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Abstract.  Tuned mass dampers (TMDs) have been a prevalent vibration control device for suppressing 
excessive vibration because of environmental loadings in contemporary tall buildings since the mid-1970s. A 
TMD must be tuned to the natural frequency of the primary structure to be effective. In practice, a TMD 
may be assembled in situ, simultaneously with the building construction. In such a situation, the respective 
dynamic properties of the TMD device and building cannot be identified to determine the tuning status of 
the TMD. For this purpose, a methodology was developed to obtain the parameters of the TMD and primary 
building on the basis of the eigenparameters of any two complex modes of the combined building–TMD 
system. The theory was derived in state-space to characterize the nonclassical damping feature of the system, 
and combined with a system identification technique to obtain the system eigenparameters using the 
acceleration measurements. The proposed procedure was first demonstrated using a numerical verification 
and then applied to real, experimental data of a large-scale building–TMD system. The results showed that 
the procedure is capable of identifying the respective parameters of the TMD and primary structure and is 
applicable in real implementations by using only the acceleration response measurements of the TMD and 
its located floor. 
 

Keywords:  tuned mass damper (TMD); passive control; energy dissipation device; building structure; 

system identification 

 
 
1. Introduction 
 

A tuned mass damper (TMD) is well-known for its pendulum-like dynamic feature that 

suppresses the resonance effect of structures. The TMD dates back to 1909, when Frahm (1911) 

invented a device for mitigating the vibrations of dynamic bodies. The TMD proposed by Frahm 

(1911) was an undamped single-degree-of-freedom system. Ormondroyd and Den Hartog (1928) 

then introduced damping to it and proposed an optimal design concept for TMDs under 

narrow-band, cyclic external loadings. Researchers, such as Hahnkamm (1932) and Brock (1946), 

extensively discussed the problems of optimal frequency and optimal damping of a TMD, which 
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were thoroughly documented in a book by Den Hartog (1956).  

TMDs have been applied to vibration control in buildings since the 1970s. The John Hancock 

Tower in Boston, Citicorp Center in New York City, and CN Tower in Toronto were the pioneering 

buildings and observatory towers equipped with this type of device against wind loads. Since then, 

numerous studies have been published (Wirsching and Campbell 1973, McNamara 1977, Luft 

1979, Warburton 1982, Kwok 1984, Villaverde 1985, Lin et al. 1994), with most of them focusing 

on optimizing TMD parameters under sinusoidal force, white noise, or random excitation. In 

recent years, optimizing TMD parameters has remained a prevalent research topic with 

investigation having been conducted on asymmetry, soil-structure interaction, nonlinearity, 

uncertainty, and multistory building models (Ueng et al. 2008, Marano and Quaranta 2009, Wang 

et al. 2009, Marano et al. 2010a, b, Sgobba and Marano 2010, Bekdaş and Nigdeli 2011, Bisegna 

and Caruso 2011, Chakraborty and Roy 2011, Cheung and Wong 2011, Mohtat and Dehghan-Niri 

2011, Steinbuch 2011, Almazán et al. 2012, Tigli 2012, Zilletti et al. 2012, Bekdaş and Nigdeli 

2013, Farshidianfar and Soheili 2013, Greco and Marano 2013, Yu et al. 2013). In addition, on the 

basis of a single mass-damping-stiffness system, different types of TMD have been derived and 

adapted to different situations. For instance, Xu and Igusa (1992) proposed a multiple tuned mass 

damper (MTMD), in which the mass of a TMD is divided into separate units in parallel with 

different fundamental frequencies to form a broader frequency bandwidth. The MTMD has also 

been the focus of numerous studies (Kareem and Kline 1995, Jangid 1999, Li 2000, Park and Reed 

2001, Bakre and Jangid 2004, Wang and Lin 2005, Li and Zhu 2006, Lin and Wang 2012). Other 

types of TMD, such as dual-TMD systems (Oka et al. 2009) and nonlinear TMDs (Alexander and 

Schilder 2009, Viguie and Kerschen 2009, Viguie and Kerschen 2010, Wang et al. 2010, Jangn et 

al. 2012), have been proposed for various situations.  

Early practical successes and decades of continual developments in design theory have 

increased TMD installations in contemporary tall buildings and towers worldwide. The Burj Al 

Arab in Dubai, Highcliff in Hong Kong, Taipei 101 in Taiwan, Aspire Tower in Qatar, Canton 

Tower in China, Tokyo Skytree in Japan, and Shanghai Tower in China are all recent, real 

structures installed with TMDs. It is widely recognized that a TMD design requires prior 

knowledge of the controlled modal frequency, damping ratio, and mode shape of the primary 

structure. Moreover, a highly accurate modal frequency is required for achieving an optimal tuning 

condition between the TMD and primary structure. In practice, the following general procedure is 

used for designing and implementing a TMD: (1) System identification techniques are employed 

to obtain the modal parameters of the primary structure based on its response measurements. (2) 

The optimal TMD parameters are determined, and the device is then assembled. (3) The assembled 

TMD is tested and adjusted to ensure that its dynamic properties are as designed. (4) The TMD is 

installed in its designated location. However, for a new structure, it may be necessary to build the 

TMD concurrently with the construction of the primary structure, before the real dynamic 

parameters of the primary structure are identified. In such circumstances, the primary structure and 

TMD are combined. Neither the TMD nor the primary structure can be individually tested in situ. 

Therefore, it is necessary to develop a methodology for identifying the respective parameters of 

the TMD and structure to assure the effectiveness of the TMD control system.  

Although an increasing number of real buildings are equipped with TMDs, detailed information 

about designing, assembling, installing, and testing TMDs has not been released to the public. In 

addition, the continuous monitoring of TMD-protected structures is a critical problem. Weber and 

Feltrin (2010) conducted forced- and random-vibration tests by using shakers on two 

TMD-protected pedestrian bridges that had been in service for 19 years. They simulated the 
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bridge–TMD system with a two-degrees-of-freedom model and found that one of the TMDs had 

become detuned since its installation. Brownjohn et al. (2010) investigated the performance of a 

TMD installed on the chimney of the Rugeley power station based on 1 year of data from its 

structural health-monitoring system. They employed the stochastic subspace identification (SSI) 

method for identifying the first two modal frequencies and modal damping ratios to evaluate the 

vibration reduction efficiency of the TMD. Recently, Shi et al. (2012) evaluated the dynamic 

properties of the ATMD combined system of the Shanghai World Financial Center building based 

on the field measurements of ATMD action from ambient-vibration and force-vibration tests. Li et 

al. (2011) analyzed the acceleration measurements of the Taipei 101 building during periods of 

several typhoons and the 2008 Wenchuan earthquake; however, the performance of the TMD was 

not discussed. More recently, Kang et al. (2012) examined TMD performance in the Poscoenc 

Tower building in Incheon, South Korea. A two-degrees-of-freedom model was used to simulate 

the TMD–building system, and an equation was derived to uncouple the natural frequencies of the 

TMD and building by using two modal frequencies of the combined system without considering 

damping. 

In this study, a theoretical derivation in state–space and an analysis procedure were developed 

for extracting the modal parameters of a TMD and primary building from the acceleration 

responses of the TMD–building combined system. Both the natural frequency and damping ratio 

of the TMD and primary building were obtained. A multistory building with a TMD installed at an 

arbitrary floor was considered. The proposed analysis procedure consisted of two major parts: a 

newly developed parameter-extraction theory and system-identification techniques. The idea was 

to identify the complex eigenvalues and eigenvectors of the building–TMD system from seismic 

or ambient acceleration measurements and then to extract the respective modal parameters of the 

TMD and building on the basis of the identified eigenparameters. The proposed method was first 

demonstrated through numerical simulations and then validated using experimental data from 

shaking-table tests of a large-scale, three-story benchmark building equipped with an assembled 

TMD. Both the full and partial measurements of the acceleration responses were considered for 

examining the accuracy and applicability of the proposed method. 

 

 

2. Theoretical development of the methodology 
 
2.1 Equations of motion of the TMD–building system 
 

For an n-story shear building with a TMD attached on the lth floor subjected to external 

excitations, as shown in Fig. 1, the equation of motion of the combined system can be written in 

matrix form as 

 )()()()( tttt FKxxCxM    (1) 

In Eq. (1), M , C , and K  are the NN   (where 1 nN ) mass, damping, and stiffness 

matrices, respectively, and can be expressed in detail as  

 ].[
21 splpp mmmmmdiag

n
M  (2) 
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Fig. 1 System model of a multistory building structure with a tuned mass damper 
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where 
ipm  and sm  represent the masses of the ith floor and TMD, respectively; 

ipc  and sc  

represent the damping coefficients of the ith story and TMD, respectively; and 
ipk  and sk  

denote the stiffness coefficients of the ith story and TMD, respectively. In addition, 
T

spppp xxxxx
nl

}{
21

x  is the 1N  displacement vector, where 
ipx  and sx  

represent the displacements of the ith floor and TMD relative to the ground, respectively. The 

notation )(tF  represents the 1N  vector of external forces that can be wind, base excitations, 

or experimentally harmonic forces. In the situation of ground acceleration, )(txg , )()( txt gMrF   

where T}11111{  r  is the 1N  influence coefficient vector. 

Equation (1) can be transformed into state–space form as follows 

 )()()( ttt BFAzz   (5) 

where  

 









  CMKM

IO
A 11 , 









 1M

0
B  (6) 

and z is the state vector of 12 N  consisting of relative displacement and velocity responses; A 

represents the system matrix of the building–TMD system with a dimension of NN 22  ; I is an 

identity matrix of NN  ; O  is a zero matrix of NN  ; and 0 is a zero vector of 1N . The 

relationship between the state vector and an Nm  output vector 1C  for the absolute 

acceleration of the system can be expressed using the following output equation 

 zCMKMy  ][ 11
1

 C  (7) 

where y is an 1m  output measurement vector with m sensors. 

  
2.2 Identification of the natural frequency and damping ratio of the TMD 

 
The terms j  and jΨ  denote the jth eigenvalue and its corresponding 12 N  eigenvector 

of the system matrix A . The physical-domain system matrix is related to the jth eigenparameters 

by using the state–space characteristic equation: 

 0ΨIA  jj )(                              (8) 

Substituting Eq. (6) into Eq. (8) gives 

 0Ψ
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0I
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Furthermore, the expression of the lower half of Eq. (9), which contains information regarding 

the dynamic properties of the system, gives 

   0ΨRL j                            (10) 
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T
jNjNjNjnjjj }{ ,2,12,,21   Ψ                   (12) 

Both j  and the entries of jΨ  are complex for an underdamped vibration system. The jth 

complex eigenvector can also be rewritten as TT
jj

T
jj }{ ΦΦΨ   where jΦ  indicates the jth 

complex mode shape of the combined building–TMD system. From the last row of Eq. (10) 
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the damping ratio s  of the TMD can be obtained and expressed in terms of the jth 

eigenparameter and natural frequency of the TMD, s , as 
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If the jth and kth eigenparameters are available, it can be written as 
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Therefore, the natural frequency of TMD is obtained as 
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        (16) 

Eq. (16) shows that s  can be calculated from two sets of complex eigenparameters of the 

building–TMD system, which is identifiable from dynamic-response measurements by using 

state–space-based system-identification techniques. Once s  is obtained from Eq. (16), the 

damping ratio of TMD, s , can then be calculated using Eq. (14). To obtain s  and s , the 

eigenvalues and eigenvectors of the two complex modes (which are equivalent to one normal 

mode) are required, which indicates that only the eigenvector values at the two degrees of freedom, 

representing the TMD and lth floor at which the TMD is located, are required.  

 

2.3 Identification of the primary building 

 

2.3.1 Damping and stiffness coefficients of the lth story in which the TMD is located 
To obtain the dynamic parameters of the primary building, the derivation begins at the lth row 

of Eq. (10) as follows 
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According to Eq. (17), the damping coefficient of the lth story of the primary building can be 

derived and expressed as 
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Next, any two complex modes can be selected (e.g., jth and kth modes), and the stiffness 

coefficient of the lth story of the primary building can be derived on the basis of Eq. (18) as 
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where )(ˆ
,1,,1 1 jljlpjl l

kK  


 , )(ˆ
,1,,1 1 jlNjlNpjl l

cC  


 , )(ˆ
,,, jNjlss kK

jl
  , and 

)(ˆ
,2,, jNjlNss cC

jl
   . In Eq. (19), parameters sc  and sk  can be solved from Eq. (14) and Eq. 

(16), respectively, which determine 
jlsC

,

ˆ , 
jlsK

,

ˆ , 
klsC

,

ˆ , and 
klsK

,

ˆ . In addition, the information 

related to the (l+1) story (i.e., jlK ,1
ˆ
 , klK ,1

ˆ
 , jlC ,1

ˆ
 , and klC ,1

ˆ
 ) can be solved in advance (as 

shown in the next section). The floor masses of the primary building and TMD are assumed to be 

known, and Eqs. (18) and (19) are then solved sequentially. In addition, Eqs. (18) and (19) are 

applied to calculate the stiffness and damping coefficients of the other inner story, at which the 

TMD is not installed, by setting 
jlsC

,

ˆ , 
jlsK

,

ˆ , 
klsC

,

ˆ , and 
klsK

,

ˆ  to 0. 

 

2.3.2 Damping and stiffness coefficients of the top story 
For the top story, Eq. (19) can be applied by setting jlK ,1

ˆ
 = klK ,1

ˆ
 = jlC ,1

ˆ
 = klC ,1

ˆ
 = 0. In 

addition, assigning nl   in Eq. (19) leads to 
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Furthermore, setting 
1lpc =

1lpk = 0 and nl   in Eq. (18) gives 
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In a situation in which the TMD is not installed at the nth floor, then sc , sk , 
jnsC

,

ˆ , 
jnsK

,

ˆ , 

knsC
,

ˆ , and 
knsK

,

ˆ are all equal to zero. 

 
2.3.3 Damping and stiffness coefficients of the first story 

For the first story (i.e., when 1l ), jl ,1 , kl ,1 , jln , , and kln ,  are eliminated and are 

all equal to 0 in Eqs. (18) and (19). The following equations can be derived 
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Table 1 Physical parameters of two 3-story buildings in the numerical study 

Physical Parameters CASE-1: Ideal shear building CASE-2: Real benchmark building 

Mass matrix (kg)  

600000

060000

006000















  

600000

060000

006000















3F

2F

1F

 

Damping matrix (kN-sec/m) 




















40.540.50

40.53.1390.7

090.76.13

 




















657.5774.5463.1

774.5557.13701.8

463.1701.828.13

3F

2F

1F

 

Stiffness Matrix mkN / ( ) 




















150015000

150031001600

016003300

 




















150916722.138

167233291814

2.13818143406

3F

2F

1F

 

 

 
Table 2 Real modal parameters of two 3-story buildings in the numerical study 

Modal Parameters CASE-1: Ideal shear building CASE-2: Real benchmark building 

Frequency, }{
321 000  (Hz)  65.422.317.1    86.417.304.1  

Damping ratio, }{
321 000  (%)   32.665.345.1    43.607.399.1  

Mode shape, }{
321 000 φφφ  



















000.1000.1000.1

420.2634.0783.0

124.2194.1421.0

 


















000.1000.1000.1

291.2627.0784.0

954.1247.1408.0

3F

2F

1F

 

 

 

Table 3 Parameters of the TMD for two 3-story buildings in the numerical study 

TMD Parameters CASE-1 CASE-2 

Mass ratio,   (Mass, sm )    2%  (360 kg) 

Damping ratio, opts )(  7.03% 

Frequency ratio, optfr )(  0.965 

Natural frequency, s  1.129 Hz 1.001 Hz 

Damping coefficient, sc  (kN-sec/m)  0.361 0.318 

Stiffness coefficient, sk  (kN/m) 18.242 14.226 

 

 

In a situation in which the TMD is not installed at the first floor, then 
jsC

,1

ˆ =
jsK

,1

ˆ =
ksC

,1

ˆ =
ksK

,1

ˆ = 

0 is assigned. 

 

 

3. Numerical verifications 

 
To verify the accuracy of the aforementioned methodology, numerical studies for two 

three-story buildings were conducted. The primary structure of the first case (CASE-1) is a 
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shear-type building, whereas the structure of the second case (CASE-2) is a real benchmark 

building, for which the damping and stiffness matrices are full matrices. The physical and 

normal-mode modal parameters of these two buildings are presented in Tables 1 and 2. The 

accuracy of the proposed parameter-extraction procedure was investigated using different building 

types to examine its applicability to evaluating TMD performance in real building–TMD 

structures. 

 

3.1 TMD design parameters 

 

A TMD with a mass of 360 kg, 2% of the total mass of the three-story building, was assumed. 

The optimal frequency ratio and damping ratio of the TMD can be obtained on the basis of the 

design formulas proposed by Lin et al. (1994), as follows 

 

b

optf

a
r 












1
)( ; 

4
0.1

p
a


 , peb 2.335.1   (22)  

 48.046.0)(  opts   (23) 

where   represents the ratio of the mass of the TMD to the total mass of the building and p  

denotes the damping ratio of the controlled mode of the building. The TMD was assumed to be 

installed on the roof (third floor) of the building. The system parameters of the TMD for 

controlling the first mode of the building were calculated using Eqs. (22) and (23) (Table 3) and 

were then used to generate the mass, damping, and stiffness matrices of the building–TMD system. 

 
3.2 Identification procedure 

 
The following analysis procedure is used for extracting the dynamic properties of the TMD and 

building structure:  

Step 1:  

The time traces of the acceleration response of each floor and TMD are generated using 

step-by-step numerical methods. For the input–output situation, the ground acceleration recorded 

at National Chung Hsing University (NCHU) in the east–west direction during the 1999 Taiwan 

Chi-Chi earthquake was used as the base excitation; for the output-only situation, the building–

TMD system response was excited using a base excitation of normally-distributed white noise 

with a zero mean and a standard deviation (STD) of 0.5 gal. 

Step 2:  

The System Realization Using Information Matrix (SRIM) identification technique (Juang 

1997, Lin et al. 2005, Lin et al. 2008, Lin et al. 2010) is employed based on the selected system 

input and output measurements for the input–output situation in Step 1. Regarding the output-only 

situation, the stochastic subspace identification (SSI) (Van Overschee and De Moor 2011) method 

is employed on the basis of the output response of the building–TMD system. Transforming 

discrete time into continuous time may obtain the optimal realization of the state–space system 

matrix A . 

Step 3:  
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The continuous-time eigenvalue j  and eigenvector jΨ  of system matrix A  are computed 

(where j = 1–8);  

Step 4:  

With the known system parameters pM , sm , j , and jΨ  (where j = 1–8), the TMD’s 

modal parameters s  and s  are computed using Eqs. (16) and (14), respectively, and 
npk , 

npc , 
1npk , 

1npc , …, 
1pk , and 

1pc  are then computed sequentially by using Eqs. (18)-(21). In 

the following sections, the notations of s̂ , s̂ , 
npk̂ , 

npĉ , 
1

ˆ
npk , 

1
ˆ

npc , …, 
1

ˆ
pk , and 

1
ˆpc  are 

used to represent the identified parameters to distinguish between the real and reference values. 

 
3.3 Results and discussion 

 
3.3.1 Input–output situation: Full measurements 
Because the building–TMD system has four degrees of freedom (n = 3 and N = 4), eight sets of 

eigenparameters were obtained using Steps 1 to 3. The eight eigenvalues and four corresponding 

real modal frequencies and damping ratios are as follows 

CASE-1: 
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


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87

65

43
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CASE-2: 

 















































i..-

i..-

i..-

i..-

5309701

9196230

9863260

8552590

,

,

,

,

87

65

43

21









, 







































87.4

18.3

11.1

93.0

4

3

2

1









(Hz), 







































44.6

12.3

67.4

42.4

4

3

2

1







(%) (24b) 

Obviously, the first mode of the primary building (
10 in Table 2) is split into lower- and 

higher-frequency modes ( 1  and 2 ), showing that the TMD is tuned to the first mode of the 

primary building. Both the first and second modal damping ratios ( 1  and 2 ) are larger than that 

of the original first mode (
10  in Table 2), indicating that the TMD increases the energy 

dissipation capability of the primary building. However, if the modal properties of the primary 

building (
10  and 

10 ) are unknown, it is difficult to determine the difference between buildings 

with and without the TMD, as well as the efficacy of the TMD. 

The first, third, fifth, and seventh eigenvectors are as follows 

CASE-1: 

 

 































iiii

iiii

iiii

iiii

iiii

iiii

iiii

iiii

 0.13582- 0.0643 0.35850-0.2167 1.6178+0.5487- 1.4237+0.3899-

 1.34510+ 1.6386- 1.73210+2.1874- 0.30836- 0.2545 0.21026+0.0053

 3.34680- 3.8547 1.07630-1.3724 0.25255-0.2025 0.15816+0.0054

 2.95710+ 3.3606- 2.01770-2.6276 0.13953-0.1088 0.08330+0.0037

 0.00249+ 0.0045 0.01136+0.0173 0.07846-0.2018- 0.06771-0.2121-

 0.05886- 0.0424- 0.11117- 0.0815- 0.03394+0.0376 0.00052-0.0317-

 0.13887+ 0.1059 0.06973+0.0506 0.02704+0.0309 0.00018-0.0239- 

 0.12115- 0.0937- 0.13342+0.0948 0.01455+0.0171 0.00003 + 0.0126-
7531 ΨΨΨΨ

 (25a) 
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CASE-2: 

 

 































iiii

iiii

iiii

iiii

iiii

iiii

iiii

iiii

 0.12013- 0.0255 0.29007-0.1340 1.44830+0.4251- 1.26870+0.2987-

 1.7702+ 1.5677- 1.79210+1.9910- 0.29490- 0.2076 0.18290+0.0063

 4.0837- 3.5334 1.10060-1.2444 0.23883-0.1640 0.13901+0.0057

 3.5051+ 2.9835- 2.19270-2.5027 0.12676-0.0853 0.07087+0.0034

 0.00109+ 0.0039 0.00717+0.0143 0.07046-0.2043- 0.06053-0.2142-

 0.05491- 0.0545- 0.10252- 0.0866- 0.03166+0.0408 0.00031-0.0313-

 0.12396+ 0.1259 0.06405+0.0532 0.02506+0.0331 0.00007-0.0238- 

 0.10478- 0.1081- 0.12878+0.1059 0.01305+0.0176 0.00004+0.0121-
7531 ΨΨΨΨ

 (25b) 

Besides,    75318642 ΨΨΨΨΨΨΨΨ  ; the “bar” notation denotes a conjugate 

computation.  

Table 4 presents the obtained parameters of the TMD and primary building by using the 

proposed method. As shown in Table 4, }ˆ,ˆ,ˆ{
321 000   and }ˆ,ˆ,ˆ{

321 000   were the identified 

real modal frequencies and damping ratios of the reconstructed shear building based on 

}ˆ ,ˆ ,ˆ{
321 ppp ccc  and }ˆ ,ˆ ,ˆ{

321 ppp kkk . In theory, the proposed method can be implemented by 

selecting any two sets of eigenvalues and eigenvectors, namely ( j , jΨ ) and ( k , kΨ ). The results 

of CASE-1 showed that the identified parameters of the TMD and primary building were the same 

as the original parameters (Tables 2 and 3), regardless of the selection of (j, k) set. For CASE-2, 

the TMD parameters were also accurately identified regardless of the selection of (j, k) set. The 

results showed that the identified “pseudoshear” building was related to the selection of (j, k); it 

was difficult to assess which set of the identified physical parameters could optimally represent the 

CASE-2 building. However, although the modal parameters of the reconstructed shear building 

could not fully represent the original building, selecting the (j, k) pairs resulted in the optimal 

estimation of the corresponding building mode. Specifically, selecting (j, k) = (1, 2) or (3, 4) 

resulted in the optimal 
10̂  and 

10̂ , selecting (j, k) = (5, 6) resulted in the optimal 
20̂  and 

20̂ , 

and continued in a trend of optimally selected pairs and resulting estimations. These results 

indicate that it is always possible to obtain modal parameters of a building that are more accurate 

by selecting various (j, k) pairs.  

 
3.3.2 Input–output situation: Partial measurements 
In practice, building floors are not fully measured because of a limited number of sensors. To 

apply the proposed method to partial-measurement situations, the primary building was regarded 

as an equivalent shear building with a floor number equal to the number of measured floors 

(denoted as m). The total mass of the building was redistributed and grouped as the m-measured 

floors, and the physical parameters of the reduced shear building were identified. The modal 

frequency and modal damping ratio of the equivalent building were then calculated.  
For illustrative purposes, available outputs can be assumed for the measurements of the mass of 

the TMD and third floor in which the TMD is located for the CASE-1 and CASE-2 buildings. The 

steps in Section 3.2 were used to calculate the parameters of the TMD and equivalent single-story 

shear building of both cases (Table 5). The results showed that the identified TMD parameters 

were still accurate in these two single-measurement cases. 
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Table 4 Identified parameters of the TMD and primary buildings in the numerical study (full measurement) 

Identified Parameters (j, k) CASE-1 CASE-2  

TMD s̂ (Hz) (1, 2), (3,4), (5,6), 

or (7,8) 

1.13 1.00 

s̂ (%) 7.03 7.03 

Primary  

building 

(physical) 

}ˆ ,ˆ ,ˆ{
321 ppp ccc  

(kN-sec/m) 

(1, 2) 

{5.7, 7.9, 5.4} 

{7.801, 7.523, 5.512} 

(3, 4) {7.637, 7.488, 3.913} 

(5, 6) {4.922, 5.374, 4.333} 

(7, 8) {7.170, 7.830, 6.255} 

}ˆ ,ˆ ,ˆ{
321 ppp kkk  

(kN/m) 

(1, 2) 

{1700, 1600, 1500} 

{1330, 1170, 1166} 

(3, 4) {1336, 1164, 1155} 

(5, 6) {1784, 1209, 1379} 

(7, 8) {1733, 1782, 1604} 

Primary  

building 

(modal) 

}ˆ,ˆ,ˆ{
321 000   

(Hz) 

(1, 2) 

{1.17, 3.22, 4.65} 

{1.04, 2.86, 4.05} 

(3, 4) {1.03, 2.78, 3.98} 

(5, 6) {1.13, 3.17, 4.29} 

(7, 8) {1.22, 3.34, 4.86} 

}ˆ,ˆ,ˆ{
321 000   

(%) 

(1, 2) 

{1.45, 3.65, 6.32} 

{1.94, 4.75, 7.35} 

(3, 4) {1.86, 3.99, 6.95} 

(5, 6) {1.27, 3.07, 5.01} 

(7, 8) {1.61, 4.22, 6.43} 

 

 

 
Table 5 Identified parameters of the TMD and primary buildings in the numerical study (single-floor 

measurement) 

Identified Parameters (j, k) CASE-1 CASE-2  

TMD s̂ (Hz) (1, 2), (3,4), (5,6), 

or (7,8) 

1.13  1.00 

s̂ (%) 7.03 7.03 

Primary  

building 

(physical) 

pĉ  

(kN-sec/m) 

(1, 2) 6.459 6.661 

(3, 4) 7.134 7.427 

(5, 6) 26.59 22.02 

(7, 8) 66.19 70.56 

pk̂  

(kN/m) 

(1, 2) 898.64 703.05 

(3, 4) 1032.1 809.70 

(5, 6) 7354.3 7152.7 

(7, 8) 15358 16805 

Primary  

building 

(modal) 

0̂   

(Hz) 

(1, 2) 1.12  0.99  

(3, 4) 1.21  1.07  

(5, 6) 3.22  3.17  

(7, 8) 4.65  4.86 

0̂   

(%) 

(1, 2) 2.54  2.96 

(3, 4) 2.62  3.08 

(5, 6) 3.65  3.07  

(7, 8) 6.29  6.41  
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Regarding the primary building, the identified 0̂  and 0̂  values were highly dependent on 

the selected mode pair (j, k). When (j, k) = (1, 2) or (3, 4), which is related to the first mode, 0̂  

and 0̂  were close to 
10  (1.17 Hz in CASE-1 and 1.04 Hz in CASE-2) and 

10  (1.45% in 

CASE-1 and 1.99% in CASE-2), respectively. However, the situation of (j, k) = (3, 4) led to 

smaller errors. When (j, k) = (5, 6), 0̂  and 0̂  were close to 
20  and 

20 , respectively, with 

the trend continuing similarly. The percentage errors of the identified parameters were also 

calculated using the true values of the corresponding building modes. Specifically, when (j, k) = (1, 

2) or (3, 4), the percentage error of 0̂  was defined as 
11 000 /)ˆ(   . The analysis results 

showed that the errors of identified second and third modes (which were the uncontrolled modes) 

were smaller than those of the first mode. The absolute error in the first modal frequency was less 

than 5% and could be reduced by averaging the results of (j, k) = (1, 2) and (j, k) = (3, 4). In 

addition, the identified first modal damping ratios were overestimated but acceptable because the 

damping ratio was always the most difficult parameter to identify accurately. 

 
3.3.3 Output–only situation 
Typically, the dynamic responses of tall buildings are frequently excited by environmental 

loadings (rather than by an earthquake) in which the input sources are uncertain and unmeasurable. 

In this situation, the output-only system identification method is a suitable solution for 

evaluating the dynamic parameters of structures. To simulate such a circumstance, the output 

acceleration responses of the floors and TMD of the CASE-2 system subjected to a white-noise 

input (STD = 0.5 gal) were obtained, and the SSI method was employed to identify the complex 

eigenvalues and eigenvectors of the combined system. These eigenparameters were then used to 

extract the respective dynamic parameters of the primary building and TMD. 

 

 

 

Fig. 2 Stabilization diagram of the identified modal frequencies of the CASE-2 building–TMD system 

produced using the SSI method (asterisks mark the modal frequencies; the background curve is the 

Fourier amplitude of the roof acceleration response) 
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Fig. 3 Extracted frequency and damping ratio of the TMD at various noise scales determined using the 

SSI method (CASE-2 system) 

 

 

 

Fig. 4 Extracted modal frequencies and damping ratios of the primary building at various noise scales 

determined using the SSI method (CASE-2 system) 

 

 

0 2 4 6 8 10

NSR (%)

0.950

0.975

1.000

1.025

1.050

E
x
tr

ac
te

d
 T

M
D

 f
re

q
u

en
cy

 (
H

z)

1% percentage error+

0 2 4 6 8 10

NSR (%)

0.060

0.065

0.070

0.075

0.080

E
x
tr

ac
te

d
 T

M
D

 d
am

p
in

g
 r

at
io

 

3.17

3.18

3.19

3.20

0 2 4 6 8 10

NSR (%)

4.84

4.85

4.86

4.87

0.96

1.00

1.04

1.08
( j, k) = (1, 2)

( j, k) = (5, 6)

( j, k) = (7, 8)

0.032

0.033

0.034

0.035

0 2 4 6 8 10

NSR (%)

0.063

0.064

0.065

0.066

0.000

0.010

0.020

0.030

0.040
( j, k) = (1, 2)

( j, k) = (5, 6)

( j, k) = (7, 8)

10̂

(Hz) 

20̂

(Hz) 

30̂

(Hz) 

10̂

20̂

30̂

951



 

 

 

 

 

 

Jer-Fu Wang and Chi-Chang Lin 

 

In this output-only situation, an additional white noise was added to each output response to 

simulate the unavailable noise contaminated in measured signals. The NSR is defined as the ratio 

of the noise STD to the input STD. Typically, the noise STD of a high-precision sensor is smaller 

than 0.05 gal. First, to determine the system order when employing the SSI method, the 

stabilization diagram of the building–TMD system without noise was established (Fig. 2). Four 

stable frequencies were detected when the system order n ≧ 8. The first two frequencies (0.937 

Hz and 1.119 Hz) were clearly split from the first modal frequency (1.04Hz) of the primary 

building because of the existence of the TMD, whereas the third and fourth frequencies (3.189 Hz 

and 4.875 Hz) were close to the second and third modal frequencies of the primary building (3.17 

Hz and 4.86 Hz) (Table 2). Based on these readings, the system order n = 8 was chosen for 

applying the SSI method at various NSR levels.  
The eigenvalues and eigenvectors of the building–TMD system at different levels of NSR were 

identified, and the parameters of the TMD and primary building were extracted (Figs. 3 and 4). As 

shown in Fig. 3, the results indicated that the noise had little effect on the extracted parameters, 

particularly on the frequency of the TMD. This result was critical because the vibration-control 

effectiveness of the TMD is sensitive to the TMD frequency. As shown in the left column of Fig. 4, 

the extracted modal frequencies of the primary building varied within limited and acceptable 

ranges. The first modal damping ratio varied by approximately ±1%, which was an expected 

sensitivity parameter. However, this variation had an insignificant effect on the TMD design 

parameters, according to Eqs. (22) and (23).  

 

 

 

Fig. 5 Configuration of the experimental three-story building and MTMD device (Lin et al. 2010) 
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4. Experimental verification 

 
The experimental data of the shaking-table tests were used to validate the proposed method. 

This experiment involved a large-scale, three-story steel frame equipped with multiple TMDs, and 

was conducted at the National Center for Research on Earthquake Engineering in Taiwan. This 

three-story structure was designed as a benchmark building for researching structural control and 

health monitoring. The building was uniform, weighing 18 t and measuring 9 m high. The 

dimension of the rectangular floor was 3 × 2 m. Each floor was constructed using a composite 

frame-plate structure and supplementary lead blocks and was supported by four columns with 

H-shape section (H 150 × 150 × 7 × 10). The orientation of the column section was arranged so 

that the weak direction of the building was parallel to the long side of the floor, which was also the 

moving direction of the shaking table. The details of the experimental layout and the shaking-table 

test of the three-story building were reported by Lin et al. (2010). Table 6 presents the identified 

modal parameters of the experimental building. They were similar to those of the CASE-2 

building used in the numerical study, except that the second and third modal damping ratios of the 

experimental building were much smaller. The configuration of the building is shown in Fig. 5. 

 

 
Table 6 Modal parameters of the experimental three-story building 

Modal Parameters Identified results 

Frequency (Hz)  }{
321 000    03.524.308.1  

Damping ratio (%) }{
321 000     16.020.019.2  

Mode shape }{
321 000 φφφ  


















000.1000.1000.1
879.1504.0736.0
742.1156.1401.0

3F
2F
1F

 

 

 
Table 7 Designed parameters of MTMD units 

Parameters Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Equivalent TMD 

Mass (kg) 76 77 73 75 70 371 

Optimal 

s , Hz 

(rf) 

1.041 

(0.964) 

1.041 

 (0.964) 

1.041 

 (0.964) 

1.041 

 (0.964) 

1.041 

 (0.964) 

1.041 

(0.964) 

s, % 7.14 7.14 7.14 7.14 7.14 7.14 

Assembled 

s , Hz 

(rf) 

1.015 

(0.94) 

1.004 

(0.93) 

1.037 

(0.96) 

1.026 

(0.95) 

1.058 

(0.98) 

1.028 

(0.952) 

s, % 7.15 7.05 7.43 7.23 7.75 7.41 

The MTMD setup was used to simulate a single TMD with mass of 371 kg, optimal damping coefficient of 

346.4 N∙s / m ( %14.7)( opts ), and optimal stiffness coefficient of 15886 N/m ( 964.0)( optfr )) 
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4.1 Description of the TMD 

 
The experiment was originally designed to verify the performance of a novel MTMD. An 

MTMD with five parallel units was assembled. Each unit consisted of a steel block, a coil spring, 

and an “airpot” damper device (Fig. 5). The spring of each unit was identical to those of the other 

units ( 099,3sk  N/m), whereas the mass and damping of each unit were adjustable to achieve 

optimal unit frequencies and damping ratios. In one part of the experiment, the five units were 

adjusted to function similar to a single TMD. Table 7 shows the designed parameters and actual 

parameters of the five assembled MTMD units. Theoretically, each unit should have the same 

mass. However, it could not be achieved because the mass of the blocks exhibited limited 

adjustability. The assembled sc  and sk  values of each unit (Table 7) were based on the 

manufacturers’ specifications. The parameters of the assembled TMD were close to those of the 

optimal TMD. In this experiment, the mass and damping of each MTMD unit were adjusted when 

the device was installed on the third floor of the benchmark building. The free-vibration tests of 

each unit with a fixed base could not be performed. 

 
4.2 Identification of the building–TMD system 
 
The building–MTMD system was excited using three base accelerations in sequence (i.e., 

NCHU campus record of the 1999 Taiwan Chi-Chi earthquake, white noise, and the 1940 El 

Centro earthquake). Because the allowable stroke of the MTMD unit was only 65 mm, the peak 

ground acceleration of each earthquake input was downscaled. During the test, the absolute 

accelerations and relative displacements of the five MTMD units were all measured. Fig. 6 

illustrates the time histories and Fourier amplitudes of the displacement measurements of the five 

MTMD units. The results showed no obvious discrepancy between the motions of the five MTMD 

units, which indicates that the behavior of the MTMD was similar to that of a single TMD.  

First, to identify the parameters of the entire building–TMD system, the SRIM identification 

technique was employed. The acceleration-time history at the base was set as the system input, and 

those at the three floors and TMD were set as the outputs. The average acceleration-time history of 

the five MTMD units was used to represent the TMD’s motion. Next, the eigenvalues and 

eigenvectors of the eight complex modes of the combined building–TMD system were identified. 

 

 
Table 8 Identified modal parameters of the building–TMD system 

Modal Parameters Identified results 

Frequency (Hz) }{ 4321 ωωωω   02.522.313.191.0  

Damping ratio (%) }{ 4321 ξξξξ    18.029.012.427.6  

Mode shape }{ 4321 φφφφ  

























108.0166.0445.3363.9

000.1000.1000.1000.1

993.1540.0748.0693.0

867.1181.1412.0363.0

TMD

3F

2F

1F
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Fig. 6 Measured displacements and Fourier transform amplitudes of five MTMD units relative to the third 

floor under the downscaled ground motion of the Chi-Chi earthquake 

 

 

The corresponding real modal parameters of the Chi-Chi earthquake situation are shown in Table 8. 

Results show that the identified third and fourth modes of the building–TMD system were close to 

the second and third modes of the primary building, respectively, whereas the first mode of the 

primary building (1.08 Hz) was split into two separate modes (0.91 and 1.13 Hz). In addition, the 

mode-shape value of the TMD was large at the first and second modes but small at the third and 

fourth modes, which indicates that the TMD was tuned to the first mode of the primary building. 

The damping ratios of the first two modes (6.27% and 4.12%) were larger than the first modal 

damping of the primary building (1.95%) and show the control effectiveness of the TMD, which 

dissipated more energy in the building. 

 
4.3 Parameter extractions of TMD and primary building 
 
Following the proposed procedure (as demonstrated in the numerical study), system parameters 

of the assembled TMD and three-story benchmark building were extracted (Table 9). The 

conditions of both full measurement and single measurement were considered. Unlike the results 

of the numerical study, the s̂  and s̂  values were related to the selection of mode (j, k). 

Because the TMD was designed to tune the first mode of the building, and the average from (j, k) 

= (1, 2) and (3, 4) was taken, the results were as follows: s̂ = 0.979 Hz and s̂ = 8.65% in the 

full-measurement situation and s̂ = 0.980 Hz and s̂ = 8.95% in the single-measurement 

situation. The two identified s̂  values were close to the assembled s  (1.028 Hz; 4.8% 

smaller), whereas the identified s̂  values were slightly larger than the assembled s  (7.41%). 

These differences were caused by many factors, such as modeling errors in the building–TMD 

system and regarding the five MTMD units as a whole. In addition, neglecting the weight of the 

springs, dampers, and rolling wheels in calculating the mass of an MTMD unit may have resulted 

in s̂  slightly lower than s . The extracted s̂  being larger than the assembled s  was 

attributed to the unexpected inherent friction of the MTMD device. 

The final results of the modal frequencies and modal damping ratios of the benchmark building 

were determined from Table 9 according to the selection rule in section 3.3, for example 

}02.521.306.1{ˆ0   Hz and }16.017.027.1{ˆ
0  % for the full-measurement situation and 
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}01.521.305.1{ˆ0   Hz and }11.020.004.3{ˆ
0  % for the single-measurement situation. 

The extracted modal frequencies of both cases clearly agree with those of the bare-building test 

( 0   03.524.308.1 Hz) (Table 6). The slight discrepancy was due to the additional mass of 

the MTMD device (approximately 150 kg), which increased the mass of the third floor and thus 

reduced the three modal frequencies of the primary building. The extracted second and third modal 

damping ratios were accurate, and the error for 
10̂  was relatively large but within an acceptable 

range.  

The shaking-table experiment was repeated using the other two earthquake ground motions. All 

of the analysis results are illustrated in Figs. 7 (full measurement) and 8 (single measurement) and 

compared with those of the bare-building tests (labeled as “Reference”). The extracted parameters 

under the various ground-motion excitations were close, indicating that the proposed analysis 

procedure is applicable for evaluating the effectiveness of TMD control. 

 

 

  
(a) Extracted frequencies (b) Extracted damping ratios 

Fig. 7 Comparisons of the extracted parameters of the experimental building and TMD with the values of the 

bare-building tests under the full-measurement conditions of three ground motions 

 

  
(a) Extracted frequencies (b) Extracted damping ratios 

Fig. 8 Comparisons of the extracted parameters of the experimental building and TMD with the values of the 

bare-building tests under the single-measurement conditions of three ground motions 
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Table 9 Extracted parameters of the assembled TMD and three-story benchmark building 

Identified Parameters (j, k) Full measurement Single Measurement 

TMD 

s̂ (Hz) 

(1, 2) 0.958 0.959 

(3, 4) 1.000 1.001 

(5, 6) 1.147 1.143 

(7, 8) 1.346 1.265 

s̂ (%) 

(1, 2) 9.13 9.30 

(3, 4) 8.76 8.80 

(5, 6) 8.84 8.19 

(7, 8) 7.46 8.07 

Primary 

building 

(physical) 

pĉ  

(kN-sec/m) 

(1, 2) {9.126, 5.291, 4.719} 8.170 

(3, 4) {3.408,3.946, -0.306} 5.750 

(5, 6) {0.480, -0.580, 0.273} 1.421 

(7, 8) {0.871, 0.072, 0.093} 1.249 

pk̂  

(kN/m) 

(1, 2) {1372, 1321,  982} 691 

(3, 4) {1393, 1352,  899} 827 

(5, 6) {1642, 1497, 1488} 7201 

(7, 8) {2582, 1632, 1867} 17488 

Primary 

building 

(modal) 

0̂   

(Hz) 

(1, 2) {1.06, 2.74, 4.11} 1.00 

(3, 4) {1.06, 2.67, 4.11} 1.09 

(5, 6) {1.16, 3.21, 4.56} 3.21 

(7, 8) {1.34, 3.74, 5.02} 5.01 

0̂   

(%) 

(1, 2) {1.82, 4.63, 5.95} 3.70 

(3, 4) {0.72, 0.50, 2.94} 2.38 

(5, 6) {0.011, 0.17, -0.16} 0.20 

(7, 8) {0.070, 0.19, 0.16} 0.11 

 

 

5. Conclusions 

 
In this study, an analysis procedure was developed for extracting the natural frequencies and 

damping ratios of a TMD and primary building based on the acceleration measurements of a 

combined building–TMD system. This procedure was first performed by identifying the 

eigenvalues and eigenvectors from the acceleration measurements of the building–TMD system. 

These complex eigenparameters were then used to calculate the respective parameters of the TMD 

and primary building by using the derived analytical formulas. Although the developed theory is 

based on the shear building assumption, the numerical-simulation results show that the extracted 

TMD parameters are influenced little by the building model, whereas the building parameters of 

different modes can be accurately extracted by selecting appropriately complex modes. Even under 

single-measurement conditions, the modal frequencies and damping ratios of the multiple modes 

can be obtained using the identified parameters of the “pseudoshear” building. The proposed 

procedure was further validated using the experimental data of shaking-table tests of a large-scale, 

three-story benchmark building equipped with an assembled five-unit TMD. Both 

full-measurement and single-measurement conditions were considered, and the proposed 

procedure can obtain accurate results. It is concluded that the proposed analysis procedure can be 

appropriately applied to the health monitoring of a building–TMD system and used for ensuring 
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TMD control performance (in particular, when a TMD is assembled simultaneously with building 

construction). 
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