) Defined vehicle lane (c) Visualized test truck model 

Fig. 17 Test truck defined in FE model (CSI Bridge (2015)) 

 

5. Conclusions 
 

In this study, a cyber infrastructure for bridge monitoring applications based on state-of-the-art 

data management technologies is developed. First, we investigate the bridge monitoring 

framework and define the data requirements including flexibility, scalability and query 

performance. Based on the data requirements, Apache Cassandra and MongoDB are selected as the 

backend database systems of the cyber bridge monitoring framework. Apache Cassandra is a 

column family database that is suitable for large-scale distributed database, while MongoDB is a 

document oriented database that has advantages on the schema-less data structure and fast 

performance. In addition, standardized modelling languages such as OpenBrIM and SensorML are 

employed to handle unstructured data and to support interoperability. 
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(a) strain gauge at end-span of girder 6 (b) strain gauge at mid-span of girder 6 

  
(c) strain gauge at end-span of girder 2 (d) strain gauge at mid-span of girder 2 

Fig. 18 Influence line analysis result 

 

 

In the current proposed data management system, the monitoring system architecture consists 

of onsite computer, main server, local computer, and mobile interface. Data schemas for sensor 

data, sensor information and bridge information model are designed to facilitate system 

automation and to improve data management performance. The data schema for sensor data of 

MongoDB is defined using hierarchical data structure for ease of data access. On the other hand, 

the data schema for sensor data of Apache Cassandra is defined using time-series data modelling 

scheme to guarantee desirable performance for time-series data. The data schemas for bridge 

information model and sensor information are defined based on OpenBrIM and SensorML 

standards, respectively. In addition, we have developed interface programs to better support the 

automation and integration of the system. 

The data management system is validated using the sensor data collected from the Telegraph 

Road Bridge along with the bridge model and sensor information of the bridge. Results show that 

the proposed cyber bridge monitoring infrastructure can handle storage and retrieval of the data 

efficiently and stably. To demonstrate the utilization of the cyber infrastructure, modal analysis 

module and machine learning modules are employed. Furthermore, we compare the influence lines 

obtained from the sensor data and bridge information with the one obtained by analysis. The 

results show that the proposed system can help users easily query and utilize complex and large 

data for bridge monitoring applications. 
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