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Abstract.  The Hilbert-Huang transform (HHT) consists of empirical mode decomposition (EMD) and 
Hilbert spectral analysis. EMD has been successfully applied for identification of mode shapes of structures 
based on input-output approaches. This paper aims to extend application of EMD for output-only 
identification of mode shapes of linear structures. In this regard, a new simple and efficient method based on 
band-pass filtering and EMD is proposed. Having rather accurate estimates of modal frequencies from 
measured responses, the proposed method is capable to extract the corresponding mode shapes. In order to 
evaluate the accuracy and performance of the proposed identification method, two case studies are 
considered. In the first case, the performance of the method is validated through the analysis of simulated 
responses obtained from an analytical structural model with known dynamical properties. The 
low-amplitude responses recorded from the UCLA Factor Building during the 2004 Parkfield earthquake are 
used in the second case to identify the first three mode shapes of the building in three different directions. 
The results demonstrate the remarkable ability of the proposed method in correct estimation of mode shapes 
of the linear structures based on rather accurate modal frequencies. 
 

Keywords:  output-only modal identification; mode shapes; Hilbert-Huang transform; empirical mode 

decomposition; intrinsic mode function; UCLA Factor Building 

 
 
1. Introduction 
 

During the last decades, through the development of measuring devices, experimental dynamic 

analysis has experienced a tremendous growth. Experimental modal analysis as the main part of 

the experimental dynamic analysis aims to extract structural modal characteristics by both 

input-output and output-only methods. Output-only methods are less intrusive and expensive 

compared to input-output methods and consequently are more popular in practice. In output-only 

analysis (also named as operational modal analysis, ambient modal analysis or natural excitation 

modal analysis) of civil engineering structures, signal processing techniques including both time 

and frequency domain techniques are applied (Cunha and Caetano 2006). 

As a breakthrough to the traditional signal processing methods, Huang et al. (1998) proposed a 

method for analysis of non-stationary and nonlinear signals, which was called later as the 

                                                      
Corresponding author, Assistant Professor, E-mail: omidbahar@iiees.ac.ir 
a 
Ph.D. student, E-mail: s.ramezani@iiees.ac.ir 

mailto:omidbahar@iiees.ac.ir
mailto:s.ramezani@iiees.ac.ir


 

 

 

 

 

 

Soheil Ramezani and Omid Bahar 

 

Hilbert-Huang transform (HHT) method. The HHT method consists of empirical mode 

decomposition (EMD) and Hilbert spectral analysis. EMD decomposes a signal into a finite 

intrinsic mode functions (IMFs) and then, the Hilbert transform presents time-frequency-amplitude 

distribution of IMFs in a spectrum termed as Hilbert spectrum. Applications of HHT have revealed 

its ability in providing more physically meaningful features than conventional methods for 

nonlinear and non-stationary signal analysis (Huang et al. 1998, Zhang et al. 2003, Liu and Xu 

2006). 

In structural engineering, HHT has been successfully applied for modal identification of 

structures (Yang and Lei 2000, Yang et al. 2003a, Yang et al. 2003b, Xu et al. 2003, Yang et al. 

2004, Yan and Miyamoto 2006, Poon and Chang 2007, Bao et al. 2009, Liu et al. 2011, Wang and 

Chen 2012). Yang and Lei (2000) and Yang et al. (2003a, b) proposed an HHT-based method for 

modal identification of linear structures in which the modal parameters related to each mode are 

determined from its free vibration modal response using a band-pass filter and EMD technique. 

They also applied the HHT method in conjunction with the random decrement technique (RDT) 

for identification of structures under ambient vibration. Following the same technique, Xu et al. 

(2003) and Yang et al. (2004) identified the modal frequencies and damping ratios of two different 

tall buildings under wind excitations. Poon and Chang (2007) applied EMD for the identification 

of nonlinear elastic structures under free vibration. In their work, the nonlinear responses estimated 

through EMD are utilized in a proposed nonlinear normal mode method to extract the properties of 

nonlinear elastic structures. 

Applying the technique proposed by Yang and Lei (2000) and Yang et al. (2003a), Yan and 

Miyamoto (2006) identified the modal frequencies and damping ratios of a benchmark bridge 

under ambient excitations. Bao et al. (2009) proposed a new HHT method for identification of 

time-varying nonlinear systems with closely-spaced modes. In their method, auto-correlation 

function of structural response is considered as input, and also a combination of a band-pass filter 

method and an IMF selection principle are applied to overcome modal perturbation issues. 

Recently, Liu et al. (2011) proposed an output-only system identification method based on EMD, 

RDT and the Ibrahim Time Domain method. Liu et al. (2011) applied their method for modal 

identification of a three degree-of-freedom (DOF) model and a bridge structure subjected to 

ambient base excitations. More recently, Wang and Chen (2012) proposed a recursive HHT 

method for identification of shear multi-story buildings, by which, given floor masses and 

measured responses, the stiffness and damping in each floor can be monitored. In most of the 

HHT-based identification techniques such as those briefly described here, the output-only 

parameter identification is limited to identification of modal frequencies and damping ratios (e.g., 

Yang and Lei 2000, Yang et al. 2003a, Yang et al. 2003b, Bao et al. 2009, Liu et al. 2011) and 

identification of the mode shapes is not often carried out. 

In this paper, as an improvement to the technique applied by Yang et al. (2003a), a new simple 

and efficient method for output-only identification of mode shapes of linear structures is proposed. 

In the proposed method, estimated modal responses which are extracted by applying the band-pass 

filter and EMD technique are directly used to estimate mode shapes of a structure. Hence, there is 

no need to convert out put responses to free vibration modal responses, which is applied by Yang 

et al. (2003a). Having rather accurate estimates of the modal frequencies from the measured 

responses, the proposed method is capable to extract corresponding mode shapes. To demonstrate 

the accuracy and efficacy of the proposed method, two case studies are considered. The simulated 

responses obtained from an analytical structural model with known dynamical properties are 

analyzed in the first case by which the performance of the method in accurate estimation of the 
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mode shapes is validated. In the second case, the first three mode shapes of the UCLA Factor 

Building in three separate directions using the recorded low-amplitude responses of the building 

during the 2004 Parkfield earthquake are extracted. In this case, the estimated mode shapes are 

verified by comparison with those reported in the literature. Before the explanation of the proposed 

method, the original HHT method is briefly described in the next section. 

 

 

2. Hilbert-Huang transform 
 

HHT consists of two parts; EMD and Hilbert spectral analysis. EMD as the key part 

decomposes a signal into a finite number of intrinsic modal functions (IMFs) which guarantee a 

well-behaved Hilbert transform (Huang et al. 1998) and then, Hilbert spectral analysis presents 

time-frequency-amplitude distribution of the signal through the Hilbert transform. By definition, 

an IMF is any function that satisfies two conditions: (1) in the whole data set, the number of 

extremes and the number of zero crossings must either equal or differ at most by one; and (2) at 

any point, the mean value of the envelope defined by the local maxima and the envelope defined 

by the local minima is zero. 

The EMD procedure in its original form suggested by Huang et al. (1998) can be summarized 

in five steps as follows. For a given signal, s(t), with at least one maximum and one minimum, (1) 

find all the local extreme a, (2) connect all the local maxima by a cubic spline interpolant function 

as the upper envelope, emax(t), and repeat the procedure for the local minima to achieve the lower 

envelope, emin(t), (3) compute the average: )(1 tl = [emax(t) +emin(t)]/2, (4) let h1(t) = s(t) – )(1 tl , if 

h1(t) is not an IMF, repeat steps 1 to 4 on h1(t) to obtain the first IMF, c1(t), (5) define residue 

signal through )(1 td  = s(t) – c1(t); and repeat steps 1 to 5 on )(1 td  to extract k IMFs. At the end, 

s(t) is decomposed to k-separate IMFs and a residue, )(td k , which is either a mean trend or a 

constant. By applying EMD, s(t) can be decomposed as Eq. (1). Among the IMFs,c1(t) and ck(t) 

include the highest and the lowest frequency range, respectively. 





k

i

ki tdtcts
1

)()()(                   (1) 

For any real-valued function c(t) of L
P
 class, the Hilbert transform, y(t), is defined by 




 
 






d

t

c
Pty

)(1
)(              (2) 

where P indicates the principal value of the singular integral. With the Hilbert transform, the 

analytic signal, )(ta , is defined as 
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where A(t) and )(t  stand for the envelope (instantaneous amplitude) and the phase function, 

respectively. Instantaneous frequency is defined as the derivative of the phase function 

dt

td
t

)(
)(


                   (5) 

Having above definitions, c(t) can be written as 

)(cos)())(())(()( )( ttAetAtatc t   i           (6) 

in which )(  indicates the real part of a complex number. Based on the Hilbert spectral analysis, 

c(t) and its corresponding Hilbert transform, y(t), are defined as )(cos)( ttA   and )(sin)( ttA 

respectively. A(t) is a positive-valued function and )(t  is a monotonic increasing function. If c(t) 

represents an IMF, s(t) can be expressed as the following form 
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In Eq. (7), )(td k  is deliberately omitted, because it is either a monotonic function, or a 

constant. Eq. (7) can be used to represent time-frequency distribution of the amplitude in a 

spectrum which is termed as Hilbert spectrum, ).,( tH   
 

 

3. Proposed method for output-only identification of mode shapes 
 

Generally, structures accept excitations from two sources. The first source excites body of a 

structure, which affects its free DOFs, and the other excites its supports, which affects supported 

ones. As a result, the dynamic response of the structure is a function of displacement at both free 

and supported DOFs. For a linear time-invariant (LTI)n-DOF structure, dynamic equation of 

motion under force and support excitations (Chopra 2001) can be expressed as 
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(8) 

where in, respectively, Mff, Cff, Kff are mass, damping, stiffness matrices related to the free DOFs, 

and Mss, Css, Kss are matrices related to the supported DOFs, and Mfs, Cfs, Kfs, are those related to 

the interaction between free and supported DOFs; also, )(tt
fX and )(tfF are the absolute 

displacement and force vectors at the free DOFs, )(tt
sX  and )(tsF are those at the supported 

DOFs, respectively. In reality, there is a discrepancy between the measured responses and the 

theoretical responses in Eq. (8), which is considered here as noise. 

The measured response at free DOFs can be expressed as the sum of the theoretical response 

and the noise 

)()()( ttt f
t
ff NXZ                 (9) 

where )(tfZ  is the real measured response at the free DOFs and )(tfN  is the noise over )(tt
fX . 
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In a modal expansion form, )(tfZ can be expressed as the linear combinations of the modal 

vectors 
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j  and rare, respectively, the jth normal modal vector, the 

jth absolute modal coordinate and the number of the free DOFs. The stjv  in Eq. (10), represent the 

contribution of sjΦ  in the absolute measured responses of the structure. 

By substituting )(tt
fX  from Eq. (9) into the first row of Eq. (8), and using orthogonality 

properties of the mode shapes with respect to Mff and Kff, and also applying the assumption of the 

classical damping, n-decoupled equations can be obtained as 
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(11) 

where jf , j , and jm are respectively the jth modal frequency, the jth modal damping ratio and 

the jth modal mass of the structure. The noise-dependent terms in Eq. (11) can be considered as 

additional excitations on the free DOFs. Since the right hand side of Eq. (11) is generally 

immeasurable, in output-only identification approach, the modal parameters are extracted without 

knowledge of the input excitations. 

Based on the dynamic properties of the LTI systems, the frequency response functions (FRFs) 

of a multi-DOF structure act as band-pass filters around the modal frequencies. Thus, the 

band-pass and EMD technique proposed by Yang et al. (2003a) can be applied to the measured 

responses to estimate the modal responses. To apply this technique, the accurate estimates of the 

modal frequencies are required. 

 
3.1 Estimation of the modal frequencies 
 

In the frequency domain, the peaks in the FRFs of a low-damped multi-DOF system lie around 

the modal frequencies. Because the input excitations are not taken into consideration in the 

ambient modal analysis, the FRFs are replaced by the Power Spectral Densities (PSDs) of the 

output responses. The Welch’s method is one of the methods that can be used for the estimation of 

the PSDs. By normalizing the individual PSDs and then averaging between all the normalized 

PSDs, an averaged normalized PSD (ANPSD) is obtained from which the modal frequencies can 

be identified. In the Peak Picking (PP) method, the frequencies corresponding to the peaks in 

ANPSD are picked up as the estimates of the modal frequencies of the structure. 

In the PP method, it is assumed that: (1) the excitations represent a white noise process, (2) the 

modal damping is not significantly high and (3) the modal frequencies are not closely-spaced. 

These assumptions are often valid for most of civil structures under ambient excitations; hence, the 

PP method can be applied for the accurate estimation of the modal frequencies. Alternatively, any 

method such as HHT or enhanced HHT (Bahar and Ramezani 2014) that are able to provide the 

estimates of the modal frequencies may be used instead of the PP method. 
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3.2 Estimation of the modal responses 
 

To estimate the modal responses, the band-pass filtering and EMD technique is applied. In this 

technique, the output responses are band-passed filtered around the estimated modal frequency and 

the resulting time histories are processed through EMD, then the corresponding first IMFs are 

taken as the estimates of the modal responses. By applying this technique around the jth estimated 

modal frequency for all the acceleration responses, an appropriate estimate of the jth absolute 

modal acceleration response of the structure (i.e., )(tv
t

jj
Φ ) can be estimated as 

T
jrjjj tItItIt )](,...),(),([)( ,,2,1I .As a result, the ratio of the modal elements, jqjp ,, /

),...,2,1,( rqp  , may be estimated as )(/)( ,, tItI jqjp . 

Theoretically, the ratio between the modal elements is constant, but due to phase-shift effects 

caused by a variety of issues including noise effects, variations in the EMD algorithm (Rilling et al. 

2003, Wu and Huang 2008) and also variations in type of band-pass filtering, the ratio of )(, tI jp

to )(, tI jq
is not constant and oscillates around a constant value. Moreover, the phase shift may 

cause very large outliers due to division by near zero values. Employing the displacement 

responses which contain much less zero crossings instead of the acceleration responses may reduce 

the phase-shift effects; however, it is not very efficient in practice. 

 

3.3 Estimation of the ratio between modal elements 
 

In the HHT method, an IMF can be considered as a both amplitude and frequency modulated 

signal in the form of )(cos)( ttA   in which, the variation information of the amplitude and phase 

function are carried in )(tA and )(cos t , respectively. As a result, the phase variation (including 

phase shifts) is contained in )(cos t , and )(tA  is not considerably influenced by the phase-shift 

effects. Using this property, the ratio between IMFs can be replaced by the one between the 

envelopes to bypass the phase-shift effects. The ratio obtained by using the envelopes still 

oscillates around a constant value due to imperfections in the HHT method, but the amplitude and 

frequency of the oscillation is strongly reduced. Regarding to the mathematical limitations of the 

Hilbert transform in accurate determination of the envelope and phase (Huang and Bethesda 2005), 

in the proposed method, the envelope is considered as the piecewise cubic polynomials which run 

through the local maxima of an IMF according to (Huang and Bethesda 2005). 

The mean trend of )(/)( ,, tAtA jqjp can be considered as the good estimate of ||/|| ,, jqjp   in 

which, )(, tA jp and )(, tA jq are the envelopes corresponding to )(, tI jp and )(, tI jq , respectively. 

On the other hand, the sign of the ratio of the modal elements can be directly determined from the 

sign of the mean trend of )(/)( ,, tItI jqjp .It should be noted that unlike )(/)( ,, tAtA jqjp , 

)(/)( ,, tItI jqjp  is sensitive to the phase-shift effects, therefore, the minimum phase shift in 

band-pass filtering is necessary for the determination of the sign of the ratio of the modal 

elements.  

To determine the mean trends for both )(/)( ,, tAtA jqjp  and )(/)( ,, tItI jqjp , a robust mean 

estimator is proposed with the following steps: (1) Let  be a positive and predefined constant 
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value, (2) determine the mean and standard deviation of data as 1  and 1 , respectively, (3) repeat 

step 2 for data which fall between 11    and 11    to obtain 2  and 2 , (4) iterate on 

step 2 and 3 until converged values for the mean and standard deviation are obtained as   and 

 , respectively. The converged mean obtained by this procedure (i.e.,  ) is considered as the 

mean trend of data. Characteristically,   lies where the density of data is highest. In the present 

work,  is taken equal to 1.0 since the variation of   within the range around 1.0 showed no 

significant effect on the results of the selected case studies. 

Applying the proposed mean estimator, the ratio of the modal elements can be defined as Eq. 

(12) 

rqpjqpIjqpAjqjp ...,,2,1,)(sgn/ ,,,,,,,,               (12) 

In which jqpA ,,,  and jqpI ,,,  stand for the mean trends of )(/)( ,, tAtA jqjp  and )(/)( ,, tItI jqjp , 

respectively and )sgn(  is the sign function. Once the normalizing DOF/DOFs are determined for 

the different modes, Eq. (12) can be used for the estimation of the mode shapes. The DOFs which 

are expected to be very close to the location of the nodes (i.e., zero crossings) in the mode shapes 

should not be selected as the normalizing DOFs. For such DOFs, the envelopes of the estimated 

modal responses fluctuate near zero in a characteristic manner. As a result, the negative effects 

similar to those caused by the phase shift may arise if the DOFs very close to the nodes are 

selected for the normalization procedure. 

Eq. (12) leads to accurate results if two conditions are met; first, the frequency of the jth mode 

(i.e., the center frequency of the band-pass filter) should be correctly estimated and second, with 

respect to the closeness of the modal frequencies of the structural system, a correct frequency band 

(i.e., the bandwidth of the band-pass filter) should be applied. For systems with 

non-closely-spaced modal frequencies (which is in the scope of this paper), only the correct 

estimates of the modal frequencies need to be applied. In such systems, the modal responses are 

well-separated in the frequency domain and the variation of the bandwidth applied for the isolation 

of the modal responses has no significant effect on the results obtained by the proposed method as 

it is shown by a parametric study in the first example case. 

As noted above, in the output-only identification, the FRFs of the structure which give the 

modal frequencies and mode shapes are unknown because the input excitations are actually 

unknown. Without having the FRFs, the estimated modal frequencies and mode shapes always 

need to be examined in order to distinguish between reliable and unreliable mode shapes. In the 

ANPSD obtained from the output responses, besides the peaks at the modal frequencies, some 

other peaks which result in distorted mode shapes may appear (due to the violation of the 

assumptions of the PP method);hence, depending on the type of the structure, different criteria may 

be applied based on engineering judgment to exclude unreliable mode shapes and their 

corresponding modal frequencies. 

 

 

4. Case studies 
 

In this section, two case studies are presented to demonstrate the accuracy and efficiency of the 

proposed method. Numerically simulated responses obtained from an analytical model of a 
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3-storybuilding with known modal vectors subjected to a Gaussian random base acceleration is 

analyzed in the first case and the accuracy of the extracted mode shapes are validated by 

comparison with the theoretical mode shapes. In the second case, the 2004 Parkfield earthquake 

response data measured from the UCLA Factor Building are processed and the shapes of the first 

three modes of the building in east-west, north-south and torsional directions are identified; in this 

case, verification is carried out by comparing the results from the proposed method with those 

from the existing updated model of the building. 

 

4.1 An analytical building model 
 

An analytical model of a 2D linear 3-story shear building is considered in this case study. The 

mass and stiffness values of the structure are respectively as follows: kgMMM 1000321  , 

./10002 321 mkNKKK  With assumption of Rayleigh damping, the same damping ratio of 

5% is considered for the first and third modes. The eigenvalue analysis is performed to extract the 

modal characteristics of the structure as are given in Table 1.The proportions of the mass and 

stiffness in the model are set such that the modal frequencies are well-separated from each other. 

To apply the base excitation, a 120-sec window including 6000 ambient data recorded by one 

INSN (Iranian National Broadband Seismic Network) station in northern Iran (Charan station, 

CHTH, ~35.9°N, 51.1°E) is chosen. Data processing (e.g., high-pass filtering, base-line correction) 

is applied on the raw data to obtain the base excitation history. By performing structural analysis, 

the absolute acceleration responses are obtained at each DOF. 

To simulate the presence of random noise in the real-world cases, the acceleration response data 

are contaminated by a Gaussian random noise with different levels of intensity. The noise level is 

defined based on root mean square (rms) similar to that in (Yang et al. 2003a). The rms of the 

signal z(t) is defined as Eq. (13) 

2
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0

2 )(
1

)]([rms 







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T
dttz

T
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The contaminating signal is defined by )]([rms/)]([rms)( tNtztNR iiii
 , in which )(tN i is the 

noise over )(txt
i
  and iR  denotes the level of noise contamination. The three levels of

%30and15,0iR is selected for simulating the noisy responses. The required conditions for 

applying the PP method are fully satisfied in the present example; therefore, the PP method can be 

employed for the accurate estimation of the center frequencies and bandwidth values in the 

determination of the modal responses. To apply the PP method, the PSD from the Welch’s method 

using Hamming window with segment length of 64 data and overlap of 25% is constructed. The 

PSDs obtained from the noisy responses are then averaged and normalized to get the ANPSD from 

which the modal frequencies can be identified. The ANPSDs of the structure in the frequency 

range from 0 to 12 Hz with different levels of the noise are depicted in Fig. 1 which shows that the 

noise contamination has a minor effect on the estimated modal frequencies through the Welch’s 

method. From these spectra, the modal frequencies required for the band-pass filtering process are 

estimated as 2.1, 5.1 and 8.4 Hz for the first to third modes, respectively. 

In order to investigate how the accuracy of the center frequency (i.e., the accuracy of the 

estimated modal frequency), the selection of the band width value and the noise level affect the 
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results yielded by the proposed method, a parametric study is conducted here. In the study, the 

center frequency is varied from jf8.0  to jf2.1  and the bandwidth is varied with four values 

which are 0.25, 0.5, 1 and 2 Hz; the noise levels are the same as those mentioned above. Applying 

a zero-phase Butterworth band-pass filter of forth order and EMD thereafter, the absolute modal 

responses at each DOF are obtained. To extract mode shapes, a normalizing DOF should be 

selected; among the DOFs, the first one is selected for the normalization process (i.e., 1q ). 

To evaluate correlations between the identified and theoretical mode shapes, the mode 

assurance criterion (MAC) can be applied. The MAC between two mode shapes of aΦ  and bΦ  

is defined as )/()(),(MAC 2
b

T
ba

T
ab

T
aba ΦΦΦΦΦΦΦΦ  . The MAC values vary between 0 

and 1. The 0 and 1 values respectively indicate perfect independence and perfect dependence 

between two mode shapes. Fig. 2 shows the MAC values between the identified and theoretical 

mode shapes obtained by varying the different parameters within the specified ranges. 

From Figs. 2(a) to 2(d), first, it is observed that the results obtained by the proposed method are 

not significantly sensitive to the variation of the bandwidth values if an accurate estimate of the 

modal frequencies (e.g., jf95.0 or jf05.1 ) are used, as it is expected for the systems with 

well-separated modal frequencies; second, the rather accurate modal frequencies (e.g., jf90.0 or

jf10.1 ) are sufficient for the proposed method to yield the valid modal vectors even under high 

level of the noise contamination (i.e., %30iR ); and third, the larger values of the bandwidth 

result in the formation of a plateau over the modal frequency, which reduces the inaccuracies 

caused by the relatively poor frequency estimation. 

 

 

Fig. 1 ANPSDs obtained from simulated responses under different levels of noise 
 
Table 1 Modal parameters of an analytical model 

Mode Frequency (Hz) 
Damping ratio 

(%) 

Mode scale  

DOF 1 DOF 2 DOF 3  

1 2.12 5.0 1.00 1.82 2.82  

2 5.03 4.1 1.00 1.00 –1.00  

3 8.46 5.0 1.00 –0.82 0.18  
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Fig. 2 MAC values between identified and theoretical mode shapes obtained from different ranges of 

center frequency, noise level and bandwidth 
 

 

 

Fig. 3 Parameters related to calculation of 2123 ,, /  

 

 

To show the efficacy of the proposed method in reducing undesired fluctuations in the 

determination of the ratio of the modal elements, the parameters related to the calculation of 

2123 ,, /  with center frequency of 5.61 Hz (i.e., 21.1 f )and bandwidth of 1 Hz under the different 

levels of noise contamination is shown in Fig. 3. In absence of noise in Fig. 3(a), it can be seen 
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that the use of )(/)( 2,12,3 tAtA  instead of )(/)( 2,12,3 tItI  efficiently reduces physically 

meaningless fluctuations and provides a very stable trend; the nearly-constant trend in 

)(/)( 2,12,3 tAtA  matches the true trend (i.e., the perfect constant ratio) in a LTI system. 

In presence of noise in Figs. 3(b) and 3(c), the level of the fluctuations increases in both 

)(/)( 2,12,3 tAtA  and )(/)( 2,12,3 tItI as the level of noise increases, yet the former is less affected. 

Also, it can be observed that 2,1,3,A  and 2,1,3,I  yielded from the proposed mean estimator, 

excellently fit the true constant trends in )(/)( 2,12,3 tAtA  and )(/)( 2,12,3 tItI  respectively almost 

independent of the level of the noise contamination. 

 

4.2 The UCLA factor building 
 

The Factor Building is a 15-story steel moment-resisting frame structure located in the 

University of California, Los Angeles (UCLA) shown in Fig. 4. After the 1994 Northridge 

earthquake, the US Geological Survey instrumented the Factor Building with a sensor network 

throughout its entire height. The databases collected from the Factor Building present a valuable 

resource for research in the fields of system identification, structural monitoring and damage 

detection. Up to now, several studies have been conducted to identify the modal characteristics of 

the Factor Building (e.g., Skolnik et al. 2006, Nayeri et al. 2008, Hazra B and Narasimhan 2010). 

Skolnik et al. (2006), by use of earthquake and ambient vibration data, identified the modal 

parameters of the building. They employed the stochastic subspace identification method to 

identify the structural modal frequencies, damping ratios, and mode shapes corresponding to the 

first nine modes of the building. In their work, the frequencies and mode shapes identified from 

the low-amplitude earthquake response data are used to update a three-dimensional finite element 

model of the building which is then used for response prediction of the building. In the modeling, 

it is assumed that floor diaphragms at all levels are rigid with three in-plane DOFs. The mass and 

stiffness matrices each of order 4545 are extracted from the updated model in (Skolnik et al. 

2006). 

 

 

 

Fig. 4 Layout of the UCLA Factor Building above the ground level 
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Nayeri et al. (2008) by use of ambient vibration records carried out a comprehensive study on 

the modal characteristics of the building and their uncertainties. The eigen system realization 

algorithm in conjunction with the natural excitation technique and the chain identification 

technique as two identification methods, are applied in (Nayeri et al. 2008) to extract the modal 

parameters of the building. Hazra and Narasimhan (2010) employed the second-order blind 

identification technique and also two other techniques for identification of the modal parameters of 

the building using both ambient and earthquake responses. 

According to (Skolnik et al. 2006), recorded data during 2004 Parkfield, California, earthquake 

are processed to establish a data set including east-west, north-south and torsional floor 

accelerations. In the data set, the floor acceleration in each direction includes 3400 data points with 

sampling rate of 20 Hz. Detailed information about data acquisition and data processing can be 

found in (Skolnik et al. 2006). Having the recorded data at all floors in the earthquake data set, the 

mode shapes of the building can be identified completely. Since the building is weakly excited 

during the earthquake, the structural behavior can be supposed to be almost linear; hence, linear 

modal identification can be applied. 

Type of the structural system and also regular configurations of the building imply that the PP 

method is able to properly estimate the modal frequencies of the structure. Similar to previous case, 

the PSD from the Welch’s method using Hamming window with segment length of 64 data and 

overlap of 25% is applied. To get the estimates of the modal frequencies, the ANPSDs obtained 

from the acceleration responses of east-west, north-south and torsional directions are obtained as 

shown in Fig. 5. From the ANPSDs of east-west and north-south directions, three peaks are clearly 

recognizable below 3 Hz. In the spectrum related to the torsional direction, four peaks are apparent 

within 0 to 5 Hz. 

The identified frequencies by the PP method for east-west and north-south directions are 

presented in Table 2. The identified values show that the stiffness of the building in north-south 

direction is slightly higher than that in east-west direction. The modal frequencies determined by 

performing an eigenvalue analysis on the updated mass and stiffness matrices of the building 

(Skolnik et al. 2006) is also presented in Table 2. It is observed that for the first three modes in 

east-west and north-south directions, the differences between results obtained from the both 

methods do not exceed 10%. 

 

 

 

Fig. 5 ANPSDs obtained from earthquake responses of the Factor Building 
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Table 2 Estimated modal frequencies for the first nine modes of the Factor Building 

Mode 

 Modal frequencies (Hz)    

PP method  
Updated model 

(Skolnik et al. 2006) 
 Diff (%)  

E-W N-S Tor  E-W N-S Tor  E-W N-S Tor  

1 0.5 0.5 0.6  0.473 0.514 0.691  5.7 –2.7 –13.2  

2 1.4 1.6 2.4  1.507 1.670 2.319  –7.1 –4.2 3.5  

3 2.7 2.8 3.9  2.580 2.761 3.743  4.7 1.4 4.2  

 

 

With respect to the height of the building, the location of the fourth floor is distant enough from 

the location of the nodes in the first three modes of each direction. As a result, the DOFs of the 

fourth floor are selected as the normalizing DOFs to extract the first three mode shapes in each 

direction. Applying a zero-phase band-pass filtering with bandwidth of 0.5 Hz and EMD, the 

complete mode shapes are obtained. The identified mode shapes for east-west and north-south 

directions together with those extracted from the eigenvalue analysis are depicted in Figs.6and7. 

All the presented shape vectors are scaled to have unit norms. 

For the torsional direction, as noted, the four peaks are apparent in the ANPSD of Fig. 5, which 

are located at 0.6, 1.6, 2.4 and 3.9 Hz, respectively. Among these peaks, those at 1.6 Hz and 2.4 Hz 

are relatively close to each other implying that they are related to the same structural mode. Fig.8 

shows the extracted mode shapes corresponding to the frequency components of1.6 Hz and 2.4 Hz. 

It is obvious that the both shapes belong to the second structural mode, but the one corresponding 

to the 2.4 Hz component slightly better matches the theoretical shape similar to those in Figs. 6(b) 

and 7(b); as a result, the mode shape corresponding to the frequency component of 1.6 Hz is 

identified as the second torsional mode shape of the building. 

 

 

Fig. 6 Identified mode shapes for the Factor Building in east-west direction obtained by the proposed 

method and the updated model (Skolnik et al. 2006) 
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Fig. 7 Identified mode shapes for the Factor Building in north-south direction obtained by the proposed 

method and the updated model (Skolnik et al. 2006) 
 

 

 

Fig. 8 Identified mode shapes for the Factor Building in torsional direction corresponding to 1.6 Hz and 

2.4 Hz components 
 

 

From a different point of view, if the forms of the mode shapes are well known (either 

experimentally or computationally), the proposed method can be easily applied for the validation 

of the estimated modal frequencies. For a regular building structure (i.e., the building which does 

not contain significant irregularities in structural architecture and also in mass and stiffness 

proportions) such as the one studied here, the mode shapes in two major translational and torsional 

axes conform to those theoretically expected for a cantilever column in which the jth mode shape 

in a specified direction contains 1j  nodes. This property can be used as a criterion to exclude 

the frequency components that result in the mode shapes that do not conform to the known forms, 

as it is done for the torsional frequency component of 1.6 Hz. The identified mode shapes for the 

torsional direction are presented in Fig.9and their corresponding frequencies are given in Table 2. 
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Fig. 9 Identified mode shapes for the Factor Building in torsional direction obtained by the proposed 

method and the updated model (Skolnik et al. 2006) 
 

 
Table 3 MAC values between identified mode shapes obtained by the proposed method and those 

correspondingly from the updated model (Skolnik et al. 2006) 

Mode 
 MAC (%)  

 E-W N-S Tor  

1  99.7 99.8 98.7  

2  98.6 99.1 98.5  

3  99.4 99.0 99.4  

 

 

The MAC values between the mode shapes obtained by the proposed method and those from 

the updated model are given in Table 3. It can be seen that the results are in a very good agreement 

with each other even for the first torsional mode shape which is extracted based on a less accurate 

estimated center frequency. For the second torsional mode, the MAC value between the mode 

shape extracted from the frequency component of 1.6 Hz and that from the updated model is 91.1 

% which is relatively smaller than the value of 98.5% in Table 3. This difference is directly related 

to the deviations in the mode shape corresponding to the component of 1.6 Hz (Fig. 8). 

With the results from the presented case studies dealt with the simulated and real structural 

responses, the verification of the proposed method is demonstrated. 

 

 

5. Conclusions 
 

Based on empirical mode decomposition (EMD), as the key part of Hilbert-Huang transform, a 

simple and efficient method for output-only identification of mode shapes of linear structures 
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subjected to ambient excitations was proposed. To apply the proposed method, measured structural 

responses are first analyzed by the peak picking method to provide the accurate estimates of the 

modal frequencies and after that, the estimated modal frequencies are used by the band-pass filter 

and EMD technique to estimate the modal responses, which are then processed by a proposed 

robust mean estimator to determine the ratio of the modal elements. 

The accuracy and efficacy of the proposed method was investigated in two case studies. In the 

first case, numerically simulated response data obtained from an analytical 3-story building model 

with known modal properties are analyzed. From the parametric study carried out in this case, it 

was found that: first, for a structure with non-closely-spaced modal frequencies, the estimated 

mode shapes are not significantly sensitive to the variation of the bandwidth applied in the 

band-pass filter and EMD technique for the isolation of the modal responses, and second, the 

rather accurate estimates of the modal frequencies are sufficient for the proposed method to 

provide the valid mode shapes even under high level of noise contamination. 

The low-amplitude earthquake response data recorded from the UCLA Factor Building are 

processed in the second case and the first three mode shapes of the building in east-west, 

north-south and torsional directions were extracted. In this case, the results from the proposed 

method are compared with those obtained from the existing updated model of the building. This 

comparison demonstrated the excellent correlation between the results. Also, it was found that the 

proposed method can be employed for validation of the estimated modal frequencies if the general 

forms of the mode shapes are known. Finally, it is concluded that the proposed method with its 

simplicity and remarkable accuracy offers a very efficient tool for output-only modal identification 

purposes. 
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