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Abstract.  For vibration control of civil structures, especially large civil structures, one of the important 
issues is how to place a minimal number of actuators and sensors at their respective optimal locations to 
achieve the predetermined control performance. In this paper, a methodology is presented for the 
determination of the minimal number and optimal location of actuators and sensors for vibration control of 
building structures under earthquake excitation. In the proposed methodology, the number and location of 
the actuators are first determined in terms of the sequence of performance index increments and the 
predetermined control performance. A multi-scale response reconstruction method is then extended to the 
controlled building structure for the determination of the minimal number and optimal placement of sensors 
with the objective that the reconstructed structural responses can be used as feedbacks for the vibration 
control while the predetermined control performance can be maintained. The feasibility and accuracy of the 
proposed methodology are finally investigated numerically through a 20-story shear building structure under 
the El-Centro ground excitation and the Kobe ground excitation. The numerical results show that with the 
limited number of sensors and actuators at their optimal locations, the predetermined control performance of 
the building structure can be achieved. 
 

Keywords:  vibration control; building structure; actuator placement; sensor placement; performance index 

increment; multi-scale response reconstruction 

 
 
1. Introduction 
 

In the past few decades, considerable attention has been paid to structural vibration control 

technology for sustaining the safety and serviceability of civil structures against strong winds, 

earthquakes and other natural or man-made hazards (Housner et al. 1997, Spencer and Nagarajaiah 

2003, Xu and Ng 2008, Fisco and Adeli 2011). Many real implementations of vibration control 

technology have also been realized throughout the world (Aupérin et al. 2001, Soong and Spencer 

2002, Ikeda 2009). For active or hybrid control technology, the vibration control system mainly 

comprises two interacted parts: sensory system and actuator system. One of the important issues is 

how to place a minimal number of actuators and sensors at their respective optimal locations to 

achieve the predetermined control performance. This issue is particularly important for large civil 

structures because of their huge sizes and complex structural systems. However, in the field of 

civil engineering the research on the optimal placement of sensors often refers to structural 
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damage detection whereas the study on the optimal placement of actuators always makes reference 

to structural vibration control (Rao and Anandakumar 2008, Yi et al. 2012, Bigdelia et al. 2012). 

Unlike the mechanical and aerospace engineering arena, combinatorial optimization methods as a 

means for identifying sets of actuators and sensors that maximize control performance are limited 

for civil structures. 

To provide maximum information on the state of a structure, numerous methods have been 

developed for solving the optimal sensor placement problem. For example, Kammer (1991) 

proposed a method, termed Effective Independence (EfI) method, to optimize sensor locations 

based on the contribution of each sensor location to the linear independence of the identified 

modes. Based on the Fisher information matrix, Udwadia (1994) proposed a methodology for the 

optimal sensor location in such a way that the measurements obtained from those locations are 

most informative about the estimated parameters. Heo et al. (1997) suggested an optimal sensor 

placement method based on the maximization of modal kinetic energy. Its objective is to find a 

reduced sensor configuration which maximizes the measure of the kinetic energy of a structure. 

The inherent mathematical connection between the EfI and kinetic energy methods was revealed 

by Li et al. (2007). More recently, Zhang et al. (2011, 2012) proposed a sensor placement 

approach for the optimal configuration of multi-type sensors to achieve the best multi-scale 

response reconstruction for monitoring a structure. A comprehensive review on the optimal sensor 

placement has been provided by Barthorpe and Worden (2009). 

For the optimal placement of control devices, extensive studies have also been performed. 

Some investigations were carried out to find optimal configuration of control devices by 

minimizing the amplitude of transfer functions evaluated at the fundamental frequency (Takewaki 

1997, 2000, Aydin et al. 2007). Another type of widely used objective function for optimizing 

controller placement is based on the minimization of building performance indices in the time 

domain (Zhang and Soong 1992, Liu et al. 2005, Whittle et al. 2012) or on the properties of the 

control system or control law such as the controllability (Hac and Liu 1993, Peng et al. 2005). 

Based on the linear quadratic performance index, a relatively simple increment algorithm was also 

proposed by Xu and Teng (2002) for the optimal placement of control devices for building 

structures under earthquake excitations. 

In the field of mechanical and aerospace engineering, the optimal configuration of the actuators 

and sensors are often simultaneously considered primarily due to the meticulous requirement of 

control effectiveness and the wide application of smart materials such as piezoelectric ceramics or 

shape memory alloys. Comprehensive reviews on this topic can be found in the literatures (Frecker 

2003, Gupta et al. 2010). However, combinatorial optimization methods for identifying locations 

of both actuators and sensors for vibration control of civil structures are relatively limited. In this 

paper, a relatively simple and cost-effective method is presented for the determination of the 

minimal number and optimal location of actuators and sensors for vibration control of building 

structures under earthquake excitation. In the proposed method, the number and location of the 

actuators are first determined in terms of the sequence of performance index increments and the 

predetermined control performance. A multi-scale response reconstruction method is then extended 

to the controlled building structure for the determination of the minimal number and optimal 

placement of sensors with the objective that the reconstructed structural responses can be used as 

feedbacks for the vibration control while the predetermined control performance can be 

maintained. The feasibility and accuracy of the proposed methodology are finally investigated 

numerically through a 20-story shear building structure under the El-Centro ground excitation and 

the Kobe ground excitation. 
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2. Increment-based approach for optimal placement of actuators 

 

It is well known that the equation of motion of a controlled building structure of multi-degrees 

of freedom (MDOFs) under earthquake excitation can be given by 

[ ]{ } [ ]{ } [ ]{ } [ ]{1} [ ]{ }g cM x C x K x M x H U                       (1) 

in which x, x and x are respectively the displacement, velocity, and acceleration response vector; 

[M], [K] and [C] are respectively the mass, stiffness and damping matrix of the building structure; 

{U} is the control force vector; [Hc] is the matrix denoting the location of the control force; and 

gx is the ground acceleration. Eq. (1) can also be converted to the following continuous state-space 

equation. 

{ } [ ]{ } [ ] [ ]{ }c c g cX A X B x D U                            (2) 

where 

 { } { } { }
T

X x x                                (3) 
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c

I
A

M K M C 

 
  
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 

  
 

;
1

[0]
[ ]

[ ] [ ]
c

c

D
M H

 
  
 

              (4) 

The following linear quadratic performance index is often used for vibration control of a 

building structure under random disturbance. 

  0

1
{ } [ ]{ } { } [ ]{ }

2

ft
T TJ E X Q X U R U dt                        (5) 

where [Q] and [R] are the weighting matrices for the structural response and control force, 

respectively; E is the expectation operator; and tf is the duration defined to be longer than that of 

the earthquake. For a close-loop control configuration with the ground motion being a white noise 

random process, minimizing Eq. (5) subject to the constraint of Eq. (2) results in the following 

optimal control force vector 

{ } [ ]{ }U G X                                  (6) 

where [G] is the control gain given by 

1[ ] [ ] [ ] [ ]T

cG R D P                                (7) 

The matrix [P] is the solution of the following classical Riccati equation. 

1[ ] [ ] [ ][ ] [ ][ ][ ] [ ] [ ] [ ] 0T T

c c c cA P P A P D R D P Q                     (8) 

The increment of the performance index for the optimal location of control device is given by 
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  0[ ] [ ] [ ][ ] [ ]i c iJ tr X F S D G    
  

(i=1, 2,…,j)                 (9) 

where 

0 0 0[ ] { } { }TX X X                              (10) 

 0
[ ] {[ ] ( )}{[ ] ( )}

ft
T

c g c gF E B x B x d                         (11) 

0
[ ] [ ( )] [ ][ ( )]

ft
TS t t Q t dt                            (12) 

[ ( )] exp{([ ] [ ][ ]) }c ct A D G t  
                     

  (13) 

[ ] [ ] [ ] [ ][ ]TQ Q G R G                             (14) 

in which 
iJ and [ ]c iD denote respectively the increment of the performance index and the 

change of the position matrix of control devices [Dc] when the i-th control device is removed; j is 

the number of the removed control devices; and {X}0 denotes the initial state of the structure. 

The increment of the optimal performance index due to the removal of the i-th control device, 

calculated by Eq. (9), reflects the sensitivity of the i-th control device to the performance index. A 

small increment of the index means a low sensitivity and less importance of the i-th control device 

to the total control performance whereas a high increment implies that the i-th control device has 

great influence on the total control performance. Therefore, based on the calculated increments 

from the removal of each control device, the sequence of importance of all the control devices can 

be obtained. For the sake of easy comparison, a contribution percentage (CP) index is presented 

and defined as follows 

1

i
i j

i

i

J
CP

J







                              (15) 

It can be seen from Eq. (15) that the larger value of the CPi indicates the more important 

influence of the i-th control device on the total control performance. Consequently, this index 

provides great convenience for determining the number and placement of control devices 

according to the predetermined control performance. Moreover, different from the classical integer 

heuristic programming methods such as the sequential search algorithm (SSA) (Zhang and Soong 

1992) or the Worst-Out-Best-In (WOBI) algorithm (Haftka and Adelman 1985), the actuator 

placement method basing on the sequence of the calculated CPi in this study is relatively simple 

and time-saving because the value of CPi does not need to re-evaluated when other actuator is 

removed. The comparative results of these methods will be shown and discussed in the subsequent 

numerical example in details.  

Since the number and location of the actuators are determined according to the sequence of the 

CPi, the structural vibration could be controlled by the determined actuators using the response 

measurements as the feedbacks. However, it is usually difficult to install enough sensors to obtain 

the complete structural responses for vibration control of a large civil structure. Consequently, for 
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the purpose of the cost-saving and potential application to real structures, the aforementioned 

control system with the optimal location of the actuators should be improved by the combination 

of some other technologies which can provide the complete structural responses for vibration 

control using the limited observations.  

 

 

3. Response reconstruction-based approach for optimal placement of sensors 

 

A methodology for the optimal sensor locations and multi-scale response reconstruction, which 

could be possibly used for structural health monitoring and damage detection, was used in this 

study. Since the structural responses could be reconstructed basing on limited observations, it 

could also be employed and extended here to improve the robustness and applicability of the 

aforementioned control system. The minimal number and optimal placement of sensors could be 

determined with the objective that the reconstructed structural responses can be used as feedbacks 

for the vibration control while the predetermined control performance can be maintained. 

The substitution of Eq. (6) into Eq. (2) yields 

  1{ } [ ] [ ][ ] { } [ ] [ ]{ } [ ]c c c g c gX A D G X B x A X B x                   (16) 

For practical consideration, the response measurements of a building structure under 

earthquake excitation in this study are assumed to be the absolute acceleration responses which 

can be directly measured by accelerometers. The corresponding observation equation of the 

controlled building structure can then written as 

{ } [ ]{ } [ ]{ }c cY C X F U                            (17) 

where {Y} denotes the measured absolute acceleration responses of the building structure. [Cc] and 

[Fc] can be found as follows: 

1 1[ ] [ ] [ ] [ ] [ ]cC M K M C      ; 1[ ] [ ] [ ]c cF M H   
               (18) 

By using Eq. (6), Eq. (17) can be rewritten as 

  1{ } [ ] [ ][ ] { } [ ]{ }c cY C F G X C X                         (19) 

In reality, the measurement data are discretely sampled with a time interval of t . Moreover, the 

measurement noise and process noise always exist in real application. Consequently, the 

state-space Eq. (16) and the observation Eq. (19) can be converted to the discrete form. 

1 2 ,{ } [ ]{ } [ ] { }k k d g k kX A X B x w                         (20) 

1{ } [ ]{ } { }k k kY C X v                          (21) 

where {X}k+1 is the discrete state vector;{w}k and {v}k are the process noise and measurement 

noise, respectively, which are assumed as zero-mean white noise processes with covariance 
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matrices equal to [Q1] and [R1] in this study; [A2] denotes the discrete-state control matrix; and [Bd] 

denotes the discrete-state input matrix. They can be expressed as follows 

{ } { ( )}kX X k t   (k=1, 2, 3,…)                       (22) 

1[ ]

2[ ]
A t

A e


 ; 1[ ]

0
[ ] [ ]

t
A t

d cB e dt B


                       (23) 

in which [A1] and [Bc] are respectively defined in Eq. (16) and Eq. (4). 

The Kalman filter provides an unbiased and recursive algorithm to optimally estimate the 

unknown state vector. It is employed herein for the optimal placement of the sensor as well as the 

response reconstruction. For the active control of a building structure, the Kalman filter algorithm 

involves the two sets of equations. The first set of equations is the time update equations 

+1| 2 ,
ˆ ˆ{ } = [ ]{ } +[ ]k k k d g kX A X B x                       (24) 

+1| 2 2 1[ ] = [ ][ ] [ ] +[ ]T

k k kP A P A Q
 

                     (25) 

in which 
+1|

ˆ{ }k kX and 
+1|[ ]k kP denote a priori state estimate and a priori error covariance matrix, 

respectively. The second set of equations is the measurement update equations 

{ }+1| +1 +1| +1 +1 1 +1|
ˆ ˆ ˆ{ } = { } +[ ] { } -[ ]{ }k k k k KF k k k kX X K Y C X               (26) 

 1| 1 KF 1 1 1|[ ] [ ] [ ] [ ] [ ]k k k k kP I K C P                         (27) 

1

KF 1 1| 1 1 1| 1 1[ ] [ ] [ ] [ ][ ] [ ] [ ]T T

k k k k kK P C C P C R


  
                  (28) 

in which 
1| 1

ˆ{ }k kX  
and 

1| 1[ ]  k kP are respectively the posterior state estimate and the posterior error 

covariance matrix; and [KKF]k+1 is the optimal Kalman gain matrix. 

It is computationally challenging to apply Kalman filter algorithm directly to civil structures 

with a large number of DOFs involved. Moreover, it is reasonable to assume that under the 

earthquake excitation, the structural responses are mainly denominated by the first several modes 

of vibration and the contribution of the modes of vibration with high frequencies could be ignored. 

In this context, the modal coordinate is employed. Let{ } = [Φ] { }s sx q , and the state-space Eq. (2) 

can then be expressed by 

{ } [ ]{ } [ ] [ ]{ }c c g cZ A Z B x D U                        (29) 

in which 

 { } { } { }
T

s sZ q q ;  1 2{ } [ ... ]T

s sq q q q              (30) 
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2
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s s s
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 
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  
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{0}
[ ]

[ ] [ ]{1}
c T

s

B
M

 
   
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;

[0]
[ ]

[ ] [ ]
c T

s c

D
H

 
   

 
          (31) 

where {q} is the vector of modal coordinates; subscript s denotes the number of the selected 

modes of vibration; [ ]s is the selected mass-normalized displacement mode shape matrix; [ ]s

and [ ]s are respectively the modal damping ratio matrix and modal frequency matrix with 

respect to the selected modes of vibration. In the modal domain, the control force shown in Eq. (6) 

could be rearranged as 

[ ] [0]
{ } [ ]{ } [ ] { }

[0] [ ]

s

s

U G X G Z
 

     
 

                    (32) 

Consequently, Eq. (29) can be rewritten as 

1

[ ] [0]
{ } [ ] [ ][ ] { } [ ] [ ]{ } [ ]

[0] [ ]

s

c c c g c g

s

Z A D G Z B x A Z B x
   

          
  

          (33) 

As mentioned before, the measured responses of the building structure are the absolute 

accelerations and the observation Eq. (19) can be rewritten as 

1 1

[ ] [0]
{ } [ ] { } [ ]{ }

[0] [ ]

s

s

Y C Z C Z
 

  
 

                    (34) 

To implement the Kalman filter algorithm in the modal domain, the matrices [A1], [Bc], and [C1] 

in Eqs. (20)-(28) should be respectively substituted by 1[ ']A ,[ ']cB , and 1[ ']C in Eqs. (33) and 

(34). Furthermore, by comparing Eq. (16) with Eq. (33) one can find that the dimension of the 

state vectors in the modal domain is significantly reduced. Since the higher-frequency modes 

which may be falsely excited by noise are truncated in this procedure, it is not only 

computationally economic but also likely to improve the estimation accuracy to some extent. From 

this point of view, the modal domain provides a promising way for the use of Kalman filter 

algorithm in large civil structures. 

In this study, the observation equation is used not only to represent the sensor measurement but 

also to reconstruct the structural responses at unobserved key locations based on the limited 

accelerometers installed. Therefore, three types of the equations in the discrete forms are 

introduced according to Eq. (34) as 

{ } [ ]{ }e k e kY C Z ; ˆ ˆ{ } [ ]{ }e k e kY C Z ; { } [ ]{ }m k m kY C Z            (35) 

where {Ye}, ˆ{ }eY and {Ym} represent the real structural responses at the interested locations, the 

reconstructed structural responses at the interested locations and the measured structural responses 

from the sensors, respectively; the matrices [ ]eC depends on the locations where the responses are 

of interest; and [ ]mC depends on the limited number of sensors for measurements. 
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The accuracy of the reconstructed responses can then be measured by the reconstruction error

{ }kδ . 

 ˆ ˆ{ } { } { } [ ] { } { }k e k e k e k kY Y C Z Z                        (36) 

Therefore, the asymptotic covariance matrix of the reconstruction error can be expressed as 

[ ] cov( ) [ ][ ][ ]T

e eC P C                             (37) 

Notably, the output influence matrices[ ]eC and[ ]mC probably tend to be ill-conditioned or 

badly scaled especially when only few responses are measured because the absolute acceleration 

responses of the building structure at different locations may have different orders of magnitude. 

Without appropriate pre-treatment of the matrix, the inverse operation for the determination of 

optimal Kalman gain matrix may lead to inaccurate results. Consequently, the standard deviation 

of the corresponding sensor noise is employed to normalize the matrices [ ]eC and[ ]mC  as 

1 2[ ] [ ] [ ]e e eC R C  ; 
1 2[ ] [ ] [ ]m m mC R C                    (38) 

where [Re] and [Rm] are the signal noise matrices with different dimensions. For example, if the 

measurements are absolute acceleration responses, [Rm] can be expressed as 

2[ ] ( ) [ ][ ]T

m aR E vv I                          (39) 

in which 2[ ]a is the measurement noise variance matrix of acceleration responses. Hence, the 

reconstruction error and the corresponding covariance matrix in Eqs. (36) and (37) should be 

normalized accordingly in consideration of the un-bias estimation. 

 ˆ{ } [ ] { } { }k e k kC Z Z                           (40) 

[ ] cov( ) [ ][ ][ ]T

e eC P C                            (41) 

Moreover, since the normalized output influence matrix is used, the optimal Kalman gain 

shown in Eq. (28) should be updated and given by 

1
1 2

KF 1 1| 1|[ ] [ ] [ ] [ ][ ] [ ] [ ] [ ]T T

k k k m m k k m mK P C C P C I R




  
                  (42) 

It can also be seen that each diagonal element of the [ ] matrix in Eq. (41) represents the 

normalized variance of the reconstruction error for the corresponding response. Therefore, the 

maximum diagonal element denotes the maximum reconstruction error, whereas the trace of the 

matrix [ ] represents the sum of the reconstruction errors at all the locations of interest. From this 

point of view, the optimal sensor placement can be performed with the objective to minimize the 

sum of the normalized reconstruction error. 
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Object function:    min ( )tr                            (43) 

subject to max max[ ]                              (44) 

in which max is the maximum estimation error and defined as 

 max max ( )diag                               (45) 

and [σmax] is the preset allowable error. It is understood that the maximum value of reconstruction 

error as well as the trace of the matrix [ ] would be increased when the number of sensors is 

reduced. A simple iterative procedure can then be conducted, in which the candidate sensors are 

removed one by one until the target error level is reached. In each step, only one sensor location, 

the removal of which leads to a minimal trace of the matrix [ ] , will be deleted. Thus, the sensor 

with minimal contribution on the response reconstruction will be removed at each step, and this 

procedure for sensor location is thus suboptimal. Nevertheless, this suboptimal procedure is 

beneficial and applicable for large-scale and complex structures, for the dimension of the state 

vectors in the modal domain is significantly reduced when only first several modes are used. 

It could be seen that the controlled system with optimal locations of both actuators and sensors 

can be established according to the approaches presented in Sections 2 and 3, and the schematic 

diagram is plotted in Fig. 1 for the description of the establishment and application of the 

determined control system. The number of the control devices and sensors in this control system 

would be rather small. The feasibility and accuracy of the proposed methodology is investigated in 

the following section by using a 20-story shear building under earthquake excitation as a 

numerical example. Moreover, the structural health monitoring and vibration control are expected 

to be implemented together to form a smart structure in the near future, and the work done in the 

present study can be therefore considered as the first step towards a smart structure.  

 

 

 

Fig. 1 The schematic diagram for the establishment and application of the proposed control system 
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Fig. 2 Structural model of a tall building with control devices and sensors 

 

 
Table 1 Structural parameters of the 20-story shear building 

Floor number Mass (kg) Stiffness (N/m) Floor number Mass (kg) Stiffness (N/m) 

1-4 8000 9.2×107 13-16 8000 7.5×107 

5-8 8000 8.8×107 17-20 8000 7.0×107 

9-12 8000 8.0×107 -- -- -- 

 

 

 

4. Numerical study 
 

A 20-story shear building as shown in Fig. 2 is employed to investigate the feasibility and 

accuracy of the proposed method. The mass and stiffness coefficients of the 20-story shear 

building are listed in Table 1. The Rayleigh damping assumption with the proportional coefficient 

of 0.8 for the mass matrix and 0.00001 for the stiffness matrix is used to construct the damping 

matrix. The increment of performance index for vibration control of the building is first computed 

for the optimal actuator placement. The eigenvalue analysis is then performed to extract the mode 

shapes for the optimal sensor placement and response reconstruction. The  El-Centro ground 

excitation with a peak acceleration of 0.34 g and the Kobe ground excitation with a peak 

acceleration of 0.81 g are finally selected as the input to assess the control performance of the 

building equipped with the selected control system. It should be noted the building model is linear, 
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and the nonlinear effect on the structural dynamics is not considered and analyzed in this study. 

 

4.1 Determination of the configurations of control system 
 

For the determination of the optimal locations of actuators and sensors, a ground excitation 

composed of white noise random signals is applied to the shear building. The actuators are initially 

installed on each floor together with the braces. The weighting matrices [Q] and [R] for the 

optimal control are selected as follows (Bei and Li 2006) 

1 2

2 3

[ ] [ ]
[ ]

[ ] [ ]

K M
Q

M C

 

 

 
  
 

;    [ ] [ ]R I                       (46) 

in which [M], [K] and [C] are the mass, stiffness and damping matrix of the shear building, 

respectively; φ, φ1, φ2, and φ3 are the non-negative number, which are assumed to be φ1=150, φ2=0, 

φ3=350, and φ=10-4. By removing the control devices one by one, the increment of performance 

index is calculated according to Eq. (9) and then the contribution percentage of every controller 

can be obtained from Eq. (15) as shown in Fig. 3. It can be easily found from Fig. 3 that the 

sequence of the actuators’ locations is 1, 2, 4, 3, 5, 7, 16, 13, 19, 9, 10, 11, 12, 15, 18, 14, 8, 6, 17, 

and 20. Moreover, the relationship between the summation of CP value and displacement 

reduction on the top floor is given in Fig. 4. It can be seen that with the increase of the summation 

of CP value, the structural responses are reduced accordingly. The dash line indicates the response 

reduction when twenty actuators are all installed. It can also be found from Fig. 4 that when the 

summation reaches 70%, the trend for vibration attenuation is becoming slow. Therefore, for the 

consideration of both effectiveness and economy, the summation of the CP value is assumed to be 

70% in this study. According to the calculated sequence and the desired summation of the CP 

value, the first ten actuators on the locations of 1, 2, 4, 3, 5, 7, 16, 13, 19, and 9 shall be retained 

and used for the control.  

It is known that in practical situations the structural parameter uncertainties resulting from 

modeling errors are often existed. Thus, the influence of such uncertainties on the number and 

location of the actuators is discussed herein. Since it is relatively time-consuming for the 

consideration of the uncertainties existing in all the structural parameters, only two structural 

parameters with uncertainties (e.g., k2 and k6) are considered for the demonstrative purpose. The 

values of k2 and k6 are approximated as a normal distribution with a mean value of 9.2×107 and 

8.8×107, respectively, and the standard deviation of 5% of the corresponding mean value. 

Although some variations exist in the calculated CP values, for example in some cases CP16 

becomes larger than CP7, the aforementioned ten actuators are still retained when the two random 

parameters are involved. It can thus be concluded, to some extent, from these results that the 

increment-based approach is not much sensitive to the structural parameter variations. 

Furthermore, two integer heuristic programming methods, i.e. the sequential search algorithm 

(SSA) (Zhang and Soong 1992) and the Worst-Out-Best-In (WOBI) algorithm (Haftkaand 

Adelman 1985), are employed for determining the optimal actuator location and comparing with 

the results obtained from the proposed method. For a fair comparison, the control algorithm and 

weighting matrices used in the SSA and WOBI method are the same as the ones used in the 

increment-based approach. Then, ten optimal locations out of twenty possible locations will be 

selected for the placement of the actuators. In this regard, the two performance indices of the 

building structure are considered. The first one is the maximum peak acceleration on the top floor 
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described by 

 1 max | |topPI x                              (47) 

The second one is the maximum peak inter-story drift as follows 

 2 max | |piPI x     (i=1, 2,…, 20)                    (48) 

in which | |topx and | |pix  denotes the absolute value of peak acceleration on the top floor and 

the absolute value of peak inter-story drift of the i-th story, respectively. The objective function to 

find the optimal location of the actuators is to minimize the maximum peak acceleration response 

at the top floor (PI1) and the maximum peak inter-story drift (PI2), respectively. 

 

 

 

Fig. 3 Optimal sequence of control devices 

 

 

 

Fig. 4 the relationship between the summation of CP value and displacement reduction 
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Table 2 The comparison of the actuator locations determined by three algorithms 

Algorithm Objective function Actuator locations 

SSA 
Minimize (PI1) 1, 2,4, 5, 7, 9, 10, 13, 15, 20 

Minimize (PI2) 1,3,5,7,9,13,14,16,18,19 

WOBI 
Minimize (PI1) 2, 3,5,6,9,10, 13,16,19,20 

Minimize (PI2) 1,3,5,7,10,13,15,17,19,20 

Increment-based approach Maximize (CP) 1, 2, 3, 4, 5,7, 9, 13, 16,19 

 

 

The actuator locations determined by the SSA and WOBI methods are shown in Table 2. 

Moreover, the result obtained from the presented increment-based approach is also listed in Table 

2. For the sake of easy comparison, the locations are listed in the ascending order. Although there 

are several different actuator locations, the results obtained by those three algorithms are close to 

each other. It can also be seen from Table 2 that even for the identical algorithm, the determined 

actuator locations are not the same if different objective functions are used. It should be noted that 

for r actuators to be placed in n possible locations, there would be nr-[r(r-1)/2] configurations for 

SSA and n evaluations of the objective function in each iteration for WOBI. This means that 155 

combinations are required to be considered for SSA and 20 location strategies are required to be 

evaluated in each iteration for WOBI. Moreover, if all of the possible actuator locations are 

considered, it would be more time-consuming. For example, in our case, i.e., 10 actuators being 

placed in 20 possible locations, the total number of possible combinations of the actuator locations 

is n!/[r!(n-r)!]=20!/(10!×10!)=184,756 (Agrawal and Yang 1999).  

To determine the optimal placement of the sensors, the approach introduced in Section 3 is 

employed. The first five modes of vibration with the corresponding natural frequencies of 1.26 Hz, 

3.65 Hz, 6.05 Hz, 8.43 Hz and 10.74 Hz are employed. Twenty accelerometers, which are used to 

measure the acceleration response of each floor, are used as initial candidate locations for sensors. 

For practical consideration, all the structural response measurements are simulated by the 

theoretically computed responses superimposed with the white noise with a 5% noise-to-signal 

ratio in terms of root mean square (RMS). The predefined threshold value of maximum estimation 

error is applied to determine the number of sensors. It is defined as the ratio of standard deviation 

of reconstruction error variance to that of noise, which is used to quantify the estimation accuracy. 

A smaller value of the ratio corresponds to higher estimation accuracy and represents a more 

stringent criterion on the estimation error, and as a result more sensors are required. It should also 

be noted if the value of the ratio is too large, the allowable reconstruction error would be too large 

which may result in the reconstructed responses being probably incorrect or contaminated too 

much by the noise. In this study, the target maximum estimation error [σmax] in Eq. (44) is set to be 

3.0, which means the standard deviation of reconstruction error variance is three times to that of 

noise. By following the described procedure for the determination of optimal sensor placement, 

four accelerometers which are respectively located on the 3rd floor, 12th floor, 16th floor, and 20th 

floor are finally selected. It can be found the number of the sensors is rather reduced as compared 

with the initial candidate set. Since the locations of the actuators and sensors both are determined, 

the optimal control system for this shear building is established, which includes ten control devices 

and four accelerometers. As mentioned before, the standard deviation of the sensor noise is 

employed to normalize the reconstruction error and the corresponding covariance matrix. It is thus 

anticipated that the number and location of the selected sensors will be altered if the measurement 

noise covariance matrix [R1] is changed. However, in many cases, the measurement noise 

993



 

 

 

 

 

 

Jia He, You-Lin Xu, Chao-Dong Zhang and Xiao-Hua Zhang 

covariance is often evaluated prior to the actual operation of the Kalman filter. Thus, for the same 

sensors under the same conditions, the variation of the measurement noise covariance matrix [R1] 

is small and the influence of [R1] matrix can be controlled in a reasonable range. [Q1] matrix 

defined in Eq. (20) is the process noise covariance matrix which is mainly used for the 

consideration of the modeling errors. The structural parameter uncertainties mentioned before is 

used herein for briefly investigating the effect of the modeling errors on the optimal sensor 

placement. Likewise, the values of k2 and k6 are approximated as a normal distribution with a mean 

value of 9.2×107 and 8.8×107, respectively, and the standard deviation of 5% of the corresponding 

mean value. With the consideration of these parameter uncertainties, the determined optimal 

location of the sensors was found to remain unchanged. It should be noted that one basic premise 

of the presented response reconstruction-based technique is that the structural model is relatively 

accurate by using the available model updating technique. From this point of view, although the 

process noise covariance [Q1] matrix is generally difficult to be estimated, the influence of [Q1] 

matrix on the number and location of sensors should be relatively small. Some statements can also 

be found in Zhang (2012).        

 

4.2 Investigation of the control performance with El-Centro ground excitation 
 

To show the efficiency of the control system with limited actuators and sensors, the El-Centro 

ground excitation is applied to the shear building with and without the control system. Only the 

acceleration responses at the 3rd floor, 12th floor, 16th floor and 20th floor of the building are 

assumed to be measured. The measured responses are then contaminated by 5% white noise. It is 

noted that although only four acceleration responses are measured, the remaining structural 

responses can be reconstructed and used for vibration control. Four cases are considered: (1) the 

actuators and sensors are installed on each floor of the shear building for vibration control (Case 1); 

(2) the actuators are installed on the determined optimal position (the aforementioned ten locations) 

but the sensors are installed on each floor of the building for feedback (Case 2); (3) the actuators 

and sensors both are installed at the determined positions (the aforementioned ten and four 

positions respectively) and the reconstructed responses are used as feedback for vibration control 

(Case 3); and (4) no actuators and sensors are installed in the building (without control). 

The time histories of acceleration response of the building at the top floor are computed and 

plotted in Fig. 5 for the four cases. For the sake of clarification, only the time segment of the 

acceleration responses from 8s to 16s is given in Fig. 5 although the time duration of the 

displacement response is from 0 to 30s. On one hand, it can be seen that the structural responses of 

the uncontrolled building are significantly reduced with the control system. On the other hand, the 

control performance of the optimal control system, defined as Case 3, is close to that of the fully 

controlled building defined as Case 1. Moreover, it can also be seen that the control performance 

in Case 3 is in good agreement with that in Case 2, which indicates that the reconstructed 

responses can be employed for vibration control with acceptable accuracy. Though only the 

displacement and acceleration responses of the building at the top floor are plotted in Fig. 5, 

similar results for the remaining building floors can be obtained as well. To have a more 

comprehensive comparison of the control performance, the maximum displacement and 

acceleration responses of the building at each floor are depicted in Fig. 6 for the four cases. It can 

be seen that the maximum responses are significantly reduced when the control devices are 

employed. It can also be seen that the results of Case 2 and Case 3 are close to each other, 

implying that the utilization of the reconstructed responses for control is reliable. Though the 
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maximum displacement and acceleration responses of the building at several upper floors from 

Case 3 are relatively larger than those from Case 1, the control performance of the optimal control 

system with only ten actuators and four sensors is still acceptable with consideration of both 

control-effectiveness and cost-effectiveness. 

Moreover, Fig. 7 gives the time histories of the reconstructed displacement and acceleration 

responses (dashed lines) and the corresponding actual ones (solid lines). Only the displacement 

and acceleration responses of the building at the top floor are shown in Fig. 7 as an example, and 

only the time segments from 8 s to 16 s are demonstrated for clarification. It is clear that the 

reconstructed responses are in good agreement with the corresponding actual responses, 

confirming that the reconstructed responses could be reliably employed as a feedback for the 

structural control. 

The control performances of the actuator locations determined by SSA and WOBI and shown 

in Table 2 are also considered herein and compared with those from the presented increment-based 

approach. The maximum displacement and acceleration responses of the building at each floor are 

shown in Fig. 8. The cases of the SSA with the objective function of minimizing PI1 and PI2 are 

respectively mentioned as SSA1 and SSA2 in Fig. 8. Similar definition of WOBI1 and WOBI2 can 

also be found in Fig. 8. 

 

 

  

Fig. 5 Time histories of displacement and acceleration responses at the top floor  

(El-Centro ground excitation) 
 

 

  

Fig. 6 The comparison of the maximum displacement and acceleration responses 

(El-Centro ground excitation) 
 

995



 

 

 

 

 

 

Jia He, You-Lin Xu, Chao-Dong Zhang and Xiao-Hua Zhang 

  

Fig. 7 The comparison of the reconstructed responses with the actual ones (El-Centro ground excitation) 
 

 

  

Fig. 8 The comparison of the control performance with different algorithms (El-Centro ground excitation) 

 

 

It can be seen that although several actuator locations are different according to these 

algorithms, the control performance is still close to each other. It should also be noted that the 

complete structural responses, such as the displacement and velocity responses at all floor are 

assumed to be known for control in SSA and WOBI algorithm whereas only four accelerometers 

are required in the proposed control system. Moreover, basing on the peak value of the control 

force, one more performance index is considered and shown as follows (Spencer et al. 1998)  

  
 

3

m a x ( )U t
PI

W

  
  
  

                            (49) 

where U(t) is the control force; and W is the total weight of the building. The values of PI3 for the 

aforementioned cases of the full control (i.e., the actuators being installed on each floor of the 

building), increment-based approach, SSA1, SSA2, WOBI1, and WOBI2 are 0.018, 0.042, 0.044, 

0.033, 0.037, and 0.032, respectively. The total energy consumed in the full control, 

increment-based approach, SSA1, SSA2, WOBI1, and WOBI2 are 1.313×104, 1.288×104, 

1.291×104, 1.297×104, 1.296×104, 1.295×104 kN·m, respectively. By comparing with the case of 

the full control, it can be found that with the reduction of the number of actuators, the control 

forces of the retained actuators are increasing for the purpose of achieving an acceptable control 

performance. However, from the viewpoint of the energy consumption, with the identical input 

energy (e.g. the identical earthquakes applied to the system), the larger extent of system vibration 
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reduction is achieved, the more energy is consumed by the actuators. Although the control force 

for each actuator in the case of full control is the smallest, it can be seen that with twenty actuators 

in this case the total energy consumption is the largest. 

 

4.3 Investigation of the control performance with Kobe ground excitation 
 

To demonstrate the robustness of the optimal control system, the strong Kobe earthquake, 

which is measured in the near field (the station KJMA) with the epicentral distance of 18.27 km, is 

applied to the shear building. Similarly, four cases are taken into consideration: (1) the actuators 

and sensors are installed on each floor of the shear building for vibration control (Case 1); (2) the 

actuators are installed on the determined optimal position (the aforementioned ten locations) but 

the sensors are installed on each floor of the building for feedback (Case 2); (3) the actuators and 

sensors both are installed at the determined positions (the aforementioned ten and four positions 

respectively) and the reconstructed responses are used as feedback for vibration control (Case 3); 

and (4) no actuators and sensors are installed in the building (without control). For each case, 

white noise with 5% noise-to-signal ratio in terms of root mean square (RMS) is superimposed to 

the numerically-calculated actual structural responses. 

 

 

  

Fig. 9 Time histories of displacement and acceleration responses at the top floor (Kobe ground excitation) 
 

 

 

  

Fig. 10 The comparison of the maximum displacement and acceleration responses (Kobe ground 

excitation) 
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The time histories of the displacement and acceleration responses of the building at the top 

floor are shown in Fig. 9 for the four cases. Only the time segments of the acceleration responses 

from 8 to 16 s are given in Fig. 9 for the clarification of comparison although the time segments of 

the displacement responses are from 0 to 30 s. Moreover, the comparison of the maximum 

displacement and acceleration responses of each floor is shown in Fig. 10 for the four cases. It can 

be seen from Figs. 9 and 10 that the structural vibration is significantly reduced when the control 

devices are employed. It can also be found from these two figures that the response time series as 

well as maximum structural responses of the building in Case 3 are rather close to those in Case 2, 

implying that the reconstructed responses should be reliable and could be employed as feedback 

for vibration control. Though the maximum displacement responses of the building at upper floors 

and the maximum acceleration responses of the building at a few floors from Case 3 are relatively 

larger than those from Case 1, the control performance of the optimal control system with only ten 

actuators and four sensors is still acceptable in consideration of both control-effectiveness and 

cost-effectiveness. As a confirmation, the time histories of the reconstructed acceleration and 

displacement responses of the building at the top floor are compared with the actual structural 

responses and the comparative results are shown in Fig. 11. It is clear that the reconstructed 

responses are close to the actual ones. Similar results can be obtained for the rest of building 

floors. 

 

 

  

Fig. 11 The comparison of the reconstructed responses with the actual ones (Kobe ground excitation) 
 

 

 

  

Fig. 12 The comparison of the control performance with different algorithms (Kobe ground excitation) 

 

0 0.1 0.2 0.3 0.4
0

5

10

15

20

Maximum Displacement (m)

F
lo

o
r 

le
v

e
l

 

 

without control

Increment-based

SSA1

SSA2

WOBI1

WOBI2

0 5 10 15 20 25 30
0

5

10

15

20

Maximum Acceleration (m/s
2
)

F
lo

o
r 

le
v

e
l

 

 

without control

Increment-based

SSA1

SSA2

WOBI1

WOBI2

998



 

 

 

 

 

 

Optimum control system for earthquake-excited building structures with minimal number… 

 
Table 3 The control performance of the system under other earthquakes 

Approaches for 

actuator 

locations 

Northridge earthquake Hachinohe earthquake 

PI1 

(m/s2) 

PI2 

(mm) 
PI3 

Total energy 

consumption 

(kN·m) 

PI1 

(m/s2) 

PI2 

(mm) 
PI3 

Total energy 

consumption 

(kN·m) 

Without control 4.227 2.854 -- -- 15.51 14.467 -- -- 

Full control 1.515 0.711 0.007 6.556×102 3.08 3.207 0.026 2.775×104 

Increment-based 1.977 0.942 0.017 6.364×102 4.96 5.267 0.053 2.706×104 

SSA1 1.759 0.926 0.018 6.388×102 4.47 4.904 0.054 2.715×104 

SSA2 1.932 0.878 0.014 6.415×102 4.68 4.494 0.047 2.727×104 

WOBI1 1.719 0.901 0.016 6.412×102 4.32 4.769 0.051 2.726×104 

WOBI2 1.805 0.859 0.013 6.406×102 4.55 4.335 0.048 2.725×104 

 

 

Moreover, the comparison of control performance among the SSA and WOBI methods and the 

presented increment-based approach is also considered herein and the results are shown in Fig. 12. 

As mentioned before, the SSA and WOBI with the objective function of minimizing PI1 and PI2 

are respectively mentioned as SSA1, SSA2, WOBI1, and WOBI2. It could be seen that the results 

obtained from these three algorithms are close to each other. Furthermore, the index PI3 defined in 

Eq. (49) is also investigated herein. The corresponding values for the full control, increment-based 

approach, SSA1, SSA2, WOBI1, and WOBI2 are 0.043, 0.084, 0.088, 0.079, 0.082, and 0.075, 

respectively. It can be derived that, even under the Kobe ground excitation with a peak 

acceleration of 0.81g, the maximum control force is around 140 kN which would be probably 

realized by many hydraulic actuators. Moreover, the total energy consumed in the full control, 

increment-based approach, SSA1, SSA2, WOBI1, and WOBI2 are 8.931×104, 8.783×104, 

8.801×104, 8.832×104, 8.827×104, 8.828×104 kN·m, respectively. It can be found that the total 

energy consumption in the case of full control is largest whereas the energy consumption in the 

proposed approach is the smallest.      

Two more ground excitations, i.e., Northridge earthquake with a peak acceleration of 0.15 g 

and Hachinohe earthquake with a peak acceleration of 0.55 g, are considered for further 

investigation of robustness of the control system. The corresponding results are given in Table 3. It 

can be found that the control performance of the proposed approach is close to SSA and WOBI 

method. Although better control performance can be achieved in the case of the full control, the 

corresponding total energy consumption and the number of actuators in this case are the largest. 

Furthermore, the purchase, installation and maintenance of twenty actuators in the full control 

would be much more expensive than the case of only ten actuators involved in the proposed 

control system. From these points of view, it can be concluded the presented approach is relatively 

cost-effective in terms of both energy consumption and less number of actuators.    
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5. Conclusions 
 

A relatively simple and cost-effective method has been presented in this paper for the 

determination of the minimal number and optimal location of actuators and sensors for vibration 

control of building structures under earthquake excitation. The optimal location of the actuator is 

first determined according to the presented increment-based approach with few iterations, for 

example, in the 20 DOFs shear building structures, the values of CP are only calculated for 20 

times. Moreover, in many previous studies the complete response measurements are required for 

the vibration control after the locations and numbers of the actuators are determined. This 

requirement will significantly hamper the application of the control system to real civil structures. 

To overcome this problem, this study extends the response reconstruction-based approach to 

determine optimal sensor placement and at the same time reconstructing structural responses for 

vibration control. The work done in this study could also be considered as the first step towards a 

smart structure in which the structural health monitoring and vibration control shall be 

implemented together. The feasibility and accuracy of the optimal control system determined by 

the proposed method has been investigated through a 20-story shear building under the  

El-Centro and Kobe ground excitations. The numerical results show that although the number of 

the actuators and sensors are significantly reduced, the control performance achieved by the 

optimal control system is still close to that by the fully control system. By comparing the 

reconstructed responses with the actual ones, it shows that the reconstructed information is in good 

agreement with the real one and can be used for vibration control.  

To further investigate the efficiency of the proposed control system, two integer heuristic 

programming methods (the sequential search algorithm (SSA) and the Worst-Out-Best-In (WOBI) 

algorithm) have been employed to determine the optimal location of actuators and the 

corresponding results have been compared with those of the proposed control system. It has been 

found from the comparative results that only small actuator locations are different and the control 

performances of the three methods are close to each other. However, as compared with the SSA 

and WOBI methods, the present method for the determination of the actuator locations is not time 

consuming because only fewer iterations are required. Furthermore, in the proposed control system 

both the actuators and sensors are reduced, which are more feasible and applicable to real civil 

structures compared with other control schemes. 
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