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Abstract.  In this paper, a simple and efficient phenomenological macroscopic one-dimensional model is 
proposed which is able to simulate main features of shape memory alloys (SMAs) particularly 
ferro-elasticity effect. The constitutive model is developed within the framework of thermodynamics of 
irreversible processes to simulate the one-dimensional behavior of SMAs under uniaxial simple 
tension-compression as well as pure torsion+/- loadings. Various functions including linear, cosine and 
exponential functions are introduced in a unified framework for the martensite transformation kinetics and 
an analytical description of constitutive equations is presented. The presented model can be used to 
reproduce primary aspects of SMAs including transformation/orientation of martensite phase, shape 
memory effect, pseudo-elasticity and in particular ferro-elasticity. Experimental results available in the open 
literature for uniaxial tension, torsion and bending tests are simulated to validate the present SMA model in 
capturing the main mechanical characteristics. Due to simplicity and accuracy, it is expected the present 
SMA model will be instrumental toward an accurate analysis of SMA components in various engineering 
structures particularly when the ferro-elasticity is obvious. 
 

Keywords:  shape memory alloys; constitutive modeling; martensitic transformation; pseudo-elasticity; 

ferro-elasticity 

 
 
1. Introduction 

 
Shape memory alloys (SMAs), as one of the most prominent functional metallic materials, are 

widely used in engineering applications due to their unique thermo-mechanical properties. SMAs 

present important recoverable inelastic deformation, as a result of the so-called martensitic phase 

transformation between a high symmetry, parent phase (austenite, A ) and a low symmetry, product 

phase (martensite, M ) (Lagoudas 2008). The austenite phase is stable at high temperatures and 

low stresses, while the martensite phase is stable at low temperatures and/or high stresses. From a 

macroscopic point of view, the martensite phase exists in two states: self-accommodated or 

twinned martensite )( tM  and oriented or detwinned martensite )( dM . The twinned martensite is 

formed by simple cooling under no external loading constraints. The martensite formed in such a 
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manner assumes a self-accommodated structure in which the combination of different orientation 

variants produces no significant macroscopic strain. In contrast, the oriented martensite is 

produced by an applied load and, consequently, the martensitic variants are preferentially oriented 

by the direction of the external force. This oriented martensite causes a macroscopic shape change 

and can be formed either from the phase transformation of austenite under the mechanical loading 

or from the orientation of twinned martensite. 

The thermo-mechanical phase transformation produces two unique effects: shape memory 

effect (SME) and pseudo-elasticity (PE) (Lagoudas 2008). These phenomena in terms of uniaxial 

stress-strain response together with their thermo-mechanical loading paths are depicted in Fig. 1. 

In the absence of stress, the phase transformation is triggered at temperatures addressed by 0

s
M ,

0

fM , 0

s
A  and 0

fA , which represent, respectively, martensite start, martensite finish, austenite 

start and austenite finish temperatures, see Fig. 1(a). For most alloys, these temperatures can be 

sorted as 0000

fssf
AAMM  . Fig. 1(b) illustrates the shape memory effect for an SMA material 

starting as austenite at a temperature 0

s
AT  . During the loading process, the applied stress 

induces the formation of detwinned martensite and an inelastic transformation strain. After 

unloading, the newly formed martensite remains stable, as does the transformation strain. Upon 

heating the material to temperatures above 0

fA , the material becomes again completely austenitic 

and the inelastic strain can be fully recovered. Moreover, cooling back to a temperature below 
0

fM  can lead to the formation of twinned martensite with no associated shape change observed. A 

similar stress-strain response as depicted in Fig. 1(b) can also be achieved by starting from 

twinned martensite, however, it is noted that the detwinning of the twinned martensite dt MM   

does not involve phase transformation and is, in fact, an inelastic deformation process of 

orientation of martensitic variants. At a temperature 0> fAT , an SMA material behaves 

pseudo-elastically (Fig. 1(c)). Applying the stress induces the transformation of austenite into 

detwinned martensite, resulting in an inelastic transformation strain. As the stress is reduced, after 

an initial elastic response the martensite formed during the loading process transforms back to the 

austenite, the inelastic strain is accordingly recovered, and the stress-strain diagram exhibits the 

characteristic hysteretic loop as shown in Fig. 1(c). 

Experimental observations of SMAs undergoing cyclic loading via thermal activation under 

constant stress or operating in the pseudo-elastic regime have shown that a significant part of the 

developed strain is not recovered on unloading and accumulates with every transformation cycle 

(Lagoudas 2008, Saleeb et al. 2013). This effect is well-known as transformation-induced 

plasticity and is attributed to the development of irrecoverable plastic strains during the 

thermo-mechanical cycling of SMAs undergoing phase transformation until saturation takes place. 

In addition to the main features of SMAs including the martensite phase 

transformation/orientation, transformation-induced plasticity, pseudo-elastic response and shape 

memory effect, these materials reproduce the so-called ferro-elasticity (FE). A schematic 

stress-strain response of the FE effect of SMAs for 0

s
AT   is shown in Fig. 2. The ferro-elasticity 

effect allows recovery of an inelastic residual strain obtained from the first tensile 

loading-unloading stage at temperatures below 0

fA  by application of a stress with opposite sign 

(i.e., compressive stress). The ferro-elasticity feature of SMAs is associated with the 

stress-induced phase transformation between detwinned martensite and twinned 
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martensite/austenite for 0

fAT  . In fact, the previously developed detwinned martensite by tensile 

stress is first transformed to twinned martensite/austenite when the compressive stress is applied 

(Panico and Brinson 2007). As the compressive load further increases, the twinned 

martensite/austenite is then transformed to detwinned martensite. 

The unique aspects of SMAs including shape memory effect, ferro-elasticity, pseudo-elasticity, 

large recovery strain and stress, high damping capacity and adaptive properties make them 

attractive candidates for use in intelligent/smart engineering structures (Lagoudas 2008, Seelecke 

and Muller 2004). SMAs can be easily fabricated into various forms such as fibers, wires, ribbons 

and thin films. In the most common applications, SMAs are used as a single material, externally 

attached or surface-mounted/embedded in a soft/stiff matrix, while electrical current is normally 

employed to induce the thermally driven transformation. The shape memory hybrid composites, 

with either surface-bonded or embedded SMA components, have proved to be unique material 

systems that provide tremendous potential for creating new paradigms for material-structural 

interactions (Lagoudas 2008, Seelecke and Muller 2004). For instance, the metallic and concrete 

matrix shape memory composites have demonstrated varying success in many fields including 

shape and position control (Daghia et al. 2010, Roh et al. 2004) and active vibration control 

(Shahria Alam et al. 2009, Youssef and Elfeki 2012, Zhang and Zhao 2007). 

 

 

 

  

 

Fig. 1 (a) Schematic of a stress-temperature phase diagram and shape memory effect and pseudo-elastic 

loading paths, (b) stress-strain diagram representing SME, (c) stress-strain curve of PE response 
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Note that polymeric matrix is difficult to apply for the slip effects due to strain differences 

between dilatation of polymer and SMA transformation. SMAs could also be good candidates for 

solid-state dampers for the oscillation mitigation of bridge stay cables and civil structures because 

of their large recoverable strain, hysteresis and reasonable fatigue-life (BenMekki and Auricchio 

2011, Casciati and Hamdaoui 2008, Carreras et al. 2011, Torra et al. 2013). 

In order to simulate and predict the main features of SMAs, numerous research studies have 

been dedicated to develop an efficient and robust mathematical model of SMAs. The proposed 

models can be generally classified into three major categories including: microscopic 

thermodynamics, micromechanics based macroscopic and phenomenological macroscopic models 

according to the scale at which the SMA mechanical behavior is described. Phenomenological 

macroscopic models (macro models) only use macroscopic quantities to describe the state of the 

system and they are usually based on phenomenological thermodynamics and curve fitting of the 

experimental data, see for example (Brinson 1993, Boyd and Lagoudas 1996, Bekker and Brinson 

1998, Bodaghi et al. 2013, Chung et al. 2007, Liang and Rogers 1990, Lagoudas et al. 1996, 

Panico and Brinson 2007, Tanaka 1986) among others. Macro models are generally more suitable 

for engineering applications due to their simplicity and computational efficiency, but they can only 

describe the global mechanical response while all microscopic details are disregarded (Lagoudas 

2008). 

In recent years, the macro constitutive modeling of SMAs has been an active research subject. 

Some research works were directed to develop three/two-dimensional (3/2-D) phenomenological 

macroscopic models in capturing the main effects of SMAs (Boyd and Lagoudas 1996, Bodaghi et 

al. 2013, Lagoudas et al. 1996, Panico and Brinson 2007). For instance, Boyd and Lagoudas (1996) 

used the volume fraction of martensite as internal variable and a transformation evolution equation 

to connect it with the transformation strain. They introduced a polynomial hardening function to 

express the transformation kinetics. Bodaghi et al. (2013) proposed a phenomenological model 

which accounts for the effect of biaxial stress states and non-proportional loading histories. The 

proposed model was able to simulate the reorientation of previously developed oriented martensite 

when the load direction changed through biaxial non-proportional loadings. It should be noted that 

3/2-D models are not widely used in engineering applications, because the developed models are 

too complicated and require definition of many parameters. Although these models can be 

simplified to be used for one-dimensional (1-D) applications such as SMA fibers, wires, ribbons 

and thin films, it is not reasonable to use 3/2-D models for 1-D applications. 

In contrast to 3/2-D models, 1-D models (Brinson 1993, Bekker and Brinson 1998, Chung et al. 

2007, Liang and Rogers 1990, Tanaka 1986) have also been developed to properly capture main 

aspects of SMAs. One advantage of these models is that parameters are engineering-based and 

simply determined by typical thermo-mechanical experiments. One of the first 1-D models for 

SMAs under uniaxial tension or compression loads was presented by Tanaka (1986). Stress, strain, 

temperature and martensite volume fraction were used as state variables. Also, phase 

transformation kinetics was expressed with an exponential function for the evolution equation of 

the martensite volume fraction during the phase transformation. Liang and Rogers (1990) 

formulated Tanaka model by using a cosine function to describe the transformation kinetics instead 

of the exponential function. Lagoudas et al. (1996) provided a unified framework for the models 

of Boyd and Lagoudas (1996), Liang and Rogers (1990) and Tanaka (1986). A major drawback of 

the models proposed in (Boyd and Lagoudas 1996, Liang and Rogers 1990, Lagoudas et al. 1996, 

Tanaka 1986) is that these models describe only the phase transformation from detwinned 

martensite to austenite and vice versa. These models were not able to reproduce the orientation 
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(detwinning) of twinned martensite that is responsible for the shape memory effect at low 

temperatures. Brinson (1993) extended Liang and Rogers model to include the effect of the 

martensite orientation by separating the martensite fraction into two parts: stress-induced 

martensite (detwinned martensite) and temperature-induced martensite (twinned martensite). 

Brinson model used cosine functions for the martensite transformation kinetics. These functions, 

under certain conditions, lead to an inadmissible martensite fraction when the temperature 

decreases at low temperature )( 0

s
MT  . After Brinson original model, Bekker and Brinson (1998) 

developed a consistent mathematical description of the martensite fraction evolution during 

athermal thermo-elastic phase transformation in an SMA induced by a general thermo-mechanical 

loading. Though the Bekker and Brinson kinetics is robust and does not permit the volume 

fractions to exceed unity, due to simplicity in Brinson original model, Chung et al. (2007) 

suggested simple modified transformation kinetics for this model and verified the proposed 

formulae numerically. 

Among 1-D models, the phenomenological models proposed by Tanaka (1986), Liang and 

Rogers (1990) and Brinson (1993) were the most popular models. Due to their simplicity, many 

researchers employed these models to predict the response of SMAs in structural engineering 

applications (Roh et al. 2004, Zhang and Zhao 2007). It should be mentioned that these models are 

not able to simulate the ferro-elasticity effect when the pre-strained SMAs undergo a compressive 

stress at temperatures below 0

fA , see Fig. 2. It is obvious that the stress in SMA devices can be 

varied from tension to compression and vice versa during thermo-mechanical loadings. Therefore, 

introducing a simple 1-D SMA model capable of simulating the ferro-elasticity effect seems to be 

helpful for use in engineering applications, especially in shape memory hybrid composites. 

 

 

 

Fig. 2 Schematic of stress-strain response of ferro-elasticity feature of SMAs for 
0

sAT   
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In the present research, a simple and efficient 1-D phenomenological macroscopic model of 

SMAs is proposed to simulate main features of SMAs including the martensite phase 

transformation/orientation, shape memory effect, pseudo-elasticity and in particular ferro-elasticity. 

The SMA constitutive model is developed within the framework of continuum thermodynamics of 

irreversible processes and a straightforward algorithm is addressed to formulate the 1-D behavior 

of SMAs under uniaxial simple tension-compression, pure torsion+/- and also thermal loadings. 

Linear, cosine and exponential functions are nominated in a unified framework to interpolate 

martensite transformation kinetics and an analytical description of the constitutive equations is 

presented. An easy procedure for specifying the kinetic and material parameters of the model is 

introduced in detail. The model is first validated by comparing the predicted results with 

experimental data reported in the open literature for uniaxial tension and torsion tests of SMA 

materials. Then, a finite element formulation is developed to simulate experimental bending tests 

of thin SMA beams under transverse loadings. Finally, the proposed model and finite element 

solution are employed to study the bending response of SMA beams under various 

thermo-mechanical loadings. 

 

 

2. Theoretical formulations 
 
In this section, a simple and efficient 1-D SMA constitutive model is developed within the 

theory of irreversible thermodynamics in the realm of small strain regime. A straightforward 

algorithm is introduced to develop analytical relationships for the 1-D thermo-mechanical behavior 

of SMAs under uniaxial tension-compression, pure torsion+/- and thermal loadings. 

 
2.1 Assumptions 
 

The total martensite fraction,  , can be expressed as the sum of stress-induced and 

temperature-induced parts 

10,10,10,  
TSTS     

   (1) 

where 
T
  represents the fraction of the material that is purely temperature-induced martensite 

with multiple variants, and 
S

  denotes the fraction of the material that has been transformed by 

the stress into a single martensitic variant. 

Assuming small strains, an additive decomposition of the total strain tensor into elastic and 

transformation parts is adapted as: 

tre
εεε     (2) 

where e
ε  denotes the elastic contribution to the total strain of SMA and tr

ε  plays the role of 

describing the strain associated to the phase transformation between austenite/twinned martensite 

and detwinned martensite. 

The transformation and detwinning of martensite variants occur mainly through a shear lattice 

distortion (Lagoudas 2008). Therefore, it is assumed that the transformation strain tensor tr
ε  is 

traceless and is a measure of strain associated to the phase transformation. When 0trε , it can 

646



 

 

 

 

 

 

A simple and efficient 1-D macroscopic model for shape memory alloys … 

 

be said that the material is in its parent phase, i.e., austenite or twinned martensite, whereas 


tr
ε  shows that the material is in its product phase, i.e., detwinned martensite, and when 


tr
ε0 , a mixture of both parent and product phases can be observed in the material. Since 

  is the amount of the strain associated with the detwinned martensitic variant, tr
ε  is related to 

the volumetric fraction S
  as 

         


Str
ε  (3) 

where  is the usual Euclidean norm. Eq. (3) shows that the transformation strain can also be 

interpreted as the mean strain of the mixture of austenite (or twinned martensite) and detwinned 

martensite phases. 

In the case of uniaxial tension and torsion loadings, the transformation strain tensor tr
ε  which 

is traceless can be expressed as 

   





















tr

tr

tr

tr







2
1

2
1

00

00

00

:Tension ε  (4a) 



















00

00

000

:Torsion

2
1

2
1

tr

trtr



ε

 

(4b) 

where tr
  and tr

  are transformation normal and shear strains, respectively. 

As mentioned before, the detwinning process results in a residual strain. If L
  is corresponded 

to the maximum transformation strain reached at the end of transformation during a uniaxial 

tension test, with aid of Eqs. (3) and (4(a)), the following relation for the parameter   can be 

obtained 

         L
 2/3  (5) 

Finally, by substituting (5) into (3) the detwinned martensite fraction can be expressed as 

    

L

tr

S



2/3

ε
  (6) 

 

2.2 Model description 
 

The main purpose of the present study is to develop 1-D SMA model for uniaxial 

tension-compression and torsion+/- loadings. The detwinned martensite fraction for these two 

cases can be obtained from (6) as 
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L

tr

S



   (7a) 

          
L

tr

S





3


 

(7b) 

Eq. (7) reveals that the stress-induced martensite fraction S
  has a similar form for uniaxial 

cases. In the following, the 1-D SMA model will be developed for the case of the uniaxial simple 

tension-compression loading. It is obvious that the formulation is valid for the uniaxial pure 

torsion case only by replacing E
etr

,,,   by G
etr

3,3,3/,3/  , respectively ( E  and G  

are extension and shear moduli, and   and   denote normal and shear stresses). 

The rate of the detwinned martensite fraction can be written from (7a) as 

          LtrtrS
 /)sgn(     (8) 

where the signum function is defined as 

        
















01

00

01

)sgn(

xif

xif

xif

x  (9) 

The model assumes the elastic strain e
  and the absolute temperature, T , as control 

variables and the volume fraction of twinned martensite T
  and the volume fraction of detwinned 

martensite S
  as internal variables. In order to establish the Helmoltz free energy of a 

polycrystalline SMA material,  , a mechanistic decomposition to three dominating contributions, 

elastic energy e , chemical energy chem  and configurational energy config , is used as 

        

configcheme    (10) 

To derive the elastic energy contribution, the polycrystalline material is assumed to be 

elastically isotropic with a homogeneous distribution of stress in austenite and martensite. 

Neglecting thermal expansion, the elastic energy term can be expressed as 

         

2

2

1
e

e E


   (11) 

where   and E  denote the material density and the isotropic elasticity modulus, which are 

assumed to be the same for all phases. 

Following the general scheme summarized by Patoor et al. (2006), the rule of mixtures is used 

to determine the free energy contribution chem  as 

               

MAchem   )1(  (12) 

where A  and M  are specific free energies of austenite and martensite phases at stress-free 
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conditions, respectively. M  is considered to be the same for both detwinned and twinned 

martensite. Adopting a standard form (e.g., Lexcellent et al. 2006, Panico and Brinson 2007), the 

specific free energies can be written as 

         

  MAiTTTTTcTsu iiii ,,)/ln(
0000

  (13) 

where ),( MAic i   indicates the specific heat at constant volume for austenite and martensite 

phases. Also, iu
0

 and ),(
0

MAisi   denote the specific internal energy and entropy of the 

corresponding phase at the equilibrium temperature 0
T . It is a critical temperature at which the 

free energies of austenite and martensite phases are equal i.e., )()(
00

TT MA    (Sedlák et al. 

2012). This results in 
000

/ suT   where 
MA uuu 000   and 

MA sss 000  . By 

substituting (13) into (12), the chemical energy can be rewritten as 

 

   )/ln()()/ln(
00000000

TTTTTcTTsTTTTTcTsu AAAchem    (14) 

where MA ccc  . It is known that 
0

sc   (Sedlák et al. 2012). Due to this fact, the last 

term of (14) can be neglected. 

The configurational energy representing interactions that appear between the phases typically 

the incompatibilities between deformations, is assumed to depend only on S
  according to the 

following quadratic form 

          

2

2

1
SS

config H  

 

 (15) 

where S
H  is a material parameter which controls the initial hardening during phase 

transformation. 

Finally, by substituting relations (11), (14) and (15) into (10), the Helmoltz free energy of the 

three phase system can be written as 

   

  2

0000

0000

2

2

1
)/ln(

)(
2

1
),,,(

SS

A

S

T

AA

eTSe

HTTTTTcTTs

TTsTsuET












 (16) 

It should be noted that in the energy contribution deriving from S
 , the positive part function 

  is introduced and defined as 2/)( xxx  . This assumption allows the critical stress for 

nucleation of detwinned martensite to plateau at lower temperatures, as experimentally observed 

(Lagoudas 2008). 

According to the second law of thermodynamics, the mechanical dissipation inequality by 

considering the positiveness of the thermal dissipation is obtained as 

        
0 TsD

mech
   (17) 

where s  denotes the specific entropy. Also, the superposed dot indicates the derivative of a 
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quantity with respect to time. 

Introducing Eq. (2) into the inequality (17) together with the definition of free energy in (16), 

the mechanical dissipation inequality can be rewritten as 

  

0)sgn( 
















































T

T

S

S

trLe

e

mech
T

T
sD 

















   (18) 

This inequality must be satisfied for any T  and e
  which yields to the following state 

equations 

     

)/ln()(
0

0

0

00
TTc

TT

TT
ss

T
s

E

A

ST

A

e

e



























 (19) 

On the basis of the definition of free energy in (16), the dissipation inequality (18) can be now 

expressed as 

        
0/ 

TTSSLmech
XXD    (20) 

where the thermo-dynamical dissipative forces S
X  and T

X  are defined as 

              

)(

)sgn(

0

0

0

0

TT
s

X

H
TT

s
X

L

T

S

L

S

L

trS

























 (21) 

For the internal variables S
  and T

 , the following limit functions are considered: 

     

)()sgn( /

S

rf

SSSS
YXXF   (22a) 

     ),()sgn( / 
T

rf

TTTT
YXXF 

 

(22b) 

where )(/

S

rf

S
Y   and ),(/ 

T

rf

T
Y  are functions that govern the kinetics of forward/reverse phase 

transformations. The model is finally completed by the classical Kuhn-Tucker and consistency 

conditions, respectively, as follows 
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 (23a) 
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(23b) 

Conditions (23) express the physical requirements, elaborated upon above, that the stress state 

stays on the yield surface as long as martensitic transformation takes place ),(0 TSiF
i

  

(Simo and Hughes 1998). 

The kinetics of the stress-induced forward/reverse phase transformation can be expressed in the 

general form as 

          


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

0)()(

0)()(
)(

1100

1100/

SS

rr

SS

rr

S

SS

ff

SS

ff

S

S

rf

S
forNYNY

forNYNY
Y









 (24) 

where )(/

0 S

rfN   and )(/

1 S

rfN   refer to interpolation/shape functions. Also rf

S
Y /

0
 and rf

S
Y /

1
 are, 

respectively, the values of rf

S
Y /  at 0

S
  and 1

S
 , related to the beginning and end of 

transformation and describe the kinetics of the stress-induced forward/reverse transformation. 

Similar to all other interpolants, the shape functions should satisfy the condition 

      







 1,0,

0

1
)(/ jifor

jiif

jiif
N

Sj

rf

i
  (25) 

where 0
0


S
  and 1

1


S
 . In addition, the interpolation functions satisfy the property, known as 

the partition of unity 

           
1/

1

/

0
 rfrf NN  (26) 

In the present work, a variety of well-known functions including: linear, cosine and exponential 

functions are introduced to interpolate stress-induced transformation/orientation kinetics )( / rf

S
Y . 

The interpolation functions for these cases can be expressed as 

for the forward transformation: 
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 (27) 

for the reverse transformation: 
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 (28) 

It should be mentioned that the exponential formulae become singular at 0
S

  and 1. To 

overcome this defect, the quantities n

S
e1  and n

S
e  are used for the complete 

martensitic and austenitic states, respectively. The unknown positive parameter n  can be 

determined according to a digit approximated for zero. For instance, 7n  is used in the present 

study to approximate zero with 001.0 . 

In order to describe temperature-induced forward/reverse phase transformation kinetics )( / rf

T
Y , 

the following linear approximation can be adopted (Panico and Brinson 2007) 
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 (29) 

where rfc /  and r

T
Y

0
 are coefficients that describe the kinetics of the forward/reverse 

transformation. 

 

2.3 Parameter determination 
      

In this section, a simple procedure for identifying the parameters of the model is described in 

detail.  

The material parameters 
000

,,,, sTYcc r

T

rf   and kinetic parameters 
S

r

S

r

S

f

S

f

S
HYYYY ,,,,

1010
 are 

related to the common quantities that characterize a uniaxial phase kinetics diagram. For instance, 

four characteristic temperatures can be written in terms of 00
,,, TYcc r

T

rf  and 0
s  using 

conditions 
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 (30) 

It should be mentioned that, in reality, the forward/reverse phase transformations do not begin 

exactly at 0
T , but, in the absence of stress, at a temperature 00 /

ss
AM , which is lower/higher than 
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0
T  (Patoor et al. 2006). As it can be found from (30), the model predicts austenite start 

temperature above 0
T  ).,.(

0

0 TAei
s
  which is consistent with the reality. On the other hand, the 

model predicts that forward phase transformation begins exactly at 0
T  ).,.(

0

0 TMei
s
  which is in 

contrast with reality 
0

0 TM
s
 . A similar contradiction was also observed by Panico and Brinson 

(2007). Since the main focus of the study is to develop a simple and efficient constitutive SMA 

model, this contradiction is ignored. 

Moreover, in the case of an applied stress,  , one obtains 

          
0
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s
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s
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L

ff

L

ss












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 (31) 

From Eq. (31), the conventional slope of the transformation lines to austenite in the uniaxial 

phase kinetics diagram can be easily obtained as 

        
LA

sC  /
0

  (32) 

By knowing the parameter 
0

s  through entropic consideration and the mass density 
 
and 

the parameter L
 , the quantity 

A
C  is determined by Eq. (32). Moreover, Eq. (30) allows 

determination of the parameters rf cc , , r

T
Y

0
 and 0

T  as a function of the SMA characteristic 

temperatures and entropy 
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The kinetic parameters r

S

f

S

f

S
YYY

010
,,  and r

S
Y

1
 can be defined from the following conditions: 
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 (34) 

where 0

s
  is the minimum stress required for the initiation of martensite orientation at 

temperatures below 0

s
M ; and also 0

f  is the high stress level which will result in complete 

orientation of martensite. Also, the parameter ~  is equal to 
LS

H  /  and can be identified as a 

relative stress. 

In a similar way, it is possible to derive analytical relations for the critical stresses at the 

beginning and end of the forward/reverse phase transformation as functions of temperature. To this 

end, Eq. (34) together with the following conditions can be employed which results in 
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 (35) 

where M

s
  and M

f
  denote the stress levels at which the martensite transformation initiates and 

completes, respectively. Similarly, as the SMA is unloaded, the stress levels at which the material 

initiates and completes its reverse transformation to austenite are determined by A

s
  and A

f , 

respectively. It is worth noting that the present model yields the same line slope for the forward 

and reverse transformation i.e. CsCC
LMA
  /

0
. 

By focusing on the presented relations in this section, it can be found that the parameters 
r

S

f

S

f

S

r

T

rf YYYTYcc
01000

,,,,,,  and r

S
Y

1
 defined by Eqs. (33) and (34) can be described as functions of 

four characteristic temperatures and the quantities  ~,,, 00

fsC  and L
 . These five material 

quantities are calibrated to match the uniaxial stress-strain response for simple 

tension-compression and/or pure torsion+/- experimental tests. Finally, it can be concluded that the 

present SMA model is operated by a set of 12 model inputs consisting of 

 ,,,~,,,,,,, 000000 ECAAMM
fsfssf  and L

 . 

 

2.4 Time-discrete frame 
 
In this section, the proposed constitutive model is used to update twinned and detwinned 

martensite fractions under strain, stress or temperature control conditions. It is interesting to note 

that the evolution of detwinned martensite from Eq. (22(a)) which is coupled with the 

transformation strain through Eq. (8) is independent of the evolution of twinned martensite (22b). 

Assuming the state ),,,( n

tr

n

S

n

S

n   is known at time nt , the actual total strain 1n  and 

temperature 1nT  at 1nt , the updated values ),,( 111  n

tr

n

S

n   can be computed from the 

following time-discrete system 
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along with the requirements 

0)(,0)(,0 1111   n

S

n

S

n

S

n

S

n

S

n

S
FororF   (37) 

It should be mentioned that an implicit backward-Euler scheme is used to integrate the flow 

rule. The solution of the discrete model is performed by using an elastic-predictor 

inelastic-corrector return map procedure (Simo and Hughes 1998). In the first step, an elastic trial 
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stress is computed by assuming that the material behaves elastically during the time step 

))(( 1 n

tr

ntrial E    . Then, based on this elastic prediction the limit function trial

S
F  is computed. 

If the limit function is negative, then the material response is elastic and the trial stress )( trial  is 

taken as the updated stress )( 1n . If the limit function has a positive value, then an inelastic 

correction for the material response needs to be computed. The solution of governing equation (36) 

directly depends on the nature of stress-induced transformation kinetics )(/

S

rf

S
Y  . When the 

stress-induced phase transformation kinetics is interpolated by the cosine or exponential function 

(27) and (28), due to the non-linear nature of cosine and exponential functions, an iterative strategy 

such as Newton-Raphson scheme (Simo and Hughes 1998) should be utilized to evaluate the value 

of 1n

S
 . However, when martensite transformation kinetics is linearly interpolated using Eqs. (27) 

and (28), it is possible to obtain an exact value for 1n

S
  through solving linear system of 

equations. It should be mentioned that for the case of 0
tr
 , which refers to the absence of 

detwinned martensite, it is not possible to produce martensite phase by applying 

thermo-mechanical loads. In this case, )sgn(
tr
  can be replaced by )sgn(  which allows 

determination of the governing equations for the martensite nucleation process. 

 

2.5 Twinned martensite evolution 
 

After and specifying 1n  and 1n

S
  from the previous section, the evolution of the twinned 

martensitic volume fraction, 1n

T
 , can be determined by applying the return mapping algorithm on 

the temperature-induced phase transformation (22b) constrained by the Kuhn-Tucker and 

consistency conditions (23). The algorithm consists in capturing a trial state for twinned martensite 

volume fraction )( n

TT
   and in verifying the admissibility of such a state through the value of 

the limit function on the trial state, i.e., ),( 1 n

T

n

ST
F   . If the trial state is admissible 

)0),(( 1  n

T

n

ST
F   then twinned martensite does not evolve and the twinned martensite volume 

fraction n

T
  is taken as the updated value )( 1n

T
 . If the trial state is non-admissible 

)0),(( 1  n

T

n

ST
F  , temperature-induced forward/reverse phase transformation takes place and a 

new value of 
T
  can be computed by applying consistency conditions (23b) to (22b) and utilizing 

Eq. (33) as follows 

     00
00




 Twith
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It is useful to note that in many engineering applications, pure thermal loading normally occurs 

in the constant stress. Due to this fact, Eq. (38(b)) can be reduced to 
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
  (39) 

In this especial case, the rate of twinned martensite is decoupled from system of Eq. (36) and 

can be directly computed from Eqs. (38a) and (39). Thus, after Eq. (36) is solved and the new 

value of S
  is computed, T

  can be updated through the following conditions 
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It is noted that the last of Eq. (40) constrains the total martensite volume fraction to be always 

less than unity. Furthermore, the relation between the rates of S
  and T

  allows the model to 

simulate creation of detwinned martensite at the expense of twinned martensite. 

 

 

3. Numerical simulations 
 

The present section deals with several uniaxial tension, torsion and bending tests to show the 

model capability of reproducing main effects of the SMAs such as martensitic phase 

transformation, shape memory effect, pseudo-elasticity and ferro-elasticity. In particular, Section 

3.1 presents some qualitative comparison studies between experimental results and present 

simulations for uniaxial tension and torsion tests performed in different temperatures. In Section 

3.2, the results for bending tests of SMA beams with different thermo-mechanical loading paths 

are presented and possible comparisons with available experiments are performed. In all the 

simulations discussed in this section, the SMA material is assumed to be initially in twinned 

martensite and austenite phases for 0

s
MT   and 0

s
MT  , respectively. 

 

3.1 Uniaxial tests 
 

In this section, the model predictions for uniaxial tension and torsion tests are compared with 

experiments available in the open literature (Šittner et al. 2009, Thamburaja and Anand 2002). As 

the first comparison study, the simulation of uniaxial tension test at various constant temperatures 

of an NiTi  wire specimen is performed and compared with experimental data in Fig. 3. Linear, 

cosine and exponential interpolation functions are used to predict SMA response. For comparison 

with experiments, datasets from an extensive experimental database available at Roundrobin SMA 

modeling website (Šittner et al. 2009) were adapted. Transformation temperatures, determined by 

differential scanning calorimetric techniques, were reported as 

KAKMKM ssf 256,251,249 000   and KA
f

2600   (Šittner et al. 2009). In order to achieve 

the comparison study, the material parameters defined in the present model (i.e.,  ~,,, 00

fsC  and 

L
 ) should be identified. Therefore, the material parameters are calibrated to match the uniaxial 

stress-strain response for simple tension test as illustrated in Fig. 3. The extracted quantities are 

listed in Table 1 for case I. It can be found from Fig. 3 that the linear, cosine and exponential 

approximations yield to maximum, intermediate and minimum difference with respect to 

experiment data in the forward phase transformation. However, it is seen that all interpolations 
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generally result in a similar response in the reverse phase transformation. Fig. 3 also shows that the 

present model with the aid of the exponential interpolation function reasonably captures changes 

of the behavior from martensite transformation at low temperatures )253( K  to pseudo-elastic at 

higher temperatures )333( K . Therefore, unless otherwise stated, the exponential form is used to 

govern the kinetics of stress-induced phase transformation to compute the next results. 

To further examine predictive capabilities of the presented model, the results of simple tension 

and pure torsion experiments with a thin-walled tubular specimen of NiTi  reported by 

Thamburaja and Anand (2002) are employed and depicted in Fig. 4. The transformation 

temperatures were reported as KAKMKM ssf 3.260,3.251,213 000   and KA
f

5.2680   

(Thamburaja and Anand 2002). The specimens were tested at room temperature 

)5.29298( 0 KAKT f   under simple tension and pure torsion loadings. Similar to the 

previous example, the material parameters are identified using the experimental data as depicted in 

Fig. 4 which are listed in Table 1 for the case II. Fig. 4 shows the comparison between predictions 

of the proposed model and experimental data for tension and torsion tests. This figure reveals that 

the present model is able to accurately simulate the main characteristics of both uniaxial tension 

and torsion tests. A good qualitative agreement is obtained with the same parameters for both 

tension and torsion responses. It should be noted that the experiments exhibit some residual strains 

after complete unloading of the specimen. This is most probably due to plastic deformation of the 

austenite and some stabilized martensite (Saleeb et al. 2013), effects of which are not taken into 

account in the present constitutive model and consequently are not predicted by the model. 

 

 
             (a) (b) 

 
             (c) (d) 

Fig. 3 Model predictions compared to the experimental data (Šittner et al. 2009) for simple tension tests in 

different temperatures 
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Table 1 Material parameters used in the numerical tests 

 
Material parameters 

Case E
a
 

b
   ~ a

 
0

s a
 

0

f a
 C c

 L  

I 40000 6500 0.33 1 240 380 5 0.06 

II 50000
 

6500 0.33 600
 

157.53
 

501.04
 

3
 

0.1308 

III
 

60000 8000 0.33 80 72 452.5 8.5 0.075 

a
Unit: MPa  

b
Unit: 3/ mkg  

c
Unit: KMPa /  

 

 

 
(a) (b) 

Fig. 4 Comparison between model predictions and experimental data (Thamburaja and Anand 2002): (a) 

simple tension test and (b) pure torsion test 
 

 

 

Moreover, experimental results reveal that the martensitic phase transformation in SMAs is 

associated with generation or absorption of latent heat in forward and reverse transformations. The 

self-heating and self-cooling due to latent heat of phase transformation and also heat transfer due 

to external temperatures affect the position and shape of the hysteresis cycle (Mirzaeifar et al. 

2011, Torra et al. 2013). Since the main focus of the presented model is on the primary effects of 

SMAs, the secondary effects such as permanent inelasticity and self-heating/cooling and heat 

transfer of the SMA materials could be considered to improve the present model. The reader is 

referred to (Mirzaeifar et al. 2011, Saleeb et al. 2013, Torra et al. 2013) and references therein for 

examples of advancements in modeling of these mechanisms. 
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Fig. 5 Model prediction compared to the experimental data (Flor et al. 2006) for simple tension tests in 

different temperatures 

 
 
3.2 Bending tests 
 

In this section, results obtained from the present model for bending tests of NiTi  cantilever 

beams under different thermo-mechanical loading paths are demonstrated and possible 

comparisons with experiments reported in Flor et al. (2006) are presented. Four characteristic 

transformation temperatures were reported as KAKMKM ssf 348,323,297 000   and 

KAf 3550   (Flor et al. 2006). The material parameters are identified by means of experimental 

results reported by Flor et al. (2006) for uniaxial tensile tests at three different temperatures 319, 

338 and 378 K, as shown in Fig. 5. This figure also shows the model predictions for these tests. 

The material properties are tabulated in Table 1 for case III. In order to simulate bending tests of 

thin NiTi  beams, a finite element solution is developed by computer programming with 

MATLAB
®
. Details of the finite element formulation are given in Appendix. The SMA beam with 

60 mm length has a circular cross section with diameter of 1 mm. It has clamped boundary 

conditions at one end while the other end is free. 

For the first structural simulation, the NiTi  cantilever beam experiences an upward point load 

with the maximum magnitude of F at the free end. Figs. 6(a) and 6(b) illustrate the simulated 

load-tip deflection response of the cantilever beam at 323T and K378 , respectively. 

Experimental data reported by Flor et al. (2006) are also included in Fig. 6. A good qualitative 

correlation between the experimental data and prediction of the proposed model can be observed. 

It can also be seen that the critical transformation stresses increase with the temperature, as 

expected experimentally and theoretically (see Eq. (35)). The counterparts of Figs. 6(a) and 6(b) 

for the NiTi  cantilever beam under symmetrical bending cycles are depicted in Figs. 7(a) and 

7(b), respectively. The beam free end is first loaded upward and then unloaded. Next, the structure 

undergoes a loading-unloading step in the downward direction. Fig. 7 shows that the model is able 

to reproduce the characteristic hysteresis loops of SMAs in the tension-compression path at both 

low and high temperatures. Furthermore, the simulation results presented in Figs. 7(a) and 7(b) 

demonstrate the ability of the model to reproduce ferro-elasticity and pseudo-elasticity at low and 

high temperatures. Finally, it should be mentioned that, 1-D SMA components in many structural 

engineering applications experience tensile and compressive cycles, see for instance Daghia et al. 

(2010). Therefore, the modeling of ferro-elasticity effect of low-temperature SMAs under 

tension-compression loadings is essential since it is the single mechanism of deformation. 
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(a) (b) 

Fig. 6 Model prediction compared to the experimental data (Flor et al. 2006) for bending tests at (a) 323 

and (b) 378 K 
 

 

 
(a) (b) 

Fig. 7 Model prediction for the NiTi cantilever beam under symmetrical bending cycles at (a) 323 and (b) 

378 K 
 

 

In order to test the model reproduction of the shape memory effect, bending response of the 

NiTi  cantilever beam under thermo-mechanical loadings is studied. Fig. 8 shows the result of this 

simulation in the wTF   space and thermo-mechanical loadings as A-B-C-B path. At low 

temperature of K323 , the beam free end is loaded up to the maximum force of N3.0 . As it can 

be seen in Fig. 8, the material initially in austenite phase transforms to detwinned martensite 

affecting slope of wF  . In the next stage, maintaining the tip point load, the NiTi  beam is 

heated up to )3(358 0 KAK f  . By heating, the inelastic strain disappears due to temperature 

driven reverse phase transformation leading to deflection recovery. Note that an elastic 

deformation remains in the beam due to the presence of tip point load. Finally, cooling the SMA 
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beam, while the load is still applied, results in the direct formation of detwinned martensite 

producing inelastic strain and deformation. It is interesting to note that the cooling process returns 

tip deflection to original point prior to heating. 

 

 

4. Conclusions 
 

In this research work, a simple and efficient 1-D constitutive model of shape memory alloys 

was proposed with capability of the ferro-elastic simulation. The SMA model was established 

within the framework of thermodynamics of irreversible processes in the realm of small strain 

regime. The model nominated the volume fractions of twined and detwinned martensite as internal 

variables. The Helmholtz free energy function was constructed and thermodynamic driving forces 

of internal variables were obtained from the dissipative inequality. Linear, cosine and exponential 

functions were introduced in a unified framework to interpolate the martensite transformation 

kinetics and the analytical description of the constitutive equations was presented. Introducing a 

simple procedure, the material and kinetic parameters defined in the present model were expressed 

in terms of four characteristic temperatures and five quantities that calibrated to match the uniaxial 

stress-strain response for simple tension-compression and/or pure torsion+/ experimental tests. A 

qualitative comparison study was first carried out between the results of the present simulations 

using different interpolation functions and experimental data available in the open literature for 

simple tension and pure torsion tests. The simulations revealed that the use of exponential 

interpolation function for the martensite transformation kinetics leads to an accurate response in 

comparison with experiments. Then, a finite element formulation was established to simulate 

experimental bending tests of thin SMA cantilever beams. Finally, the developed SMA model and 

finite element solution were implemented to study bending response of SMA cantilever beams 

under various thermo-mechanical loadings accompanied with martensitic phase transformation, 

shape memory effect, pseudo-elasticity and in particular ferro-elasticity. Due to simplicity and 

accuracy of the presented model, it is expected that the model to be used to predict 

one-dimensional behavior of SMA components in various structural engineering applications 

particularly when the ferro-elasticity is obvious. 

 

 

 

Fig. 8 Model prediction for the NiTi cantilever beam under thermo-mechanical loadings in F-T-w space 
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Appendix: Modeling of SMA beams under bending tests 
 

A finite element formulation is developed here to simulate bending response of thin SMA 

beams under various thermo-mechanical lodgings. Cartesian coordinate system (x, z) is located on 

the mid-plane of beam where x is the beam axial direction, whereas z denotes the upward 

transverse direction. The displacement field of the SMA beam is assumed based on the 

Euler-Bernoulli beam theory as 

        
)(),(

)()(),(

xwzxw

xwzxuzxu




 (A.1) 

where u  and w  are displacements of the mid-surface of the beam along the x  and z  

directions, respectively. Also, the prime on a variable indicates its derivative with respect to x . 

Using Eq. (A.1), the axial strain can be expressed as 

        wzu   (A.2) 

In order to derive the governing equations of equilibrium for the SMA beam, the principle of 

minimum total potential energy is utilized as 

        0 WU   (A.3) 

where U  and W  are the virtual strain energy and applied external work, respectively. Using Eq. 

(36) for stress, U  can be written as 

    

 
V

trtr

T

V

T

V

T dVEdVEdVU )(
0

  (A.4) 

where V  denotes the SMA element volume and 0tr
  is the initial martensitic residual strain 

along the x direction (pre-strain) in the SMA element. 

The virtual external work done by axial (
21

, PP ) and transverse shear ( 21
,VV ) forces and 

bending moment ),(
21

MM  on the first and end nodes of the element can be written as 

     

221122112211
 MMwVwVuPuPW 

 

(A.5) 

where 11 ,wu  and 22 ,wu  are axial and transverse displacements of the first and the end nodes of 

the element whereas parameter   refers to w . 

The axial displacement )(xu  and transverse deflection )(xw  are approximated as 

         
 

 
 Twuwu

NNNN

NN

xwxu

222111

4321

21

00

0000

)(;)(









u

N

N

uNNu

 (A.6) 

where u  is the nodal variables vector while )2,1( iN
i  and )4..1( iN

i
 are the linear 

Lagrange and Hermite cubic interpolation functions defined as: 
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 (A.7) 

The strain field of the beam element can also be expressed in terms of mechanical nodal variables 

as 

          
NNB

Bu





z


 (A.8) 

By substituting the strain field (A.8) into the strain energy (A.4) and subsequent results into the 

principle of minimum total potential energy (A.3), the governing equations of equilibrium can be 

derived as 

          FFKu 
tr  (A.9) 

where 

            

 T
V

trtr

T

tr

V

T

MVPMVP

dVE

dVE

222111

0
)(











F

BF

BBK

  (A.10) 

Note that the transformation strain tr
  is variable through the SMA element domain in both x 

and z directions. However, it is assumed that tr  to be constant along the SMA element length while 

the Gauss-Legendre numerical integration rule is utilized to evaluate the through-the-thickness 

integral consists of tr . 

Finally, Eq. (A.9) is utilized to generate global finite element vectors and matrices by assembly 

and application of boundary conditions which leads to 

            FFuK  tr  (A.11) 

Eq. (A.11) is an algebraic equation in terms of mechanical nodal variables and nodal 

transformation strain which are distributed through the thickness of each SMA element. Theses 

inelastic nodal variables should be computed using SMA constitutive equations described in Section 

2.4 in framework of an elastic-predictor inelastic-corrector return map procedure, see Simo and 

Hughes (1998) for more details. 

The simulation of bending tests of SMA beams presented in Section 3.2 is performed by 

assuming 20 elements in the axial direction and implementing 7 through-the-thickness Gauss points 

per element to obtain the converged results up to two significant digits. Furthermore, it is assumed 

that the SMA temperature is uniformly raised by ignoring self-heating/cooling due to latent heat of 

phase transformation and also heat transfer due to external temperatures. 
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