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Abstract.  The Canton Tower is a high-rise slender structure with a height of 610 m. A structural health 
monitoring system has been instrumented on the structure, by which data is continuously monitored. This 
paper presents an investigation on the identified modal properties of the Canton Tower using ambient 
vibration data collected during a whole day (24 hours). A recently developed Fast Bayesian FFT method is 
utilized for operational modal analysis on the basis of the measured acceleration data. The approach views 
modal identification as an inference problem where probability is used as a measure for the relative 
plausibility of outcomes given a model of the structure and measured data. Focusing on the first several 
modes, the modal properties of this supertall slender structure are identified on non-overlapping time 
windows during the whole day under normal wind speed. With the identified modal parameters and the 
associated posterior uncertainty, the distribution of the modal parameters in the future is predicted and 
assessed. By defining the modal root-mean-square value in terms of the power spectral density of modal 
force identified, the identified natural frequencies and damping ratios versus the vibration amplitude are 
investigated with the associated posterior uncertainty considered. Meanwhile, the correlations between 
modal parameters and temperature, modal parameters and wind speed are studied. For comparison purpose, 
the frequency domain decomposition (FDD) method is also utilized to identify the modal parameters. The 
identified results obtained by the Bayesian method, the FDD method and a finite element model are 
compared and discussed. 
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1. Introduction 
 

Structural health monitoring (SHM) aims at monitoring existing structures and assessing their 

service condition. It has attracted increasing attention in the past two decades (Chang et al. 2003, 

Sohn et al. 2003, Brownjohn et al. 2005, Ko and Ni 2005, Ni et al. 2009, Yuen and Kuok 2010, Ni 
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et al. 2011, Pei et al. 2011, Pei et al. 2012, Shi et al. 2012, Au et al. 2013). Numerous supertall 

buildings have been erected in recent years worldwide, such as the Canton Tower, the Shanghai 

Tower, the Shanghai World Financial Center in China. For these large-scale structures, an SHM 

system is usually instrumented to perform real-time monitoring and provides valuable information 

for the evaluation of structural performance. Considerable research has been made based on the 

collected data. Brownjohn and Pan (2008) carried out the analysis of long-term monitoring data 

from a tall building in terms of loading and response mechanisms. Ni et al. (2009, 2011) 

implemented a sophisticated long-term SHM system on the Canton Tower and collected 

monitoring data during more than twenty earthquakes and over ten typhoons. Kijewski-Correa et 

al. (2013) presented a real-time SHM system named SmartSync which has been installed on Burj 

Khalifa ─ the world’s tallest building. Su et al. (2013) implemented a long-term structural 

performance monitoring system on the Shanghai Tower. Preliminary monitoring data during 

different construction stages were presented to evaluate the in-construction condition of the 

structure.  

In SHM systems, accelerometers play an important role in measuring dynamic response of the 

objective structures (Ni et al. 2009, Au et al. 2013). Based on the measured acceleration response, 

operational modal analysis provides an economic way to identify the modal properties, i.e., natural 

frequency, damping ratio and mode shape, which reflect the dynamic characteristics of the 

objective structure and are significant for model updating, damage detection, structural health 

monitoring, etc. (Au and Zhang 2015, Ni et al. 2015, Zhang and Au 2015). Au et al. (2012b) 

investigated the modal parameters of two tall buildings during strong wind events by operational 

modal analysis. Important trends are found between modal parameters and vibration amplitude. Li 

et al. (2011) performed field measurement and numerical analysis of Taipei 101 Tower. The modal 

parameters were identified based on measured data and compared with finite element model 

(FEM). Li and Yi (2015) presented their work on the monitoring of dynamic behavior of tall 

buildings during typhoons. Amplitude-dependent characteristics of damping ratios were identified.  

A variety of methods have been developed to perform operational modal analysis. In the time 

domain, one common method is the stochastic subspace identification (SSI) method (Peeters and 

De Roeck 2001). The FDD method (Brincker 2001) is another commonly used technique. Besides 

non-Bayesian methods, a series of Bayesian method have been developed, such as Bayesian 

Time-Domain Approach (Yuen and Katafygiotis 2001), Bayesian Spectral density Approach 

(Katafygiotis and Yuen 2001), Bayesian Fourier Transform Approach (Yuen and Katafygiotis 

2003), Bayesian modal identification using nonstationary noisy response measurement (Yuen and 

Katafygiotis 2005). More work can be referred to Yuen (2010).  

On the basis of Bayesian Fourier Transform Approach (Yuen and Katafygiotis 2003), the 

recently proposed Fast Bayesian FFT (Fast Fourier Transform) method (Au 2011, 2012a, b, Au 

and Zhang 2012a, Zhang and Au 2013) is becoming popular and has been applied in different 

structures successfully (Au and Zhang 2012b, Au et al. 2012a, b, 2013). The approach views 

modal identification as an inference problem where probability is used as a measure for the 

relative plausibility of outcomes given a model of the structure and measured data. Using this 

method, the most probable value (MPV) of modal parameters can be identified. Furthermore, the 

associated posterior uncertainty of the modal parameters can be calculated analytically without 

resorting to finite difference, providing an important tool to evaluate the reliability of the identified 

modal properties.  

From the SHM system instrumented on the Canton Tower (Ni et al. 2012), 24 hours 

acceleration, temperature, wind direction and wind speed data were obtained. Based on the Fast 
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Bayesian FFT method, this paper presents an investigation on the operational modal analysis of 

this supertall building. Focusing on the first several modes, the modal properties of the Canton 

Tower are identified on non-overlapping time windows during the whole day under norm wind 

speed. With the identified modal parameters and the associated posterior uncertainty, the 

distribution of the modal parameters in the future is assessed by using a probabilistic model. By 

defining the modal root-mean-square value in terms of the power spectral density (PSD) of modal 

force identified, the identified natural frequencies and damping ratios versus the vibration 

amplitude are investigated with the associated posterior uncertainty considered. Meanwhile, the 

relationships between the modal parameters and temperature, modal parameters and wind speed 

are investigated. The conventional FDD method is also utilized to identify the modal parameters 

which will be compared with the results identified by the Fast Bayesian method. The results 

identified using monitoring data are also compared with those obtained by FEM. 

 

 

2. Canton Tower 
 

The Canton Tower situated in Guangzhou, China, is a supertall structure with a height of 610 m, 

as shown in Fig. 1, which serves for emission of television signal, offices, entertainment, 

sightseeing, etc. This structure is composed of two tube-like structures, namely a reinforced 

concrete inner structure and a steel outer structure with concrete-filled-tube (CFT) columns. Based 

on the design drawings, a full-order 3D FEM of the tower has been developed using the 

commercial software ANSYS with 122,476 elements, 84,370 nodes, and 505,164 

degrees-of-freedom (DOFs) in total (Ni et al. 2012). To improve the computational efficiency of 

the model in SHM, a reduced-order 3D model was further developed on the basis of the full model. 

The modal properties calculated using the two models are consistent with each other and they can 

be used for comparison with the modal identification results and for model updating.  

 

 

 

Fig. 1 Overview of Canton Tower 
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The SHM system deployed on the Canton Tower consists of more than 700 sensors, including 

anemometers, accelerometers, fiber optic strain and temperature sensors, global position system, 

and so on (Ni et al. 2009, Chen et al. 2011, Ni et al. 2012). Among others, 20 uni-axial 

accelerometers are installed on 8 different cross-sections of the inner structure to collect the 

structural dynamic responses. On cross-sections 4 and 8, four accelerometers are positioned at two 

locations for bi-axial measurement; while on each of the other cross-sections, two sensors are 

installed at two locations for uni-axial measurement (one is for the short-axis direction and the 

other is for the long-axis direction). The detailed information of the instrumentation can be found 

in Ni et al. (2012). Note that sensors 01, 03, 05, 07, 08, 11, 13, 15, 17, 18 are deployed to collect 

the structural response in the short-axis direction and sensors 02, 04, 06, 09, 10, 12, 14, 16, 19, 20 

measure the structural response in the long-axis direction. Each sensor is aligned using a positioner 

to ensure an accurate orientation. The frequency range of accelerometers is DC to 50 Hz with 

amplitude range of  2 g. The 24-hour acceleration data used in the present study were collected 

from 18:00, 20th January 2010 to 18:00, 21st January 2010 under norm wind condition with wind 

and temperature information recorded simultaneously. The sampling frequencies of wind data, 

acceleration and temperature are set to be 50 Hz, 50 Hz and 1/60 Hz, respectively.   

 

 

3. Method for modal analysis  
 

3.1 Fast Bayesian FFT method 
 

In operational modal identification from ambient vibration, the loading and response are 

usually approximated as stationary stochastic process. For this purpose, the whole 24-hour data are 

divided into non-overlapping time windows at 30-min intervals. It is found that 30-min time 

window is appropriate for compromise between the accuracy in modal identification and the 

stationarity assumption on the stochastic excitation and response. If the data set is too short, the 

identified modal parameters may have a larger posterior uncertainty and the MPV may be 

unreliable. Contrarily, when the data set is too long, the stationary assumption cannot be satisfied 

well, which may increase the modelling error. 

The Fast Bayesian FFT method is used to identify the modal properties with each set of data in 

30-minute time window. In the traditional operation modal analysis methods, the power spectral 

density of modal force is usually assumed to be a constant up to the Nyquist frequency. However, 

this may not be true in reality, especially for the wind loading. In the Fast Bayesian method 

adopted in this study, it is instead assumed that the PSD of modal force in a selected frequency 

band is a constant, which makes it possible to analyze the data reasonably. The underlying theory 

is outlined in the following (Au and Zhang 2012b, Ni et al. 2015). Please find the original 

formulation in Yuen and Katafygiotis (2003) and the recently developed Fast Bayesian FFT 

algorithms that allow practical implementation in Au (2011), Au (2012a, b) and Zhang and Au 

(2013).  

Let θ  denote the modal parameters which includes modal frequency f, damping ratio  , 

mode shapes, power spectral density (PSD) of modal force S, and PSD of prediction error Se. Let 
2[Re ;Im ] n

k k k R Z F F  be an augmented vector of the real and imaginary parts of kF , where 

kF  denotes the FFT of the measured response at frequency kf , and n is the number of measured 
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degrees of freedom (DOFs). In modal identification, only the FFT data confined to a selected 

frequency band dominated by the target modes are used, which is denoted by  kZ . On the basis 

of Bayes’ Theorem, the posterior probability density function (PDF) of θ  given the data in the 

band is expressed by 

    ( | ) ( ) ( | )k kp p pθ Z θ Z θ                            (1) 

where ( )p θ  is the prior PDF that reflects the plausibility of θ  in the absence of data. Assuming 

uniform prior information, the posterior PDF  ( | )kp θ Z  is directly proportional to the 

likelihood function  ( | )kp Z θ . The most probable value (MPV) of the modal parameters θ  

can be determined by maximizing  ( | )kp θ Z  and hence  ( | )kp Z θ . 

For a large number of sampling points and a small time interval, the FFT at different 

frequencies is shown to be asymptotically independent and follow a Gaussian distribution 

(Schoukens 1991), based on which the likelihood function  ( | )kp Z θ  can be given by  

 
 

k

kk

T

kk

n

kp ]
2

1
exp[)(det)2()|}({ 12/1

ZCZCθZ   (2) 

where det(.)  denotes the determinant; kC denotes the covariance matrix of kZ , in which the 

modal parameters to be identified are involved. 

For the convenience of optimization, the negative log-likelihood function (NLLF) ( )L θ  is 

utilized 

 
11

( ) [ln det ( ) ( ) ]
2

T

k k k k

k

L  θ C θ Z C θ Z  (3) 

so that 

  ( | ) exp[ ( )]kp L θ Z θ  (4) 

Therefore, minimizing ( )L θ  with respect to θ  is equivalent to maximizing  ( | )kp θ Z . 

When performing optimization to obtain the MPV of θ , the minimization process is 

ill-conditioned. Furthermore, the number of modal parameters will increase with the number of 

measured DOFs, and so the computational time grows drastically with the number of parameters 

to be optimized. Therefore, it is highly desirable to develop fast algorithms in real applications. 

This has been realized recently which allows the MPV to be obtained almost instantaneously in 

both cases of well separated modes (Au 2011, Zhang and Au 2013) and closely-spaced modes (Au 

2012a,b). Meanwhile, the posterior uncertainty can also be obtained directly to assess the accuracy 

of the MPV and evaluate whether additional data is required for quality improvement. In modal 

identification by the proposed method, a frequency band should be selected in either separated or 

closely-spaced mode case. In recognition of the limited bandwidth in physical processes and the 
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fact that the resonance band accounts for the major contribution, the root-mean-square (RMS) 

value of the acceleration response can be calculated according to Au et al. (2012), which can be 

used to represent the vibration level of a given mode. 

 

3.2 Prediction model 
 

With the Fast Bayesian FFT method, the MPV of modal parameters and the associated posterior 

uncertainty can be determined. After obtaining them, a probabilistic model can be obtained as 

follows (Zhang and Au 2015) 

 


 









sN

i

i

iis ccN
Dp

1

2)ˆ(
ˆ2

1
exp

ˆ2

11
)|( 


  (5)  

which is a mixture of Gaussian PDFs, where sN  denotes the number of data sets; ĉ  is the 

posterior variance of the identified modal parameters; iθ̂  is the posterior MPV of θ with θ being a 

particular parameter in θ, D denotes the data involved. With Eq. (5), we can obtain the mean and 

variance. 

Combining both Bayesian and frequentist features, the proposed method is able to assess the 

modal parameters in a future time window with the monitoring data acquired at the next time 

interval, and therefore provides a novel way to make a prediction to the distribution of modal 

properties of an objective structure in a similar excitation environment.  
 

 

4. Analysis results 
 

4.1 Typical 30-min window 
 

As aforementioned, the 24-hour data were separated into 48 time windows of 30 minutes each. 

The analysis for the first time window of data is pursued and the same procedure is applied to 

other time windows. Fig. 2 shows the root power spectral density spectra of the structural 

responses during a typical time window. Fifteen peaks are obviously observed in the frequency 

range below 2.0 Hz. The first mode is less than 0.1 Hz, which is the foundational mode of the 

Canton Tower. In the operational modal analysis by the Fast Bayesian FFT method, all the fifteen 

modes are explored.  

Table 1 shows the identified modal parameters of the fifteen modes. From the second to the 

ninth columns, every two columns are considered as one group with the first denoting the MPV 

and the second denoting the associated posterior coefficient of variation (COV) (standard 

derivation/MPV). It is seen that the COVs of modal frequencies are quite small (less than 0.5%), 

implying that the MPVs are quite accurate. The damping ratios for this structure are quite small 

and only those of the first and fourth modes are higher than 1%. This is consistent with the results 

obtained by Chen et al. (2011) for the same structure under ambient vibration condition. The 

posterior uncertainty of damping ratios is relatively high in comparison with the uncertainty of 

modal frequencies, with an order of magnitude of a few tens percent. The other two parameters, 

i.e., PSD of modal force and PSD of prediction error, are related to the excitation environment. 

The COV of the PSD of modal force is apparently larger than the COV of the PSD of prediction 

error.  
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Fig. 2 Power spectral density for a typical 30-min window 
 

 

 
Table 1 Identified modal parameters and the associated posterior uncertainty 

Mode Characteristics 
f  

(Hz) 

COV  

(%) 

  

(%) 

COV  

(%) 

S  

(μg
2
/Hz) 

COV 

 (%) 

Se  

(μg
2
/Hz) 

COV  

(%) 

1 Bending 0.094  0.37  1.20  32.5  1.64  17.5  5.56  3.21  

2 Bending 0.138  0.18  0.48  39.9  0.92  17.3  3.49  3.50  

3 Bending  0.366  0.08  0.26  32.5  0.30  10.9  1.49  2.28  

4 Bending 0.424  0.07  0.21  35.7  0.05  17.1  2.25  3.28  

5 Bending 0.475  0.05  0.12  41.6  0.88  11.8  1.77  2.58  

6 Torsion 0.506  0.04  0.10  46.4  0.05  21.5  8.83  4.00  

7 Bending 0.522  0.07  0.27  29.1  0.19  15.6  2.52  3.01  

8 Bending 0.796  0.05  0.23  23.2  0.08  7.8  0.81  1.61  

9 Bending 0.966  0.06  0.36  17.5  0.06  7.6  0.65  1.50  

10 Combined 1.151  0.03  0.13  26.8  0.01  11.7  0.63  2.35  

11 Bending 1.191  0.03  0.11  29.1  0.01  12.9  0.84  2.53  

12 Torsion 1.250  0.03  0.11  27.6  0.01  9.8  0.66  1.94  

13 Bending 1.388  0.05  0.33  16.0  0.05  8.4  0.50  1.63  

14 Bending 1.643  0.04  0.22  16.7  0.07  6.4  0.51  1.33  

15 Combined 1.946  0.08  0.74  11.6  0.09  10.3  0.62  1.53  

f：Modal frequency;  :damping ratio; S: PSD of modal force; Se: PSD of prediction error 
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Fig. 3 Identified mode shapes for the first 15 modes projected in short-axis direction 
 

 

Fig. 4 Identified mode shapes for the first 15 modes projected in long-axis direction 
 

 

Fig. 5 XY view of identified mode components on cross-sections 4 and 8 
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Figs. 3 and 4 illustrate the identified mode shapes of the fifteen modes projected in short- and 

long-axis directions, respectively. In each mode shape, eight locations in different cross-sections 

with uni-axial measurement are chosen. As afore mentioned, four accelerometers have been 

deployed for bi-axial measurement at two plane locations on cross-sections 4 and 8. This makes it 

possible to investigate the torsional behavior of these modes. Fig. 5 shows the top view (XY view) 

of the identified mode components at these four locations on two different cross-sections, where 

the red and black lines denote the undeformed and deformed status, respectively. It is observed that 

although the mode shapes for some modes shown in Figs. 3 and 4 are similar when projected in 

short- or long-axis direction, they are different in top view, where Modes 6, 10, 12, 15 exhibit a 

significant torsional behavior. 

To verify the results identified by the Fast Bayesian FFT method, the enhanced FDD method is 

utilized to identify the modal parameters as well. Table 2 shows the modal frequencies and 

damping ratios identified by the enhanced FDD method. It is seen that the identified modal 

frequencies for different modes are quite consistent with their counterparts determined by the Fast 

Bayesian FFT method. However, it is not true for the damping ratios, where a noticeable 

difference is observed between the two groups of results. This implies that high uncertainty exists 

in the identified damping ratios, as evidenced by the large posterior COVs of damping ratios 

obtained by the Fast Bayesian FFT method.  

 

 

 
Table 2 Modal parameters identified by enhanced FDD method 

Mode Modal frequency (Hz) Damping ratio (%) 

1 0.094  2.48  

2 0.138  1.33  

3 0.366  0.46  

4 0.424  0.32  

5 0.475  0.29  

6 0.506  0.28  

7 0.522  0.43  

8 0.796  0.46  

9 0.965  0.64  

10 1.151  0.16  

11 1.191  0.16  

12 1.250  0.16  

13 1.390  0.34  

14 1.642  0.27  

15 1.948  0.86  
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Table 3 Modal parameters predicted by FEM 

Mode 
Modal frequency (Hz) 

Full model Reduced model 

1 0.110 0.110 

2 0.159 0.159 

3 0.347 0.347 

4 0.368 0.368 

5 0.400 0.399 

6 0.461 0.460 

7 0.485 0.485 

8 0.738 0.738 

9 0.902 0.902 

10 0.997 0.997 

11 1.038 1.038 

12 1.122 1.122 

13 1.244 1.244 

14 1.503 1.503 

15 1.726 1.726 

 

 

Table 3 shows the modal parameters for the first 15 modes predicted by the FEM. It is found 

that the results from the full- and reduced-order models are well consistent with each other. 

Compared with the identified results using the Fast Bayesian FFT method, it is seen that they are 

in general close to the results by the FEM but some obvious difference is also observed. This is 

reasonable since the FEM is formulated based on the design drawings, and some alterations have 

been made from the design to construction stages. Mode shapes also play an important part in 

investigating the quality of FEM by comparing them with their counterparts in the identified 

results (Chen et al. 2012). It is necessary to obtain an accurate FEM by model updating based on 

the field data (Chen and Huang 2012, Kuok and Yuen 2012, Lei et al. 2012). A new developed 

Bayesian method (Au and Zhang 2015, Zhang and Au 2015) is also expected to perform model 

updating in the future.  

Based on these data, some researches have been carried out in a special issue on SHM 

Benchmark for High-Rise Structures in the Smart Structures and Systems, Vol. 10, No. 4-5, 

including modal identification based on Bayesian spectral density approach (BSDA) (Kuok and 

Yuen 2012), Vector Autoregressive Models (ARV) method (Niu et al. 2012) and so on. Table 4 

shows the identified results for the first ten modes using BSDA and ARV methods. In the BSDA 

method, similar to the results identified by Fast Bayesian FFT method, the posterior COV values 
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of natural frequencies and damping ratios are also calculated. In the ARV method, the COV values 

are equal to the sample standard derivation divided by the sample means. Compared the results in 

Table 1, Table 2 and Table 4, it is seen that the natural frequencies across different methods are 

quite similar while there are some variation for the damping ratio. This is reasonable since the 

damping ratios have a relatively larger uncertainty. Compared the posterior COVs obtained by 

BSDA and Fast Bayesian FFT method, it is seen that they have similar order of magnitudes, 

showing a good consistency. The sample COVs calculated by ARV method in Table 4 tend to be 

larger than those by the Bayesian method. This is reasonable since modal parameters variations 

among different data sets are taken into account when calculating the sample COVs.  

 

4.2 Variation of modal parameters in a period of 24 hours 
 

We next investigate the variation of modal parameters with environmental conditions in one 

day. Fig. 6 shows the 10-min averaged wind speed, wind direction and temperature measured by 

the sensors installed on the tower during the same day. It is seen that the wind speed is relatively 

stable with a fluctuation from about 1.5 to 4 m/s and there is no much change for the wind 

direction, while the temperature changes from 14 to 18
o
C gradually. Overall, the environment is 

relatively stationary during the 24 hours. The 48 segments of acceleration data are analyzed 

separately with the procedure described in Section 4.1. In this study, only the first three modes are 

addressed.  

Fig. 7 to Fig. 9 show the modal parameters identified using the 48 sets of data and the 

associated uncertainty for Modes 1 to 3, respectively. The identified results for each dataset are 

shown with a dot at the posterior MPV and an error bar covering two posterior standard deviations. 

It is seen that the modal frequencies of the three modes change slightly with time, while the 

damping ratios have a relatively large variation but still have the same order of magnitude. The 

posterior uncertainty is consistent with the ensemble variability of their MPVs over different 

setups and therefore the Bayesian and frequentist perspectives roughly agree.  

 

 

 
Table 4 Modal parameters identified by BSDA (Kuok and Yuen 2012) and ARV (Niu et al. 2012) 

Method M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

BSDA 

f(Hz) 0.095 0.140 0.368 0.426 0.477 0.507 0.524 0.797 0.967 1.152 

COV(%) 0.24 0.12 0.07 0.06 0.04 0.05 0.05 0.04 0.03 0.02 

 (%) 1.03 0.50 0.35 0.25 0.19 0.16 0.14 0.20 0.19 0.11 

COV(%) 22.7 21.1 20.2 24.3 20.3 38.4 30.9 18.3 16.3 21.6 

ARV 

f(Hz) 0.094 0.138 0.366 0.424 0.475 0.506 0.522 0.795 0.965 1.151 

COV(%) 0.30 0.21 0.21 0.08 0.07 0.11 0.08 0.13 0.15 0.05 

 (%) 0.68 0.39 0.34 0.2 0.12 0.17 0.19 0.26 0.27 0.13 

COV(%) 72.3 51.0 47.2 35.2 86.6 30.3 49.5 78.0 40.1 46.1 
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On the other hand, a sudden change of modal parameters shall reflect the quality of the data 

used. Take the data acquired at 16:30 for example. It is seen that the posterior uncertainty of modal 

frequency and damping ratio for the second mode are larger than other ones. To look for the reason, 

the time history of the data is shown in Fig. 10, where some strange peaks are observed. These 

peaks could come from sensor noise, electric noise or some noise in the environment, which affect 

the stationary assumption of the excitation and thus lead to the inaccuracy of the identified result 

(say, higher uncertainty). For this kind of data, a recently developed method is expected to perform 

outlier detection and robust structural identification (Yuen and Mu 2012, Mu and Yuen 2015). This 

may be investigated in the future work. 

Table 5 shows the frequentist and Bayesian statistics for Modes 1 to 3, in which sample COV 

(sample standard derivation/sample mean) is calculated based on all the 48 datasets, while the 

posterior COV is the one from the first dataset. These two quantities are quite close to each other, 

showing good consistency between the frequentist result and the posterior uncertainty of these 

modal parameters in a Bayesian manner. As aforementioned, since some environmental 

uncertainties are also taken into account in the sample COV, the posterior COV tends to be smaller 

than the sample COV. Some relationship has been observed between these two concepts (Au 

2012c). 

 

 

 

 

Fig. 6 Wind and temperature data collected during the same day 
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Fig. 7 Modal parameters in different setups, Mode 1 
 

 

 

 

Fig. 8 Modal parameters in different setups, Mode 2 
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Fig. 9 Modal parameters in different setups, Mode 3 
 

 

 

Fig. 10 Time history of acceleration response acquired at 16:30 
 

 
Table 5 Sample COVs and posterior COVs 

Mode 
Modal frequency (%) Damping ratio (%) 

Posterior COV Sample COV Posterior COV Sample COV 

1 0.24  0.35  48.9  42.1  

2 0.16  0.24  46.5  49.9  

3 0.10  0.18  30.6  39.7  
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Fig. 11 PDF of modal parameters derived from probabilistic model, Mode 2 
 

Fig. 11 to Fig. 13 show the probability density functions of the modal parameters in a future 

scenario incorporating the information from the 48 datasets in accordance with the probabilistic 

model derived for Modes 1 to 3, respectively. In this case, the distributions for the modal 

frequency, damping ratio and PSD of prediction error are approximated to be Gaussian while for 

the PSD of modal force, the distribution is quite different. This is also attributed to that the PSD of 

modal force is easier to be influenced by the environment as mentioned. In these three figures, the 

mean and COV of the distribution are shown above each subfigure. It is found that the posterior 

COVs in a single setup tend to be smaller than those calculated based on the probabilistic model. 

This indicates that the posterior uncertainty represented by the prediction model is higher than the 

posterior uncertainty of a single dataset, which may be attributed to that in the former case, the 

data variability among different datasets is taken into account, but not for the latter case.  

 

 

Fig. 12 PDF of modal parameters derived from probabilistic model, Mode 2 
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Fig. 13 PDF of modal parameters derived from probabilistic model, Mode 3 
 

 

 

Fig. 14 Modal parameters identified from different datasets versus temperature 
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Fig. 15 Modal parameters identified from different datasets versus wind speed 
 

 

 

Fig. 16 Modal parameters versus vibration amplitude 
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From Fig. 7 to Fig. 9, it is difficult to find the correlation between the modal parameters and 

wind speed, modal parameters and temperature. Figs. 14 and 15 show the modal parameters 

identified from different datasets versus the temperature and wind speed, respectively. It is seen 

that there is slightly descending trend for the modal frequencies with the increase of temperature. 

A similar trend is also observed in the correlation between the modal frequencies and wind speed, 

although it is even not obvious. The trend for the damping ratios is difficult to identify since the 

changes of temperature and wind speed in a normal day are too slight, and the 

amplitude-dependent characteristics are not obvious.  

Using the Fast Bayesian FFT method, one important merit is that the PSD of modal force can 

be identified directly. This makes it possible to estimate the modal root mean square (RMS) value 

of the ith mode according to the following equation (Au et al. 2012b) 

 
i

ii
i

ζ

Sfπ
RMS

4
  (6) 

where if , iζ , and iS denotes the modal frequency, damping ratio and PSD of modal force of the 

ith mode, respectively. The RMS value of the modal response in a given time window is utilized to 

represent the vibration level in a given mode. 

Fig. 16 shows the relationship between the modal frequency and modal RMS, the damping 

ratio and modal RMS for Modes 1 to 3. The modal frequency decreases with the increase of 

vibration level for each mode. This result is consistent with the investigation in Au et al. (2012b), 

where two tall buildings were studied under strong winds. Similar to Figs. 14 and 15, there is no 

obvious trend for the damping ratio. To examine the rationality of the definition of modal RMS, 

the relationship between wind speed and modal RMS for Modes 1 to 3 is plotted in Fig. 17. It is 

seen that the modal RMS increases with wind speed in an approximately linear manner for each 

mode, implying that the wind speed has an evident correlation with the modal RMS. This is 

consistent with our intuition.  

 

 

 

Fig. 17 Wind speed versus vibration amplitude 
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5. Conclusions 
 

This paper presents the work on operational modal analysis of the Canton Tower using the 

recently developed Fast Bayesian FFT method. In addition to the most probable value of modal 

parameters, the method also makes it possible to evaluate the associated posterior uncertainty 

analytically. The modal parameters of fifteen modes are identified, including the modal frequency, 

damping ratio, mode shape, modal force PSD and prediction error PSD. The modal frequency of 

the first mode is very low (less than 0.1 Hz), and it is consistent with the properties of this 

supertall structure. The identified damping ratios for all the modes are relatively small under 

ambient excitation conditions. The identification of modal frequencies is more accurate than that 

of damping ratios with a small posterior uncertainty for the former. It is interesting to find that the 

mode shapes of some modes are similar in translational direction and the main difference is 

reflected in their torsional behaviors. The identified modal frequencies obtained by the Fast 

Bayesian FFT method are consistent with those identified by the enhanced FDD method, BSDA 

and ARV method, while some differences exist for the damping ratio. By comparing the identified 

results and those obtained from FEM, certain variation is observed for some modal frequencies. It 

is necessary to perform model updating in the future.  

Based on the acceleration, wind speed, wind direction and temperature data collected in a 

whole day, 48 sets of modal parameters are identified to investigate the relationship with the wind 

speed, temperature and modal RMS of the acceleration response. By plotting the MPV and the 

associated posterior uncertainty of all the identified results together, the data with outlier can be 

detected by comparing the posterior uncertainty of modal parameters and checking their 

consistency. It is also seen that the modal frequencies have a slightly descending trend with the 

temperature, wind speed and modal vibration amplitude, while this is not true for the damping 

ratios under ambient excitation conditions. Furthermore, by comparing the correlation between the 

modal RMS and the wind speed, an approximately linear relationship between these two quantities 

is found, implying that the definition of the modal RMS in terms of the PSD of modal force is 

reasonable.  

The posterior uncertainties in the frequentist and Bayesian perspectives are consistent with each 

other, although the former tends to be larger than the latter. Based on the modal parameters and the 

associated posterior uncertainty obtained using the non-overlapping datasets, the distribution of the 

modal parameters in a future time window is predicted and assessed. It is found that the 

distributions of modal frequency, damping ratio and PSD of prediction error are approximately 

Gaussian, while this is not true for the PSD of modal force due to its dependence on environmental 

variation. 
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