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Abstract.  A damage detection algorithm based on neuro fuzzy hybrid system is presented in this study for 
location and severity predictions of cracks in beam-like structures. A combination of eigenfrequencies and 
rotation deviation curves are utilized as input to the soft computing technique. Both single and multiple 
damage cases are considered. Theoretical expressions leading to modal properties of damaged beam 
elements are provided. The beam formulation is based on Euler-Bernoulli theory. The cracked section of 
beam is simulated employing discrete spring model whose compliance is computed from stress intensity 
factors of fracture mechanics. A hybrid neuro fuzzy technique is utilized to solve the inverse problem of 
crack identification. Two different neuro fuzzy systems including grid partitioning (GP) and subtractive 
clustering (SC) are investigated for the highlighted problem. Several error metrics are utilized for evaluating 
the accuracy of the hybrid algorithms. The study is the first in terms of 1) using the two models of neuro 
fuzzy systems in crack detection and 2) considering multiple damages in beam elements employing the 
fused neuro fuzzy procedures. At the end of the study, the developed hybrid models are tested by utilizing 
the noise-contaminated data. Considering the robustness of the models, they can be employed as damage 
identification algorithms in health monitoring of beam-like structures. 
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1. Introduction 
 

Engineering structures deteriorate due to their steady usage over time. This process may be 

commenced or even accelerated on the score of ambient effects, accidents or adverse loading 

conditions such as earthquakes and storms, etc. The presence of damage in a structure will 

eventually lead to poor performance or failure of the system and may result in loss of human lives 

and loss of resources. To avoid this, detection of damage at its onset, if possible, is essential. 

Infrastructure health conditioning and monitoring, hence, have attracted the attention of scientific 

and engineering communities and have been an active area of research and development for the 

last several decades (Fan and Qiao 2011). Consequently, a broad range of damage detection 

methodologies have been developed during this period.  

Broadly speaking, there are a couple of ways in which health monitoring and damage detection 
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methodologies can be classified. The first categorization is done according to detection capability 

of damage detection procedures: local techniques and global techniques. Local damage diagnosis 

methods generally require that the vicinity of any damage be realized a priori (Saadat et al. 2007), 

and that the location of damage being inspected be easily accessible (Lauwagie et al. 2002). 

Subject to such limitations, these methods can detect damage on or near the surface of a structure. 

This cannot be guaranteed for most cases in civil, mechanical or aerospace engineering. In an 

effort to overcome these difficulties dynamic-based damage detection methods as global 

identification have been developed. Global techniques attempt to simultaneously asses the 

condition of the whole structure (Sohn et al. 2004). The second categorization is based on the 

extent of prior knowledge required by identification techniques: model-based and 

non-model-based or feature techniques. The former assumes that a detailed numerical model of the 

structure is available for damage detection; while the latter relies on experimentally obtained 

response data from structures. Non-model-based or feature based approaches typically seek to 

identify damage from changes in structural vibrational properties. These approaches determine 

structural changes by using some damage features, without the need of a detailed simulation of the 

structure. Examples of features that are extracted from measured responses and utilized in 

non-model based studies are natural frequencies (Garesci et al. 2006), mode shapes (Kim et al. 

2006), mode shape derivatives (Hamey et al. 2004), stiffness matrix (Shi et al. 2000), flexibility 

matrix (Choi et al. 2008), modal strain energy (Li et al. 2006), etc. Readers interested in more 

details of vibration-based features and detection algorithms are referred to the review studies by 

Carden and Fanning (2004) and Fan and Qiao (2011).  

The development of vibration-based structural damage detection as global methods can further 

be divided into traditional and modern types (Yan et al. 2007). The traditional type refers to 

detection method for structural damage only utilizing dynamic characteristics of structures such as 

natural frequency, modal damping, modal strain energy or modal shapes, etc. It has several 

disadvantages: 1) it is more dependent on experimentally measured modal properties of structures. 

2) When this type of identification is employed, it is hard to establish a universal methodology for 

various structures encountered in engineering applications. Also, 3) the traditional type of damage 

detection is often insensitive to small damages. The modern-type of vibration-based structural fault 

detection, also called as intelligent damage diagnosis, is based on online measured structural 

vibration responses to detect damage. Its advantages can be listed as: 1) its dependency on 

experiments is less than that of traditional type. Response data measured at few points in a 

structure would be enough for fault identification purposes. 2) A universal methodology can 

conveniently be established within modern-type detection that will be applicable to any structures.  

3) By selection and extraction of better dynamic characteristics of a structure, smaller damage can 

be diagnosed. For these reasons, the development of damage detection technique using 

modern-type has accelerated in the last decade. Among the modern-type methods for structural 

damage identification, the representative ones include wavelet analysis, genetic algorithm (GA), 

artificial neural network (ANN), fuzzy logic system, swarm intelligence techniques, and hybrid 

techniques that are formed by combining two or more of the former techniques. These methods 

predominantly take modern signal processing technique and artificial intelligence as analysis tools. 

The combination of artificial intelligence and signal processing is important in order to develop 

and extract a more reliable and sensitive damage feature index (Oruganti et al. 2009). 

Vibration-based damage detection is an inverse problem (Dackermann 2010), where damage 

properties such as severity and location are determined from changes in structural dynamic 

properties (Nanda et al. 2012). A unique solution oftentimes does not exist for an inverse problem, 
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particularly when the relationship between the vibration data identified by modal testing and those 

computed from analytical model are very complex and only limited data are available. This makes 

the inverse problem too difficult to be solved by conventional algorithms. However, the black box 

mapping between damage properties and dynamic changes in structures can be resolved by recent 

computational intelligence methods. Therefore, these methods have been gaining much more 

attention as compared to traditional techniques and many attempts have been made in recent years 

to utilize artificial intelligence techniques (Thatoi et al. 2013). An overview of these techniques 

confined only to structural damage detection area is presented in the following. It should be noted 

that the artificial intelligence techniques have been employed in numerous applications of science 

and engineering problems and, hence, the literature review supplied herein is by no means a 

comprehensive survey of the studies of soft computing techniques. 

In general, the inverse problem of determining damage parameters is a pattern recognition 

problem, where changes in dynamic properties of a structure are accounted for certain 

characteristics of damage. ANN is one of the effective tools in pattern recognition (Bakhary 2008). 

It also serves in function approximation for structural damage detection. ANN can display 

substantial tolerance of noisy, partially incomplete and partially faulty data, which is particularly 

useful for damage identification of large engineering structures where in-situ measured data are 

expected to be incomplete and corrupted with noise. The first successful application of ANN in 

damage detection of civil structures was performed by Wu et al. (1992). Since then, the use of 

ANN has considerably increased. To present to the reader an overview of the damage detection 

methods utilizing ANN in a compact and clear fashion, it would be convenient to categorize them 

in two ways. The first categorization can be done considering the type of vibration-based 

parameters as input to ANN: neural networks trained with natural frequencies, modal shapes and 

their derivatives (Tsou and Shen 1994, Sahin and Shenoi 2003, Gonzales and Zapico 2008, among 

others), neural networks trained with frequency response functions (Zang and Imregun 2001a, 

Fang et al. 2005, Saeed and George 2011), neural networks trained with time domain data (Su and 

Ye 2004, Kao and Hung 2005). The second categorization can be based on type of structure the 

ANN is applied to: simple numerical or laboratory structures (Barai and Pandey 1995, Chang et al. 

2000, Zapico et al. 2003) and complex numerical or real structures (Ni et al. 2000, Zang and 

Imregun 2001b, Vinayak et al. 2008). It is deduced that a large number of publications exists. 

However, the area of dynamic-based damage identification employing ANN is still an active field 

of research and there are several problems that need to be resolved by researchers: optimization of 

input parameters, network design and network training scheme.  

Fuzzy logic is another artificial intelligence method for modeling sophisticated systems where 

indeterminacy and imprecision can be important (Pawar and Ganguli 2005) and can be utilized for 

solving the inverse problem of damage detection. Fuzzy systems handle uncertainty directly by 

using linguistics reasoning which is more robust to uncertainty than pure numerical reasoning 

(Zadeh 1996). Recent examples of the use of fuzzy logic systems for developing damage detection 

systems are discussed next. A generalized methodology for structural fault detection using fuzzy 

logic is presented by Sawyer and Rao (2000). The numerical examples demonstrated the 

performance advantages of the fuzzy logic-based system in noisy or uncertain conditions. Ganguli 

(2001) demonstrated the use of fuzzy logic for damage detection and isolation in the presence of 

noise for a cantilever beam that resembled a helicopter rotor blade. Dempsey and Afjeh (2004) 

developed a diagnostic tool for detecting damage to spur gears using fuzzy logic with two different 

measurement technologies: wear debris analysis and vibration. From the results, it was observed 

that the use of two measurement technologies together improved the detection of pitting damage 
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on spur gears. The fuzzy logic-based methods are also applied to civil engineering structures in 

order to develop structural health monitoring systems. Soh and Bhalla (2005) proposed a fuzzy 

probability damage model based on the extracted equivalent stiffness for the non-destructive 

evaluation of concrete, covering both strength prediction and damage assessment, using the 

electro-mechanical impedance technique. Zhao and Chen (2002) presented a fuzzy rule-based 

inference system for bridge damage diagnosis and prediction. This aimed to supply bridge 

designers with valuable information about the impacts of design factors on bridge deterioration.  

In these traditional fuzzy systems, it is difficult to perform the fuzzy partitioning of the input 

and output spaces and to establish the fuzzy rules, which may require a time consuming 

trial-and-error process (Zio and Gola 2006). Moreover, as fuzzy logic systems do not have the 

capability of learning from data, it is difficult to develop a fuzzy system when a large number of 

discrete data is available as a knowledge base (Pawar and Ganguli 2011). As for the ANN, it lacks 

flexibility, human interaction or knowledge representation. However, these characteristics are 

clearly present in fuzzy logic systems. The active research, hence, has been going through a phase 

in which these soft computing methods are combined. The combination enables one to exploit the 

advantages of the simple learning procedures and computational power of ANN and the high-level, 

human-like thinking and reasoning of fuzzy systems (Du and Er 2004). The resulting hybrid 

system is called neuro fuzzy method and offers an appealingly powerful framework for tackling 

pattern recognition problems (Marseguerra et al. 2004, Czogaa et al. 2000). Neuro fuzzy technique 

was first proposed by Jang (1993) and, since then, has been applied for solving various 

engineering problems where the traditional techniques do not supply an easy and accurate solution 

(Vieira et al. 2004). The following presents a literature overview of hybrid neuro fuzzy systems 

pertinent to damage detection field. Ramu and Johnson (1995) and Nyongesa et al. (2001) utilized 

fuzzy logic for improving the performance of neural network for damage identification of 

composite structures. The effectiveness of adaptive network-based fuzzy inference system along 

with continuous evolutionary algorithm was investigated for crack detection by Shim and Suh 

(2002). The parameters of crack on clamped-free beam were estimated within 3% error. Zio and 

Gola (2009) and Lei et al. (2008) developed a neuro fuzzy technique for fault diagnosis in rotating 

machinery. Fuzzy inference system has also been successfully applied for fault diagnosis in 

induction motor (Altug et al. 1999, Ye et al. 2006, Tran et al. 2009) and railway track circuits 

(Chen et al. 2008). In a recent study by Saeed et al. (2012), a modular neuro fuzzy approach was 

adopted for crack identification in curvilinear beams based on changes in natural frequencies and 

frequency response functions. It should be noted that, apart from the fused neural fuzzy systems, 

there are other hybrid artificial intelligence systems such as neural genetic, genetic fuzzy and 

genetic neural fuzzy, and also optimization algorithm methods such as particle swarm optimization, 

ant colony optimization, bee colony optimization approaches being employed for detections of 

cracks in structural elements. The interested reader is referred to relevant studies for more 

information.   

The implication from the overview above is that very few researchers have studied the hybrid 

neuro fuzzy systems in solving the inverse problem of determining the crack parameters in 

structural beam elements. Moreover, to the authors‟ knowledge, identification of multiple damage 

cases has not been investigated previously using the fused method. These two factors motivate the 

study herein. It is well known that beam elements are one of the most commonly used structural 

components in various engineering applications and subjected to a wide variety of static and 

dynamic loads. Cracks may generate in beam-like structures due to such loads. If undetected at an 

early state, they may lead to catastrophic failure. A model-based approach is developed in this 
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study for crack identification using both global (e.g., natural frequencies) and local (e.g., mode 

shape rotation deviation values) modal properties. Knowing the effect of crack on stiffness, the 

structural element is modeled using Euler-Bernoulli beam theory. The boundary conditions are 

utilized along with the crack compatibility requirements to obtain the characteristic equation of 

damaged element, which subsequently yields the eigenfrequencies and modal shape rotation 

functions. The evaluation between the modal characteristics and crack parameters is carried out 

using the hybrid neuro fuzzy system which combines the ANNs adaptive capability and the fuzzy 

logic qualitative approach. The ability of two different neuro fuzzy inference systems including 

grid partitioning (GP) and subtractive clustering (SC) in damage detection is examined. The 

applicability of these methods for damage detection has also not been investigated beforehand. 

This sets the third motivation for this study. The study ends by testing the robustness of the 

developed systems in the presence of ambient noise. 

 

 

2. Theoretical formulation 
 

2.1 Damaged beam modeling 
 

Beams are commonly used load bearing elements in various engineering systems (e.g., steel 

structures, industrial machinery, bridges, etc.) and are subjected to static and dynamic loads. Due 

to these loadings and environmental effects, they may experience cracks, which thereafter 

drastically reduce the life cycle of structural systems. A crack in a beam element introduces 

additional flexibility, which can be utilized along with prevailing boundary conditions to formulate 

the characteristic equation of vibration to obtain dynamic properties of damaged element. The 

current section aims at the development of such a formulation as follows.  

The problem considered here is a cantilever beam with multiple cracks along its length and is 

shown schematically in Fig. 1. There are three main approaches to the modeling of cracks in 

beam-type structures reported in the literature: local stiffness reduction, discrete spring models, 

and complex models in two or three dimensions (Friswell and Penny 2002). The first two 

approaches are a gross simplification of the crack dynamics and the last approach, although it 

permits a detailed and accurate model of a damaged structure, is a complicated and 

computationally intensive approach for modeling simple structures like beams (Sinha et al. 2002). 

The formulation of each of these models has not completely satisfactory and some basic aspects 

have not been clarified yet (Caddemi and Morassi 2013). Despite this fact, they have been 

immensely utilized in both forward and inverse problem of damage detection for beam elements 

with single or multiple damages. For this reason, discrete spring model is used in this study to 

simulate the cracked section in favor of simplicity of mechanical model of crack. Fig. 1(b) shows 

the crack as a massless elastic rotational spring. The effects of discontinuities in axial and 

transverse displacements are considered to be negligible compared with that of bending slope. It is 

assumed that the cracks are perpendicular to beam surface and always remain open. The cracked 

beam is divided into sub-beams, as shown in Fig. 1(b), connected by the rotational springs at the 

cracked sections whose bending compliances (Ci‟s) are determined from the empirical expressions 

of stress intensity factors from fracture mechanics (Dimaragonas 1996).     

The Cartesian coordinates are chosen such that x coordinate is along the beam axis, and y and z 

are along the principal axes of beam cross-section. The cracks are located at distances of x1 and x2 

such that 
1 20 x x L   , where L is the beam length. The governing equation for the transverse 
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vibration of a uniform Euler-Bernoulli beam can be formulated (Weaver et al. 1990) as 

4 2

4 2

( , ) ( , )
0

b

v x t m v x t

x K t

 
 

 
                         (1) 

where Kb=EI is the flexural stiffness, E is the Young‟s modulus of elasticity, I is the area moment 

of inertia, m A  is the mass per unit length,   is the mass density, and A is the area of beam 

cross-section. Assuming the variation of transverse deflection of the beam at any location to be 

( , ) ( ) i tv x t X x e                              (2) 

Eq. (1) becomes 

 

4 2

4

( )
( ) 0

b

d X x m
X x

dx K


                           (3) 

In Eq. (2), 1,i    ω and X(x) are the circular frequency and mode-shape function of the 

beam respectively. The general form of the solution for Eq. (3) is given by 

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )X x D S x L D S x L D S x L D S x L                  (4) 

where Dj (j=1,2,3,4)‟s are constants to be determined from the boundary conditions and Sj‟s are the 

linearly independent solutions given by  

1 2 3 4( ) sin( ),  ( ) cos( ),  ( ) sinh( ),  and ( ) cosh( )S k S k S k S k                  (5) 

where x L   is the non-dimensional length parameter and 
2 44

bk m L K . To simplify the 

analysis of vibration of the Euler-Bernoulli beam, the linearly independent fundamental solutions 

denoted by ( ) ( =1,2,3,4)jS j are constructed based on linearly independent solutions. This is done 

by satisfying the normalization condition at the origin of axes (see for details Li 2001). Based on 

the 
jS ‟s, the mode-shape of the first segment (

10    ) can be formulated as 

2 3

1 1 2 3 4

(0) (0)
( ) (0) ( ) (0) ( ) ( ) ( )

b b

M V
X X S LS L S L S

K K
                     (6) 

 

 

Fig. 1 (a) Cantilever beam with two cracks and (b) beam modeled as sub-beams and cracks as rotational 

spring elements 
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where (0),  (0),  (0),X M  and (0)V  are the displacement, rotation, moment, and shearing force of 

the beam at 0,   respectively. Enforcing the continuity of the force and displacement fields 

across the crack and making use of Eq. (6), one obtains the mode-shape function for the section 

(
1 2    ) after the first crack as 

2 1 1 1 1 2 1 1( ) ( ) ( ) ( ) ( )X X C X S H                           (7) 

in which ( )H  is the Heaviside function, which assumes 0 for 1   and 1 for 1   and C1 is 

the compliance of the first crack. The characteristic equation of the beam having a single crack is 

readily established by imposing boundary conditions on the above equation. This is outlined next 

for a clamped-free beam. Since the beam is fixed at the left support, the compatibility requirements 

at 0   are 

(0) 0,  (0) 0X                                 (8) 

The mode shape of the first segment (
10    ) becomes then 

2 3

1 3 4

(0) (0)
( ) ( ) ( )

b b

M V
X L S L S

K K
                         (9) 

The boundary conditions of the right end are  

2 2(1) 0 and (1) 0X X                             (10) 

Utilizing Eqs. (7), (9) and (10) leads to the following two equations for a fixed-free beam 

having a single crack 

2 2 3 2

1 1
3 3 1 2 1 4 4 1 2 1(1) ( ) (1 ) (0) (1) ( ) (1 ) (0) 0

b b b b

L C L L C L
S S S M S S S V

K K K K
   

   
               

   
   (11) 

and      

2 2 3 2

1 1
3 3 1 2 1 4 4 1 2 1(1) ( ) (1 ) (0) (1) ( ) (1 ) (0) 0

b b b b

L C L L C L
S S S M S S S V

K K K K
   

   
               

   
 (12) 

In the case of two cracks, the above equations turn into 

2 2 22
1 2

3 3 2 3 1 2 2 1 2 2

1

3 3 32
1 2

4 4 2 4 1 2 2 1 2 2

1

(1) ( ) (1 ) ( ) ( ) (1 ) (0)

(1) ( ) (1 ) ( ) ( ) (1 ) (0) 0

i i i

ib b b

i i i

ib b b

L L C C L
S C S S S S S M

K K K

L L C C L
S C S S S S S V

K K K

     

     





 
           

 



 
            

 





    (13) 

and 
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2 2 22
1 2

3 3 2 3 1 2 2 1 2 2
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 





    (14) 

The frequency equation can be implemented by setting the second-order determinant that 

consists of the coefficients of M(0) and V(0) equal to zero. The calculated value of ωi is substituted 

back into these equations with one of M(0) and V(0) set equal to 1 or any other value in order to 

obtain ith mode shape. Once the modal functions are determined, their time derivatives can readily 

be obtained. The first derivative of the mode shape yields the mode shape rotation, from which the 

mode shape rotation deviation curve can be readily computed. In the model-based predictions of 

crack parameters using the hybrid neuro fuzzy approach, these frequencies and mode shape 

rotation values are utilized.  

 

2.2 Theoretical data simulation 
 
The training set of the hybrid system is built up from the analytical solutions of Eqs. (11) and 

(12) for the beam with one crack, and Eqs. (13) and (14) for the beam with two cracks. Assuming 

different variations of crack location along the beam length and crack extent along the beam 

thickness, a number of damage scenarios are created.  For the damaged beam having a single 

crack, the crack location x1 is varied from 0.05L to 1.0L in an increment of 0.05 and crack depth a1 

is varied from 0.05h to 0.60h in an increment of 0.05. This generates 912 damage circumstances. 

An additional crack is introduced to the faulty beam element so as to obtain a beam with two 

damages. Both the spatial distributions and extents of the two cracks are altered to produce the 

input data for the neuro fuzzy system. This arrangement of crack parameters yields 2206 damage 

scenarios.     

Of the dynamic properties of damaged structural beam elements determined using the 

procedure of the previous section, the natural frequency is the first input parameter selected for the 

inverse problem. This quantity has been shown to be a sensitive parameter and to have a good 

measuring accuracy. In order to ascertain the necessary input data and to determine uniquely the 

number of vibrational frequencies to be utilized in the development of neuro fuzzy systems, the 

effect of severity and location of damage on the natural frequencies should be investigated. Fig. 2 

shows the frequencies of the first four modes of vibration (ωic) of cracked beams normalized by 

those of uncracked beams (ωio).  The figure presents the normalized eigenfrequencies versus 

crack location (x1/L) for five different crack severities (a1=0.025, 0.10, 0.20, 0.30 and 0.50h). It is 

observed that as the crack height increases, the change in the normalized frequencies also increases. 

This effect is most apparent in the fundamental mode. However, as the crack approaches the free 

end, the influence of crack start to diminish. The remaining three frequencies show much sharper 

variations with respect to crack position. It is noted that the crack has no influence on the 

frequencies at specific nodal points regardless of the crack extent. Fig. 3 displays the vibrational 

frequencies of damaged Euler-Bernoulli beam having two cracks. The location and severity of the 

first crack are fixed at x1=0.35L and a1=0.225h while those of the second crack are varied. 

Comparing to Fig. 2, one observes that this figure shows that the variations of eigenfrequencies of 

the beam having two cracks are similar, except that the influence of crack extent on this beam is 
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higher, as expected. For all considered simulations of damaged beams with one and two cracks, it 

may be deduced that different vibration modes are influenced to different extents due to crack 

depth, depending on the spatial distribution of damage. Also, the different crack parameters 

leading to the same normalized frequencies make the inverse problem ill-conditioned. This in turn 

renders the development of the hybrid system harder. Therefore, an additional parameter is needed 

to improve the predictions of the system in solving the inverse problem.  

 

 

 

Fig. 2 Normalized natural frequencies of the first four modes versus normalized crack locations for the 

beam with one crack 
 

 

 

Fig. 3 Normalized natural frequencies of the first four modes versus normalized crack locations for the 

beam with two cracks 
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The square of the frequency ratio, frequency variation ratio, mode shape, mode shape 

derivatives, frequency response function, etc. have been employed in the past. This study uses 

mode shape rotation deviation curve as an additional parameter. It is inspired from the amplitude 

deviation curve introduced by Babu and Sekhar (2008) who studied the diagnostics of cracked 

rotors at operational conditions. Since the study herein considers only the free oscillation of 

damaged beam elements, amplitude deviation curve is defined in a slightly different way to 

generate mode shape rotation deviation curve. This definition has been exploited by the authors 

(Aydin and Kisi 2015) and has been shown potential for use in defect detection. Mode shape 

rotation deviation curve, similar to classical displacement mode shape, varies along the beam 

length for a given crack location and depth. Therefore, the maximum value of the curve 

corresponding to each mode of vibration is extracted as an input for damage detection scheme. It 

would of interest to see the variation of maxima of rotation deviation curves with respect to crack 

location and severity. Fig. 4 shows these variations for the first four modes of free oscillation. As 

the crack severity increases, the maxima of deviation curves also increase. Unlike the natural 

frequencies, the rotation deviation curve of the first mode is the least affected. The influence of 

crack depth on this mode is higher when the crack is in the proximity of the fixed end. The sharper 

shifts of maxima of deviation curves are observed for higher modes. In the case of two cracks, the 

maximum values of deviation curves are determined to be much close to those values in the case 

of one crack. For this reason, and considering that the beam has now two cracks, the second 

maxima of the rotation deviation curves are computed. Fig. 5 shows these values. It is observed 

that for the fundamental mode, the higher the crack depth, the lower the maxima. For the 

remaining modes, the variation of the second maxima with respect to crack extent depends on the 

crack position. 

 

 

 

Fig. 4 Maxima of mode shape rotation deviation curves of the first four modes versus normalized crack 

locations for the beam with one crack 
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Fig. 5 The second maxima of mode shape rotation deviation curves of the first four modes versus 

normalized crack locations for the beam with two cracks 
 

 

Combination of these peak deviation quantities with natural frequencies constitutes the input 

data to the neuro fuzzy system. The aim of the study is to utilize as few vibration-based analysis 

data as possible and at the same time to get a high accuracy in the estimates of the inverse problem. 

Therefore, only those values corresponding to the first four modes of vibration are employed as 

input to the fused artificial intelligence algorithm.  

 

 

3. Adaptive neuro-fuzzy inference system 
 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is first introduced by Jang (1993). It is a 

universal approximator and capable of approaching any real continuous function on a compact set 

to any degree of accuracy (Jang et al. 1997). The ANFIS system used in this study is functionally 

equivalent to the Sugeno first-order fuzzy model (Jang et al. 1997, Drake 2000). Below, the hybrid 

learning algorithm composed of gradient descent and least-squares method is explained. 

As an example, assume a fuzzy inference system with two inputs x and y and one output z. The 

first-order Sugeno fuzzy model, a typical rule set with two fuzzy If-Then rules can be expressed as 

Rule 1: If x is A1 and y is B1, then   
1 1 1 1z p x q y r                  (15) 

Rule 2: If x is A2 and y is B2, then   
2222 ryqxpz               (16) 

The resulting Sugeno fuzzy reasoning system is illustrated in Fig. 6. In this figure, the output z 

is the weighted average of the individual rule outputs and is itself a crisp value. Fig. 7 shows the 
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equivalent ANFIS architecture. Same layer‟s nodes have similar functions. The node functions are 

described next. The output of the ith node in layer l is denoted as Ol,i. 
 

Layer 1: Every node i in this layer is an adaptive node with node function 

 

, ( )l i iO A x ,    for i = 1, 2, or 

, 2( )l i iO B y  , for  i = 3, 4 

 

where x (or y) is the input to the ith node and Ai (or Bi-2) is a linguistic label (such as „„low‟‟ or 

„„high‟‟) associated with this node. Stated in words, Ol,i is the membership grade of a fuzzy set A 

(= A1, A2, B1, or B2) and it expresses the degree to which the given input x (or y) satisfies the 

quantifier A. The membership functions for A and B are usually defined by generalized bell 

functions, e.g.  

 
2

1
( )

1 /
i

i b

i i

A x
x c a

 
    

                          (17) 

where {ai, bi, ci} is the parameter set. As the values of these parameters vary, the bell-shaped 

function changes accordingly, thus, exhibiting various forms of membership functions on linguistic 

label Ai. Strictly speaking, any continuous and piecewise differentiable functions such as Gaussian 

membership functions that are frequently utilized are also qualified candidates for node functions 

in this layer (Jang 1993). Parameters in this layer are referred to as premise parameters. The 

outputs of this layer are the membership values of the premise part. 

 

Layer 2: This layer consists of the nodes labeled  which multiply incoming signals and sending 

the product out. For instance, 

2, ( ) ( )i i i iO w A x B y   ,  i = 1, 2.                     (18) 

Each node output represents the firing strength of a rule. 

 

 

 

Fig. 6 Two-input first-order Sugeno fuzzy model with two rules (Kisi, 2006) 
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Layer 3: In this layer, the nodes labeled N calculates the ratio of the ith rule‟s firing strength to the 

sum of all rules‟ firing strengths 

3,

1 2

i
i i

w
O w

w w
 


,  i = 1, 2.                        (19) 

The outputs of this layer are called normalized firing strengths. 

 

Layer 4: This layer‟s nodes are adaptive with node functions 

 4,i i i i i i iO w z w p x q y r                          (20) 

where iw  is the output of layer 3, and  , ,i i ip q r  are the parameter set. Parameters of this layer 

are referred to as consequent parameters. 

 

Layer 5: This layer‟s single fixed node labeled  computes the final output as the summation of 

all incoming signals 

5,

1

i i

i
i i i

i i

i

w z

O w z
w

 





                         (21) 

Thus, an adaptive network is functionally equivalent to a Sugeno first-order fuzzy inference 

system.  

The learning rule specifies how the premise parameters (see layer 1) and consequent 

parameters (see layer 4) should be updated to minimize a prescribed error measure E. The error 

measure is a mathematical expression that measures the difference between the networks actual 

output and the desired output, such as the squared error. The steepest descent method is used as the 

basic learning rule of the adaptive network. In this method the gradient is derived by repeated 

application of the chain rule. Calculation of the gradient in a network structure requires use of the 

ordered derivative denoted as 
+
 as opposed to the ordinary partial derivative . This technique is 

called the back propagation rule (Jang 1993, Drake 2000). The core of this learning rule involves 

how to recursively obtain a gradient vector in which each element is defined as the derivative of an 

error measure with respect to a parameter (Haykin 1998). The update formula for simple steepest 

descent for the generic parameter  is 

E
 




  


                             (22) 

where  is the learning rate. 

While the back propagation learning rule can be used to identify the parameters in an adaptive 

network, this method is slow to converge. The hybrid learning algorithm (Jang 1993), which 

combines back propagation and the least-squares method can be used to rapidly train and adapt the 

equivalent fuzzy inference system. It can be seen from the Fig. 7 that if the premise parameters are 

fixed, the overall output can be given as a linear combination of the consequent parameters. The 

output z can be written as 
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   

           

1 2
1 2

1 2 1 2

1 1 1 1 2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2

w w
z z z

w w w w

w p x q y r w p x q y r

w x p w y q w r w x p w y q w r

 
 

     

     

         (23) 

which is linear in the consequent parameters p1, q1, r1, p2, q2, and r2. Then we have 

 

S = set of total parameters, 

S1 = set of premise (nonlinear) parameters, 

S2 = set of consequent (linear) parameters. 

 

Given the values of S1, we can plug P training data into Eq. (23) and obtain the matrix equation 

A y                                 (24) 

where  is an unknown vector whose elements are parameters in S2, the set of consequent (linear) 

parameters. 

Then the set S2 of consequent parameters can be identified with the standard least-squares 

estimator (LSE): 

 
1

T TA A A y


                             (25) 

where A
T
 is the transpose of A and (A

T
A)

-1
A

T
 is the pseudo-inverse of A if A

T
A is nonsingular. The 

recursive least-square estimator (RLS) can also be used to calculate *
 (Jang 1993). 

Back propagation and LSE can now be combined to update the parameters of the adaptive 

network. For hybrid learning applied in batch mode (off-line learning), each epoch is composed of 

a forward pass and a backward pass as summarized in Table 1. 

In the forward pass of the hybrid learning algorithm, node outputs go forward until the final 

layer (layer 4 in Fig. 7) and the consequent parameters are identified by the least-squares method. 

In the backward pass, the error signals propagate backward and the premise parameters are 

updated by gradient descent. More information for ANFIS can be found in Jang (1993). 

 

 

Fig. 7 Equivalent ANFIS architecture (Kisi 2006) 
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Table 1 Hybrid learning procedure of ANFIS for one epoch (Kisi 2006) 

 Forward Pass 

Layer 1 Set premise parameters of the membership functions, arbitrarily (e.g., {ai, bi, ci} and 

compute the membership values (e.g., µAi(x), µBi(y)). 

 

Layer 2 

Compute the firing strength of the ith rule by multiplying the membership values obtained 

in layer 1 (e.g.,    xBxAw iii    ). 

 

Layer 3 

Compute the normalized firing strengths by calculating the ratio of the ith rule‟s firing 

strength to the sum of all rules‟ firing strengths (e.g., 



2

1

/
i

iii www ) 

 

Layer 4 

Obtain the weighted node function by multiplying the normalized firing strengths with 

the node function for each rule (e.g., ( )i i i i i iw z w p x q y r   , here the pi, qi and ri are 

the consequent parameters). 

 

Layer 5 

Obtain the matrix equation yA  using the Eq. (23). The θ is an unknown vector 

comprising the consequent parameters. Determine the consequent parameters with the 

standard least-squares estimator (LSE) given by the Eq. (25).  

  

 Backward Pass  

Layer 1 
Determine the premise parameters using the update formula of simple gradient descent 

given by Eq. (22). 

 

 

In the present study two different ANFIS methods, Grid Partition (GP) and Subtractive 

Clustering (SC) were used. GP divides the input space into rectangular subspaces using a number 

of local fuzzy regions by axis-paralleled partition based on predefined number of membership 

functions and their types in each dimension. Least square method is used for calculating fuzzy sets‟ 

parameters. During constructing the fuzzy rules, consequent parameters in the output membership 

function are set to zero. Then, the parameters are identified and refined by using ANFIS. The 

detailed information about GP and its combination with ANFIS (ANFIS-GP) can be found in 

Abonyi et al. (1999). Increasing the number of input variables exponentially increases the number 

of fuzzy rules. For example, if we have m input variables and n membership functions for each 

input variable, the total number of fuzzy rules is equal to m
n
 (Wei et al. 2007). SC is an extension 
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of mountain clustering method proposed by Yager and Filev (1994) in which each data point (not a 

grid point) is considered as a center for potential cluster center (Chiu 1994). Using this method, the 

number of effective “grid points” to be evaluated equals to the number of data points, independent 

of the dimension of the problem. Another advantage of SC method is that it eliminates the need to 

specify a grid resolution, in which tradeoffs between accuracy and computational complexity must 

be considered. The SC method also extends the criterion of the mountain method for accepting and 

rejecting cluster centers. The detailed information about GP and its combination with ANFIS 

(ANFIS-SC) can be found in Wei et al. (2007) and Cobaner (2011). 

 

 

4. Results 
 

4.1 Application of neuro fuzzy models to noise-free data 
 
This section presents the design and predictions of ANFIS models for damage identification in 

structural beam elements. The model is based on Euler-Bernoulli beam theory and only support 

conditions of cantilever beam are considered. Cantilever beam-type components represent the 

response of various structures in civil, mechanical and microelectromechanical systems. The 

inverse problem of determining the extent and position of cracks are investigated in the present 

study and beams with one and two cracks are considered. Two different program codes in 

MATLAB including Fuzzy Logic toolboxes are written for the ANFIS-GP and ANFIS-SC 

simulations. Various types of fuzzy membership functions are used for the ANFIS-GP simulations. 

Mean absolute relative error (MARE), root mean square error (RMSE) and determination 

coefficient (R
2
) criteria are utilized for evaluating the accuracy of each model. The R

2
 indicates the 

degree to which two variables are linearly related. MARE and RMSE show different types of 

information about the predictive capabilities of the model. The RMSE measures the 

goodness-of-fit relevant to high values whereas the MARE yields a more balanced perspective of 

the goodness-of-fit at moderate values (Karunanithi et al. 1994). Although both MARE and RMSE 

measure the average magnitude of the error in the predictive model, MARE is a linear score, 

meaning that all the individual differences are weighted equally in the average, whereas RMSE is 

a quadratic scoring rule. The optimal model should have the minimal RMSE and MARE, and an 

R
2
 should be close to 1. The MARE, RMSE and R

2
 statistics can be expressed as 

1

1
MARE 100

N
O M

i O

Y Y

N Y


 

                          

(26) 

 
2

1

1
RMSE

N

O M

i

Y Y
N 

 
                       

(27) 

   

   

2

2 1 1

2 2

1 1

R

N N

O O M M

i i

N N

O O M M

i i

Y Y Y Y

Y Y Y Y

 

 

 
  
 

  
   
 

 

 
 

               (28) 
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where N is the number of observations, Yo is the observed datum, YM is the corresponding 

simulated datum, oY and MY  are mean of the observed and simulated values. 

In the first part of the study, the crack parameters are tried to be determined for the 

Euler-Bernoulli beam having a single crack. The natural frequencies and the maxima of mode 

shape rotation deviation curves of the first four modes and the spatial location of the maximum of 

mode shape rotation deviation curve of the fundamental mode of vibration are used as inputs to the 

ANFIS models to predict crack location and crack depth. Optimum parameters of the neuro fuzzy 

models are obtained by minimizing the objective function (RMSE between calculated and 

observed values) in test period. The final architectures of the ANFIS models are determined by 

trial and error process for each model. In order to develop ANFIS-SC, determining the proper 

cluster radius is critical. The cluster radius shows the range of influence of a cluster when one 

assumes the data space as a unit hypercube. Radius values vary between 0 and 1. Assigning a 

small cluster radius will yield many small clusters in the data, (with many rules resulting many 

membership functions and parameters) and specifying a large cluster radius will produce a few 

large clusters in the data, (with fewer rules resulting fewer membership functions and parameters). 

The test results of the optimal neuro fuzzy models in crack estimation are shown in Table 2. The 

model structures are given in the second column of the table. Here, (2,gaussmf) indicates an 

ANFIS-GP model having 2 Gaussian membership functions for each input and (2, 0.95) reveals an 

ANFIS-SC model having 2 clusters and radius value of 0.95. It is clear from the table that the 

ANFIS-SC model has the lowest MARE (0.15), RMSE (0.0003) and the highest R
2
 (0.9999) 

values in the prediction of crack location. Table 1 also shows that the ANFIS-SC model whose 

inputs have 2 clusters and radius value of 0.80 performs better than the ANFIS-GP model in the 

prediction of crack depth. The estimates of the optimal ANFIS-GP and ANFIS-SC models in test 

period are shown in Figs. 8 and 9. These figures present the best predictions of the ANFIS 

structures for the crack location and depth. These predictions are obtained using the previously 

constituted input data. The fit line equations and R
2
 values of each model are also provided in 

these figures. It is observed from the graphs that the estimates of the both ANFIS models closely 

follow the corresponding calculated crack location and depth values and ANFIS-SC model 

performs slightly better than the ANFIS–GP models. 

 

 

 
Table 2 Test results of the ANFIS-GP and ANFIS-SC models in crack estimation (beam with 1 crack) 

Model Model Structure MARE RMSE R
2
 

  Crack location 

ANFIS-GP (2,gaussmf) 3.25 0.0055 0.9996 

ANFIS-SC (2, 0.95) 0.15 0.0003 0.9999 

  Crack depth 

ANFIS-GP (2,gaussmf) 9.62 0.0179 0.9902 

ANFIS-SC (3, 0.80) 8.71 0.0137 0.9940 
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Fig. 8 Calculated and modeled crack location by ANFIS-GP and ANFIS-SC models in test phase 
 

 

 

Fig. 9 Calculated and modeled crack depth by ANFIS-GP and ANFIS-SC models in test phase 
 

 

In the second part of the study, four ANFIS-GP and ANFIS-SC models are developed using ten 

inputs to predict location and depth of the two cracks. Table 3 compares the test results of the 

optimal ANFIS models in the estimation of two cracks. The table indicates that the ANFIS-SC 
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model comprising 4 cluster (radius=0.95) performs better than the ANFIS-GP model whose inputs 

have 2 Gaussian membership functions in the location prediction of both of the cracks. The 

ANFIS-SC model has a better performance than the ANFIS-GP model for estimating the depth of 

the first crack while the both models show almost same accuracy for estimating the depth of the 

second crack. The estimates of the optimal ANFIS-GP and ANFIS-SC models in test period are 

shown in Figs. 10 and 11 for the first crack. It is clearly seen from the fit line equations (assume 

that the equation is y=ax+b) given in scatterplots that the coefficients a and b of the ANFIS-SC 

models are respectively closer to the 1 and 0 with higher R
2
 values than those of the ANFIS-GP 

models.  

 

 

Fig. 10 Calculated and modeled location of the first crack by ANFIS models in test phase 
 

 
Table 3 Test results of the ANFIS-GP and ANFIS-SC models in crack estimation (beam with two cracks) 

Model 
Model 

Structure 
MARE RMSE R

2
  MARE RMSE R

2
 

  Crack 1 

  Location  Depth 

ANFIS-GP (2,gaussmf) 1.61 0.0040 0.9997 (2,gaussmf) 5.98 0.0115 0.9968 

ANFIS-SC (4, 0.95) 0.11 0.0003 0.9999 (5,0.85) 5.53 0.0113 0.9969 

  Crack 2 

  Location  Depth 

ANFIS-GP (2,gaussmf) 0.71 0.0051 0.9994 (2,gaussmf) 19.6 0.0401 0.9595 

ANFIS-SC (4, 0.95) 0.03 0.0002 0.9999 (9,0.70) 19.4 0.0404 0.9586 
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Fig. 11 Calculated and modeled depth of the first crack by ANFIS models in test phase 
 

 

 

Fig. 12 Calculated and modeled location of the second crack by ANFIS models in test phase 
 

 

Figs. 12 and 13 illustrate the location and depth estimates of the second crack. It is seen from 

the figures that the estimates of the both ANFIS models closely follow the corresponding 

calculated values, specifically the crack locations. It is realized from these figures that the both 

model estimates are more scattered for crack depths than those of the crack locations. This is also 

valid for the case of single crack. This is most likely due to the ill-posed nature of the inverse 

problem wherein more than one crack positions and severities produce the same modal properties 

of beam elements. Another observation from the figures is that the better estimates are obtained in 

the case of one crack compared to the case of multiple cracks. The reason for this is that a higher 

chance of the same natural frequencies and mode shape deviation curves from a different set of 

crack parameters exist now in the case of two cracks.  
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Fig. 13 Calculated and modeled depth of the second crack by ANFIS models in test phase 
 

 

4.2 Application of neuro fuzzy models to noise-contaminated data 
 

In order to assess the robustness of the optimal neuro fuzzy models developed in the previous 

section, they need to be tested against noisy data. In this way, a better generalization during the 

training ANFIS models and simulation of the uncertainties of ambient vibration and environmental 

effects would be performed. Artificial random noise with a normal distribution having a zero mean 

and a variance and standard deviation of one is added to the raw input data according to the 

following equation 

 with noise, noise-free, 1n ndata data SF y                          (29) 

where data are un-normalized natural frequencies or mode shape rotation deviation curves, SF is 

the scale factor (or noise level), y is the randomly generated noise vector and n is the number of 

mode under consideration. The random noise is multiplied by a frequency modulation function to 

take into account the dependency of noise on frequency values (Wang and Chuang 2004). The 

noise level introduced into the frequency and modal vectors hence increases with increasing 

frequency values. It is generally assumed that the variations in frequency measurements due to 

environmental conditions can be as high as 5% (Fan and Qiao 2011). Therefore, three different 

noise levels, i.e., 1, 3 and 5 are considered in the study. Noise levels of 1 and 3% may be argued to 

be small whereas 5% may be viewed as somewhat high level of contamination. 

The optimal neuro fuzzy models that have provided the lowest error metrics in noise-free cases 

are tested herein. Table 4 presents the error estimates of the optimal ANFIS-SC models for the 

beam having a single crack. It is seen that the both models of crack location and severity perform 

reasonably well at all levels of noise. Table 5 shows the performance of the optimal ANFIS-SC 

models, each having different cluster and radius, in the presence of noise for the beam having two 

cracks. It is observed that the model predictions are worse than those in the case of single crack. 

Although the performance of the optimal models can be acceptable for 5% noise ratio, the 

performance is expected to further deteriorate for higher noise ratios. The reason for this is 
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attributed to the fact that the membership functions are determined based on clustering and the 

number of fuzzy rules is equal to that of membership functions. Hence, the ANFIS-SC is sensitive 

to higher levels of noise. Another observation from Tables 4 and 5 is that the developed models 

predict the crack location better than the crack extent in both one and two crack cases at all noise 

levels. This may be due to non-uniqueness of the relation between the crack parameters and 

vibration data. 
 

 

 

Table 4 Error metrics of the neuro fuzzy systems in crack parameters using noisy data (beam with 1 crack) 

 

 

 
Table 5 Error metrics of the neuro fuzzy systems in crack parameters using noisy data (beam with 2 cracks) 

 

 Noise Level MARE RMSE R
2
 

Crack location 

1% 0.6821 0.0044 0.9997 

3% 1.9023 0.0129 0.9978 

5% 3.2458 0.0228 0.9932 

Crack height 

1% 12.902 0.0191 0.9885 

3% 24.053 0.0289 0.9739 

5% 25.044 0.0358 0.9598 

 Noise Level MARE RMSE R
2
 

Location of 1st  Crack  

1% 0.7538 0.0038 0.9997 

3% 2.0253 0.0105 0.9978 

5% 3.6177 0.0173 0.9939 

Height of 1st Crack  

1% 5.7832 0.0154 0.9942 

3% 9.9033 0.0315 0.9764 

5% 13.1297 0.0529 0.9349 

     

Location of  2nd Crack  

1% 0.7765 0.0069 0.9990 

3% 2.2386 0.0197 0.9915 

5% 4.0705 0.0338 0.9760 

  Height of 2nd Crack  

1% 21.4581 0.0470 0.9442 

3% 24.3069 0.0561 0.9232 

5% 30.9971 0.0724 0.8748 
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5. Conclusions 
 

This study examines the relevance of fused neuro fuzzy systems for damage identification in 

structural beam elements. Due to common usage in various fields and low sensitivity of modal 

properties to damage, boundary conditions of cantilever beam are considered. Beams with single 

and multiple cracks are studied in the inverse problem of determining the crack parameters-crack 

spatial distribution and severity. Two different codes are prepared for the hybrid models of 

ANFIS-GP and ANFIS-SC. Various types of membership functions are evaluated in the ANFIS-GP 

simulations while the number and radius of cluster are tried to be determined in the ANFIS-SC 

simulations. Optimum parameters of these simulations are determined by minimizing the objective 

function in test periods of the fused systems. It is shown that the ANFIS-SC model having 2 

clusters and radius value of 0.95 for the crack location and that model having 3 clusters and radius 

value of 0.80 for the crack extent yield the lowest error estimates for the beam with a single crack. 

In the case of beam element having two cracks, the ANFIS-SC model containing 4 clusters with a 

radius of 0.95 performs better that the ANFIS-GP models in the location prediction of both of the 

cracks. The ANFIS-SC model has also a better performance than the ANFIS-GP for predicting the 

depth of the first crack while the two models have close accuracy for estimating the depth of the 

second crack. It is observed from the figures showing the performance of ANFIS-GP and 

ANFIS-SC models and from the quantitative values of error metrics that the model predictions of 

crack depth are somewhat poorer than those of crack position. This may be attributed to the 

ill-conditioned property of the inverse problem studied. Another reason is that the crack extent is 

not as significant as crack spatial distribution on the natural frequencies and mode shape rotation 

deviation values. The robustness of these optimal neuro fuzzy models is tested against 

noise-contaminated data. For this purpose, a random noise with zero mean and unit variance and 

standard deviation is added to the raw data. In order to consider the frequency dependency of noise, 

the random noise vector is scaled by a frequency modulation function in time domain. Although 

the performance of the optimal models degrades with augmenting noise ratios, the accuracy is 

rather reasonable for a noise level of 5% anticipated in real-life conditions.    

Sound as the results of this study may appear, the reader is cautioned for two points: 1) the 

crack on beam element is modeled as an elastic spring, which is an apparent simplification of 

crack dynamics. Since the formulation of this model has not yet been proven theoretically and 

some aspects have not been completely clarified, one should be careful in utilizing the localized 

massless spring model particularly when there are a number of cracks that are closely spaced on 

beam elements. 2) The developed hybrid models need to be verified employing the experimentally 

obtained response data. As future work, the analysis of the two neuro fuzzy systems can be 

extended for localization and identification of crack in more complex beam or plate structures. The 

current research is carried out based on the Euler-Bernoulli beam-like structures but it can also be 

applied for Timoshenko beam-like structures. 
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