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Abstract.  The existence of SH-wave in a piezomagnetic layer overlying an initially stressed orthotropic 
half-space is investigated. The coupled of differential equations are solved for piezomagnetic layer overlying 
an orthotropic elastic half-space. The general dispersion equation has been derived for both magnetically 
open circuit and magnetically closed circuits under the four types of boundary conditions. In the absence of 
the piezomagnetic properties, initial stress and orthotropic properties of the medium, the dispersion 
equations reduce to classical Love equation. The SH-wave velocity has been calculated numerically for both 
magnetically open circuit and closed circuits. The effect of initial stress and magnetic permeability are 
illustrated by graphs in both the cases. The velocity of SH-wave decreases with the increment of wave 
number. 
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1. Introduction 
 

Recently, the study of propagation of surface waves in a layered media  compose of 

magneto-elastic materials has been the area of growing attention to numerous applications in  

surface acoustic wave devices (SAW) such as sensors, delay lines, resonators, transducers, 

actuators and filters. Composite materials which are made of piezomagnetic and elastic phases 

show a magneto-elastic effect which is an advanced product property absent in individual 

constituent. Such studies play an important role in providing notable results to them which 

exceptionally help them to forecast the propagation order of surface waves. This clearly allows 

them to deal with the practical situations. Jakoby and Vellekoop (1997) presented a note on Love 

wave sensor devices. Du et al. (1996) have discussed acoustic sensors. SAW devices and surface 

wave sensors are highly delicate micro-acoustic implements. These sensors are generally 

consisting of fine layer over a substrate. Among such sensors, piezomagnetic structure is 

considered to be more reliable as it enables the magnetic excitation of surface waves. Vives (2008) 

and Wu and Chen (2003) explained the applications of these SAW devices in the field of 

earthquake engineering. In the point of fact, piezomagnetism is the property of the material in 
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which mechanical stress accumulates in certain classes of crystalline materials by the application 

of applied magnetic field. These materials are uncommon and the example of such material is 

hematite Fe2O3. It is useful to take piezomagnetic materials because these materials respond to 

stress which results in rotations of the magnetic moments. Due to the inherent properties of 

piezomagnetic materials and their wide range applications in SAW devices, information storage, 

signal processing and many more, the study of SH-wave propagation in piezomagnetic structures 

is one of the prime areas of thrust in present scenario. Also, these materials show their fruitful 

applications in the domain of civil engineering, electrical and electronic engineering, mechanical 

engineering, medical engineering as well as aerospace engineering. Comprehensive knowledge 

about the propagation of seismic waves in layered structure is available in renowned books (Ewing 

et al. 1957, Love 1944, Achenbach 1976, Gubbins 1990). 

The earth is orthotropic i.e. its mechanical properties are, in general, different along each axis. 

The development of initial stresses in the elastic solid half-space (the Earth) arise due to many 

reasons, such as gravity variations, the distinction of temperature, process of extinguish shot 

pinning and frosty working, moderate process of creep and different internal forces. These initial 

stresses of earth induce great impact on SH-waves during propagation and have great impact on 

the mechanical riposte of the materials. The concept of initial stresses has important significance in 

engineering structures, geomechanics and in the research of soft living tissues. It is therefore of 

great attraction to investigate the influence of initial stresses on the elastic wave propagation. Due 

to large applications, pre-stressed SH-waves in different media tempt researchers’ interests even 

nowadays. Liu et al. (2004) investigated the influence of initial stresses on the Love wave 

propagation in piezoelectric layered structure. Zakharenko (2005) studied the propagation of Love 

waves in cubic piezoelectric crystal. Arefi and Rahimi (2012) studied the effect of normal pressure 

on nonlinear behavior of piezoelectric materials as a sensor. Koutsawa et al. (2014) discussed the 

piezoelectric fiber composites. Marinkovic and Marinkovic (2012) presented a note on 

piezoelectric actuators and sensors. Qian et al. (2004) developed a mathematical model to study 

the effect of Love wave propagation in a piezoelectric layered structure with initial stresses. Wang 

and Quek (2001) discussed propagation of Love waves in piezoelectric coupled solid medium. 

Zaitsev et al. (2001) discussed the propagation of acoustic waves in piezoelectric conductive and 

viscous plates.  

SH-waves cause more destruction to the structure than that of the body waves due to its slower 

attenuation of the energy. Many authors have studied the propagation of SH-wave by considering 

dissimilar forms of asymmetry at the interface. Watanabe and Payton (2002) discussed SH- waves 

in a cylindrically monoclinic material with Green’s function. Chattopadhyay et al. (2010, 2012) 

used Green’s function technique to study propagation of SH-waves and heterogeneity on the 

SH-waves in viscoelastic half-spaces. Also, Chattopadhyay et al. (2014) discussed the influence of 

heterogeneity and reinforcement on propagation of a crack due to SH-waves. Gupta and Gupta 

(2013) studied the effect of initial stress on wave motion in an anisotropic fiber reinforced 

thermoelastic medium. Sahu et al. (2014) showed the effect of gravity on shear waves in a 

heterogeneous fiber-reinforced layer placed over a half-space. Kundu et al. (2014) analyzed 

SH-wave in initially stressed orthotropic homogeneous and a heterogeneous half space. 

In this paper, an exact technique is used to investigate SH-waves in a piezomagnetic layer 

overlying an initially stressed orthotropic half-space. The analytical solutions of SH-wave 

velocities in the presence of tensile and compressive stress are acquired for different magnetic 

boundary conditions. The effect of stress parameter and magnetic permeability are shown 

graphically in both the cases of magnetically open and closed circuit. This work may be useful to 
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the analysis and design of different SAW devices constructed from piezomagnetic materials. 

 

 

2. Formulation of the problem 
    

Let ' 'h  be the thickness of piezomagnetic elastic layer lying over an orthotropic half space. The 

interface of these two media is considered to be at 0z  , whereas the free surface is at z h . The

z -axis is directed vertically downward and the x -axis is assumed to be in the direction of the 

propagation of the SH-wave with velocity c . For SH-waves, we have following displacement 

components in the y -axis only, assumed as 

1 1 1 10,    0,    ( , , )u w v v x z t                                 (1) 

where  1 1 1, ,u v w  are the displacement components at any point  , ,P x y z  of the medium. 

 

 

3. Solution of the problem 
 
3.1 Solution of the piezomagnetic layer 
 
A piezomagnetic layer is perfectly bonded over an inhomogeneous half-space as shown in Fig. 

1. We consider that the piezomagnetic structure is polarized in the x-axis direction. The coupled 

constitutive equations for a piezomagnetic solid can be written as, Feng (2009) 

, ,

,

ij ij kl kl k ij k

i j kl kl jk k

c S e H

B e S H





  


  

                            (2) 

where ij  and klS are the strain and stress tensors, kH  is the magnetic potential field, iB is the 

magnetic induction respectively, , ,,  ij kl j klc e  and jk  are the elastic, piezomagnetic and magnetic 

permeability coefficients  respectively. 

Since, in the problem we consider that the SH-wave is travelling along the x-direction and the 

magnetic material properties of piezomagnetic layer change continuously along the z-direction. 

Therefore the equation of motion and the equation of magnetic displacement equilibrium (Gauss’s 

laws of magnetism without free charges) can be given as 

, ,ij j iv                                 (3) 

, 0i iB                                   (4) 

where  is the density and iv  is the mechanical displacement component in the 
thi  direction.  

The magnetic potential () are given by 

( , , )x y t                               (5) 

The strain-displacement relation is given by 
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. ,

1
( )

2
ij i j j iS v v                                (6) 

The relation between the magnetic field and the magnetic potential (Maxwell’s equation) can 

be given as  

iB
x


 


                               (7) 

The Eqs. (1) and (2) can be written in terms of rectangular form for typically isotropic 

piezomagnetic layer can be expressed as 

 

 

11 12 13 31

12 11 13 31

13 13 33 31

11 12

44 15

44 15

15 11

15 11

31 31 31 33

2

x x y z z

y x y z z

z x y z z

xz
xz

yz yz z

xy xy x

x xy x

z zy z

y x z y y

c S c S c S e H

c S c S c S e H

c S c S c S e H

S
c c

c S e H

c S e H

B e S H

B e S H

B e S e S e S H



















    


    
   



  


  


  
 


  


    


                       (8) 

Now, put Eq. (5) into Eqs. (6) and (7), again putting the Eqs. (6) and (7), into Eq. (8), using 

new equations into Eq. (3) and Eq. (4), we get the basic preliminaries for the displacements and 

the magnetic potential as 

2 2

44 1 15 1

2 2

15 1 11 0

c v e v

e v

 

 

    


    

                          (9) 

where 1v  and  are the mechanical displacement and magnetic potential function in the 

piezomagnetic layer and 44c , 15e , 11  and   denote the elastic, piezomagnetic and magnetic 

permeability coefficient and density respectively, 
2 is the Laplacian operator in two dimension 

and t is time. 

Eq. (9) can be written as 

2

1 12

1

1
0v v

c
                              (10) 

2 15
12

1 11

1
0

e
v

c




 
   

 
                        (11) 
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Fig. 1 Geometry of the problem 
 

 

where 
2

1 44 /c c   and 

2

15
44 44

11

e
c c


    , 1c  is the shear wave velocity in the isotropic 

transverse piezomagnetic layer. 

We may assume the solution of Eqs. (10) and (11) as 

( )

1 1

( )

1

( , , ) ( )

( , , ) ( )

ik x ct

ik x ct

v x y t V z e

x y t z e 





 


 

                         (12) 

where 1i   , k  and c  are wave number and phase velocity respectively and 1( )V z be the 

solution of the following equation 

2
2 21

12

( )
( ) 0

d V z
k V z

dz
                            (13) 

where 

1
2 2

2

1

1
c

c


 
  
 

.  

and 1( )z  be the solution of the following equation 

 
2

2 2 2151
1 1 22 2

1 11

( ) 1
( ) sin( ) cos( ) 0

ed z
k z D k z D k z k c

dz c


  



 
    

 
      (14) 

The solutions of the Eqs. (10) and (11) for SH-wave travelling along x-axis can be written as 
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  ( )

1 1 2( , , ) sin( ) cos( ) ik x ctv x y t D k z D k z e                     (15) 

  ( )15
1 1 2 3 4

11

( , , ) sin( ) cos( ) kz kz ik x cte
x y t D k z D k z D e D e e  



   
    
 

       (16) 

where 1 2 3,  ,  D D D  and 4D are the arbitrary constants.  

The stress component and magnetic induction of piezomagnetic layer are 

  ( )

1 44 2 44 15 3 4cos( ) sin( ) kz kz ik x ct

yz k D c k z k D c k z ke D e D e e             
 

     (17) 

  ( )

11 3 4

kz kz ik x ct

zB k D e D e e                          (18) 

 
3.2 Solution of the half-space 
 
Equation of motion for lower half-space in the presence of initial pressure can be written as 

Love (1944) 

2

2
2 2

2

2
2 2

2

2
2 2

xy yxx xz z

yx yy yz z

zy yzx zz

u
P

x y z y z t

v
P

x y z x t

w
P

x y z x t

 


  


 


     
      

       
      

     
      

    
    

       

                       (19) 

where , , , , , , ,  and xx xy xz yx yy yz zx zy zz          are the incremental stress components 2 ,u

2 2 and v w are the components of the displacement vector in the lower half-space, 2 is the density 

of the lower half-space. Here, x , y  and z are the rotational components in the lower half-space 

and P  is the initial pressure in the lower half-space. 

where 

2 2 2 2 2 21 1 1
, ,

2 2 2
x y z

w v u w v u

y z z x x y

         
            

         
           (20) 

The stress–strain relations are 

2

2

2

xx xx xx xy yy xz zz

xy z xy

yy yx xx yy yy yz zz

yz x yz

zz zx xx zy yy zz zz

zx y zx

e e e

e

e e e

e

e e e

e













      


  
      


  
     

  

                             (21) 
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where , , , , , , ,  and xx xy xz yx yy yz zx zy zz          are the incremental normal elastic 

coefficients, ,  and x y z    shear modulus along x, y and z axis respectively. The strain 

components , , , ,  and xy xx yy yz zx zze e e e e e are defined by 

1 1 1 1

1 1

1 1 1

1 1
, ,

2 2

1
,

2

, ,

xy yz

zx

xx yy zz

v u w v
e e

x y y z

v w
e

z x

u v w
e e e

x y z

      
       

       
   

   
   

      
      

        

                        (22) 

Using Love wave conditions 2 2 2 20, ( , , )u w v v x z t    in Eqs. (19) and (21), the equation of 

motion for the lower orthotropic half-space becomes 

2 2 2

2 2 2
22 2 22

z x

v v vP

x z t


   
     

   
                       (23) 

and stress–strain relations reduces to 

0

2 ,  2

xx xy xz yy zx zy zz

yx z xy yz x yze e

      

 

       


    

                      (24) 

To solve Eq. (23) we take the following substitution 

( )

2 U(z) ik x ctv e                                    (25) 

Using Eq. (25) in Eq. (23), we get 

2
2

2

d U( )
U( ) 0

d

z
z

z
                               (26)    

where 

2
2 2

2
2

z

x

k P
c 

  
        

                            (27) 

Therefore, the solution for the upper orthotropic half-space is given by  

( )

2 5 e z ik x ctv D e                                  (28) 

where 5D is an arbitrary constant. 
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4. Boundary conditions 
 

The propagation of SH-waves under this assumed model has the following conditions at z h
and 0z  . 

 

(i) Since the upper surface of the piezomagnetic layer is stress free, therefore 

         0 at yz z h                                      (29) 

(ii) At 0z  , the displacement and normal stress component are continuous and magnetic potential 

function is displacement free, so 

1 2 ,v v  ,yz yz   0   at 0z                            (30) 

(iii) Continuity condition 

2 0v   as x                                 (31) 

(iv) The magnetic conditions at 0z  can be generalized into two ways, i.e. 

(a) Magnetic closed circuit: 0zB   at z h                                          (32) 

(b) Magnetic open circuit: 0  at z h                                             (33) 

 

 

5 Dispersion relations 
 
Using the boundary conditions (29-33), from Eqs. (15), (16), (17), (18) and (28) we get the 

following relations 

1 44 2 44 15 3 15 4cos( ) sin( ) e e 0kh khD c kh D c kh D e D e                      (34) 

2 5 0D D                               (35) 

44 1 15 3 15 4 5 0xc D e D e D D                         (36) 

15
2 3 4

11

0
e

D D D


 
   

 
                       (37) 

3 4 0kh khD e D e                           (38) 

 15
1 2

11

sin( ) cos( )
e

D kh D kh 


 
 

 
 3 4 0kh khD e D e                (39) 
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5.1 Dispersion relation for case of magnetically closed circuit 
 

Eliminating iD ( 1,2....5)i  from the Eqs. (34) to (38), the dispersion relation for SH waves can 

be obtained as 

44 44 15 15

44 15 15

15

11

cos( ) sin( )  e e 0

0 1 0 0 1

0 e e
0

0 1 1 0

0 0 0

kh kh

x

kh kh

c kh c kh e e

c

e

e e

   

 







  



  
                 (40) 

Expanding Eq. (40), we get 

2 2 2 2

15 15 15 15

11 11 11 11

44 44

cos( ) cos( )
cos( )( ) 0

sin( ) sin( )

kh kh

kh kh kh kh

x

e e e e
e kh e kh

kh e e e e

c kh c kh

 
     

   



 

   
    

    
   
        

  (41) 

which takes the form as 

2

15
44

11

tan( ) 0x

e
c kh  


                                  (42) 

This is the dispersion equation of SH-wave in a magnetically closed circuit piezomagnetic layer 

over an initially stressed orthotropic half-space 

 

5.2 Dispersion relation for case of magnetically open circuit 
 

Eliminating iD ( 1,2....5)i  from the Eqs. (34) to (37) and (39), the dispersion relation for SH 

waves can be obtained as 

44 44 15 15

44 15 15

15

11

15 15

11 11

cos( ) sin( )  e e 0

0 1 0 0 1

0 e e

0
0 1 1 0

sin( ) cos( ) 0

kh kh

x

kh kh

c kh c kh e e

c

e

e e
kh kh e e

   

 



 
 





  



  

              (43) 
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Expanding Eq. (43), we get 

44 E cos( )(  )kh kh

xc kh e e    

2

15

11

E sin( )(  )kh kh

x

e
kh e e 



  2 2

44 sin( )(  )kh khc kh e e     

2

15
44

11

(cos( ) )kh khe
c e kh e 



 
2

15
44

11

( cos( ))kh khe
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On further expanding Eq. (44), we get 
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which takes the form as 
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This is the dispersion equation of SH-wave in a magnetically open circuit piezomagnetic layer 

over an initially stressed orthotropic half-space. 

 

 

6 Particular cases 
 

1. If we neglect the initial pressure in the half-space that is 0P   then the Eqs. (42) and (45) 

reduces to the equations, in both cases as 
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                            (46) 
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and  
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where 

2

2

1

1
c

c
    and 

2
2

2z

x

k
c     

 

Eqs. (46) and (47) are the dispersion equations of SH-wave in both magnetically closed and 

open circuit piezomagnetic medium respectively over orthotropic half-space. 

2. If 2x z    , 0P  then the Eqs. (42) and (45) reduces to the equations, in both cases 

as 
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Eqs. (48) and (49) are the dispersion equations of SH-wave in both magnetically closed and 

open circuit piezomagnetic medium respectively over an isotropic elastic half-space. 

3. Validation 

If 2x z    , 0P  and 15 0e   then the dispersion Eqs. (46) and (47) yields as 
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and  

2

2 22
1

2
2

1

44 2

2

1

tan 1

1

c

cc
kh

c c
c

c


 
     

   
        

 

                        (51) 

Hence the dispersion equations of SH-wave in both magnetically closed and open circuit 

piezomagnetic medium respectively over orthotropic half-space reduces to the classical Love wave 

equation. 
 

 

7. Numerical analysis and discussion 
 

In order to show the effects of dimensionless stress parameter / 2 xP    and magnetic 

permeability on the propagation of SH-waves in piezomagnetic layer overlying an orthotropic 

half-space, numerical computation is performed for the Eqs. (42) and (45). Numerical results are 

presented and discussed for the propagation of SH-waves in piezomagnetic layer overlying an 

orthotropic half-space, which is composed of the magnetostrictive material CoFe2O4 and elastic 

material, the material properties are listed in Table 1 [22] and [7]. The results are presented in Figs. 

2-5 for piezomagnetic layer in case of magnetically closed circuit and Figs. 6-9 in case of 

magnetically open circuit. Fig. 2 depicts the effect of tensile stress on dispersion curve of SH-wave 

against non-dimensional wave number in a piezomagnetic structure in the case of magnetically 

closed circuit. The curves are plotted for selected values of tensile stress ( / 2 0)xP    and 

fixed values of magnetic permeability
4 2 2

11 0.05 10 /Ns C   . The values of tensile stress 

parameter 0.1,0.3,0.5,0.7,0.9  are taken for dispersion curves. It is clear from this figure, 

with the increase of tensile stress; the speed of SH-waves decreases. Fig. 3 presents the effect of 

compressive stress on dispersion curve of SH-wave against non-dimensional wave number in a 

piezomagnetic structure in the case of magnetically closed circuit. The curves are plotted for 

selected values of compressive stress ( / 2 0)xP    and fixed values of magnetic 

permeability
4 2 2

11 0.05 10 /Ns C   . The values of tensile stress parameter 

0.1, 0.3, 0.5, 0.7, 0.9       are taken for dispersion curves. It is clear from this figure, with 

the increase of compressive stress; the speed of SH-waves increases.  
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Table 1 Material parameters used for computation 

Upper layer CoFe2O4 

44c  
9 243 10  /  N m  

11  
4 2 20.05 10 /Ns C  

15e  
911.6 10 /C Vm  

1  35800 /kg m  

Orthotropic Half-space 

x  
10 2 5.65 10 /N m  

z  
10 22.46 10 /N m  

2    37800 /kg m  

 

 

Table 2 Parameters for figures
4 2 2

11(  in 10 / )Ns C 
 

Figure   2 2

1 2/c c  11  

2   0.32 0.05 

3   0.32 0.05 

4 0.5 0.32   
5 0 0.32   
6   0.32 0.05 

7   0.32 0.05 

8 0.5 0.32   
9 0 0.32   

 

 

 

Fig. 2 Variation of phase velocity against wave number under tensile stress for magnetically closed circuit 
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Fig. 3 Variation of phase velocity against wave number under compressional stress for magnetically 

closed circuit 
 

 

 

Fig. 4 Variation of phase velocity against wave number under magnetic permeability for magnetically 

closed circuit 
 

 

Fig. 4 shows the effect magnetic permeability 11  in case of magnetically open circuit under 

initial stress. This figure described that the phase velocity of SH-waves increases with the increase 

of magnetic permeability. Fig. 5 describes the effect magnetic permeability 11  in case of 

magnetically open circuit under stress free half-space. This figure described that the phase velocity 

of SH-waves increases with the increase of magnetic permeability. Fig. 6 depicts the effect of 
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tensile stress on dispersion curve of SH-wave against non-dimensional wave number in a 

piezomagnetic structure in the case of magnetically open circuit. The curves are plotted for 

selected values of tensile stress and fixed values of magnetic permeability
4 2 2

11 0.05 10 /Ns C   . The values of tensile stress parameter 0.1,0.3,0.5,0.7,0.9  are 

taken for dispersion curves. It is clear from this figure, with the increase of tensile stress; the speed 

of SH-waves decreases.  

 

 

 

Fig. 5 Variation of phase velocity against wave number under magnetic permeability for magnetically 

closed circuit (stress free) 
 

 

 

Fig. 6 Variation of phase velocity against wave number under tensile stress for magnetically open circuit 
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Fig. 7 Variation of phase velocity against wave number under compressional stress for magnetically open 

circuit 
 

 

 

Fig. 8 Variation of phase velocity against wave number under magnetic permeability for magnetically 

open circuit 
 

 

Fig. 7 presents the effect of compressive stress on dispersion curve of SH-wave against 

non-dimensional wave number in a piezomagnetic structure in the case of magnetically open 

circuit. The curves are plotted for selected values of compressive stress ( / 2 0)xP    and 

fixed values of magnetic permeability
4 2 2

11 0.05 10 /Ns C   . The values of tensile stress 

parameter 0.1, 0.3, 0.5, 0.7, 0.9       are taken for dispersion curves. It is clear from this 

figure, with the increase of compressive stress; the speed of SH-waves increases. Fig. 8 shows the 

effect magnetic permeability 11  in case of magnetically closed circuit under initial stress. This 

figure described that the phase velocity of SH-waves increases with the increase of magnetic 
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permeability. Fig. 9 describes the effect magnetic permeability 11  in case of magnetically closed 

circuit under stress free half-space. This figure described that the phase velocity of SH-waves 

increases with the increase of magnetic permeability. 

 

 

8 Conclusions 
 

In this work, SH-wave in a piezomagnetic layer overlying an initially stressed orthotropic 

elastic half-space has been investigated analytically and numerically in the cases of magnetically 

open circuit and closed circuit separately. It has been observed that on the removal of initial stress 

and magnetic permeability of the layer, the derived dispersion equation reduces to Love wave 

dispersion equation thereby validates the solution of our problem The effect of stress parameter 

and magnetic permeability are shown graphically in both the cases of magnetically open and 

closed circuit. Finally, on the basis of result developed, the following conclusions regarding the 

propagation of the SH-wave in a piezomagnetic layer placed over orthotropic elastic prestressed 

half-space can be drawn: 

(1) The phase velocities of SH-waves are remarkably influenced by stress parameter and magnetic 

permeability.  

(2) In the case of magnetically open and closed circuit, we have observed that the phase velocity 

of SH-waves decreases with the increases of tensile stress parameter.  

(3) The phase velocity of SH-waves increases with the increases of compressive stress parameter 

for both magnetically open and closed circuit. 

(4) The phase velocity increases with the increase of magnetic permeability for both stress free 

and stressed half-space. 

The presented results may be useful to understand the nature of SH-wave in a piezomagnetic 

and orthotropic elastic medium. 

 

 

 

Fig. 9 Variation of phase velocity against wave number under magnetic permeability for magnetically 

open circuit (stress free) 
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