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Abstract.    Lamb waves have been a promising candidate for quantitative damage identification for various 
engineering structures, taking advantage of their superb capabilities of traveling for long distances with fast 
propagation and low attenuation. However, the application of Lamb waves in damage identification so far 
has been hampered by the fact that the characteristic signals associated with defects are generally weaker 
compared with those arising from boundary reflections, mode conversions and environmental noises, 
making it a tough task to achieve satisfactory damage identification from the time series. With awareness of 
this challenge, this paper proposes a time reversal-based technique to enhance the strength of 
damage-scattered signals, which has been previously applied to bulk wave-based damage detection 
successfully. The investigation includes (i) an analysis of Lamb wave propagation in a plate, generated by 
PZT patches mounted on the structure; (ii) an introduction of the time reversal theory dedicated for 
waveform reconstruction with a narrow-band input; (iii) a process of enhancing damage-scattered signals 
based on time reversal focalization; and (iv) the experimental investigation of the proposed approach to 
enhance the damage identification on a composite plate. The results have demonstrated that signals scattered 
by delamination in the composite plate can be enhanced remarkably with the assistance of the proposed 
process, benefiting from which the damage in the plate is identified with ease and high precision. 
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1. Introduction 
 

Composite materials have been increasingly used in many engineering structures, including 
aircraft, automobiles and ships, thanks to their high strength-to-weight and stiffness-to-weight 
ratios. Monitoring the intergrity and reliability of composite structures is thereofore of great 
significance. However, damage in composite structures can be very complicated, multiform, and 
usually invisible, posing a challenge on damage analysis and identification. Without periodic 
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assessment and maintenance, the damage could potentially lead to catastrophic failure of the 
structure. To detect damage in composite structures, traditional nondestructive testing (NDT) 
methods have apparent limitations due to their intrinsic natures of high cost, time consumption, 
complicated manipulation, and point-by-point measurement (which makes it difficult in 
monitoring structures of large dimensions). On the other hand, Lamb wave-based damage 
detection techniques provide a promising solution to damage identification in composites with 
their attractive features of cost-effectiveness, quick investigation, high sensitivity to damage, ease 
of manipulation, and the ability to monitor structures of large areas (Yuan et al. 2003, Giurgiutiu 
2000, Boller 2000).   

As one of the most effective damage detection techniques, Lamb wave-based active diagnosis 
approach is attracting increasing attention of researchers and engineers. However, the prevalence 
of such an approach has been impeded by the complexity of the analysis and interpretation of 
Lamb wave modes due to their dispersive and multimodal natures, as well as the low energy of 
characteristic signals associated with defects. Allowing for this, most research efforts have been 
dedicated to extracting damage-scattered signals by comparing monitored signals with baseline 
data. Nevertheless, such a process may introduce unsolicited errors and suffer from low 
signal-to-noise radios (SNR) of the signals of interest, because the signals containing damage 
information are usually much weaker than the rest. 

With awareness of those drawbacks, and in an effort to enhance the energetic strength of 
characteristic signals pertinent to defects, this paper proposes a time reversal-based technique, 
which has been investigated and implemented in a number of areas, including ultrasonic imaging 
(Draeger et al. 1997, Ing and Fink 1998), underwater acoustic imaging, NDT (Bardos and Fink 
2002, Fink 1999, Jeong 2009), and wireless communications (Song et al. 2006). The time reversal 
technique has been applied to compensate for the dispersion of Lamb waves, and improve the SNR 
of captured signals (Ing and Fink 1998, Bardos and Fink 2002, Fink 1999, Gangadharan et al. 
2009, Jeong 2009, Ratneshwar and Ryan 2009, Zhang et al. 2010, Wang et al. 2004, Fink and 
Lewiner 2000), with concentrations on the reconstruction or refocusing of excitation signals. 
Although it has been employed successfully in a number of ultrasonic wave based detection 
methods (Bardos and Fink 2002, Fink 1999), reports of applying time reversal to improve the 
performance of defect-scattered Lamb wave signals are not common, largely due to the fact that 
the acquisition of focalized scattered signals can become very challenging, thanks to the 
complicated characteristics of Lamb waves. In recognition of such a dilemma, the proposed 
method in this paper aims to resolve this problem by enhancing the recognizability of damage 
scattered Lamb waves, and improve the practicality of baseline-dependent damage detection 
methods.  

In this study, a time reversal-based signal enhancing method is presented to strengthen the 
damage-scattered waves, hence to improve identification results, which is organized as follows: (i) 
an analysis of the propagation of Lamb waves generated by PZT patches mounted on a plate is 
described in Section 2; (ii) in Section 3, a signal amplification method based on the time reversal 
theory is investigated to focus and enhance the scattered signals, and a damage imaging approach 
is also addressed; and (iii) experimental investigations are presented in Section 4 to demonstrate 
the validity of the proposed method. 

 
 

2. Time reversal process of lamb waves using PZT arrays 
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2.1 Lamb waves in a plate 
 
Lamb waves are a kind of elastic waves propagating in plate- or shell-like structures. Unlike 

bulk waves, the use of Lamb waves is complicated due to their dispersive and multimodal features 
(Ing and Fink 1998). Theoretically, these two features can be investigated by solving the 
Rayleigh–Lamb equations defined by the symmetrical and anti-symmetrical modes on an infinite 
plate with a thickness denoted by 2h (Ing and Fink 1998) 

          0coshsinh4sinhcosh 2222  shqhqskshqhsk           (1a) 

          0sinhcosh4coshsinh 2222  shqhqskshqhsk           (1b) 

where 222
lkkq   and 222

tkks  . Furthermore, k denotes the wave number, and kl and kt 
are the wave numbers for the longitudinal and shear modes, respectively. The dispersion curves 
can be determined by solving Eqs. (1(a)) and (l(b)), and expressed in terms of the 
frequency-thickness product versus the group velocity Cg, which is defined as 

dk

d
Cg


                                    (2) 

where ω denotes the angular frequency. For a plate with a constant thickness, the dispersion curve 
can be represented as a function of the frequency. The dispersive nature of Lamb waves causes the 
different frequency components of Lamb waves to travel in the plate at different speeds, thus 
altering the shape of the wave packet. It should be noted that multiple wave modes can be 
extracted from Eq. (1). The symmetric modes are designated S0, S1, S2, etc., while the 
antisymmetric are designated A0, A1, A2, etc. 

The exact solution to Lamb wave propagation can be quite complex. Consider a homogeneous, 
isotropic elastic plate, as shown in Fig. 1, on which wo PZT patches are attached with one serving 
as an actuator (P1) and the other as a sensor (P2). The response voltage at P2 can be represented as 

         
2 2 2P P P

ˆ, ,V r K E r                           (3) 

where r, 
2PV , 

2PK  and 
2PÊ  are the wave propagation distance from the center of P1 to that of 

P2, the response voltage at P2, the electro-mechanical efficiency constant and the surface strain at 
the center of P2 with respect to the angular frequency ω, respectively. Here, the surface strain was 
assumed uniform, which, at P2, can be rewritten as 

       
2 1 12P P

ˆ ˆ, ,E r I K G r                         (4) 

where Î ，
1PK and G12 are the input voltage at P1, the electro-mechanical efficiency constant of P1 

with respect to angular frequency ω, and the frequency response function, respectively. The 
frequency response function G12 is complicated, and is usually analyzed with Green function 
(Wang et al. 2004, Park et al. 2009). Xu and Giurgiutiu (2007) and Yu et al. (2010) have 
developed a theoretical model for the analysis of PZT active sensor related to Lamb wave 
excitation and transmission. To make the presentation straightforward and easy to understand, G12 
is simplified based on this theoretical model, and can be written as (Xu and Giurgiutiu 2007) 
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(1) Time-reverse the collected response signals VPi which was presented in Eqs. (3) and (4). 
Note that the time reversal operation on the response signal at Pi is equivalent to taking the 
complex conjugate in the frequency domain:  

   * * *
P P P
ˆ ˆ, ,i i i i iV r K E r                            (6) 

where the asterisk denotes the complex conjugate, ri，VPi，KPi and P
ˆ

iE  are the wave propagation 

distance from the center of PA to that of Pi, the response voltage at Pi, the electro-mechanical 
efficiency constant and the surface strain at the center of Pi with respect to angular frequency ω, 
respectively. 

(2) Re-emit the time-reversed signal *ˆ
PiV  at Pi and collect the response at PA. The response can 

be represented in a similar fashion as in Eq. (3) 

                        
A AA

P PP
ˆ ˆ,V r K E                            (7) 

where                  

       
A

*ˆ ˆ , ,P Pi i Pi Ai i
i

E V r K G r                      (8) 

GAi is the frequency response function of Pi with a similar form as in Eq. (5). Combining Eqs. 
(4), (6) and (8), Eq. (7) can be rewritten as (Wang et al. 2004, Park et al. 2009, Yu et al. 2010) 

               
A AA

* * *
P P P PP

ˆ ˆ , ,
i i Ai i Ai i

i

V I K K K K G r G r                 (9) 

Performing an inverse Fourier transform, the refocused input signal VA at PA is  

           
A

* *
P

1ˆ ˆ , , e
2

j t
Ai Ai Ai i Ai i

i

V t I K K G r G r d     


  


         (10) 

where KAi denotes the product of 
APK  and KPi. When only the A0 and S0 modes exist in the 

structure, 

   

          
          

      

0 0 0 0

0 0 0 0

0 0

* *

*2 2

**

, ,

, , , ,

, , , ,

, ,

A i S i A i S i

A S i

A S i

Ai i Ai i

jk r jk r jk r jk rAi Ai Ai Ai
A i S i A i S i

j k k rAi Ai Ai Ai
A i S i A i S i

j k k rAi Ai
A i S i

G r G r

a r e a r e a r e a r e

a r a r a r a r e

a r a r e

 

   

   

 



 

 

 

     

  

    

    (11) 

In Eq. (11), the term    
0 0

2 2
, ,Ai Ai

A i S ia r a r   indicates that the dispersion is compensated 

because both  
0

,Ai
A ia r   and  

0
,Ai

S ia r   are amplitudes without phase and time information, 

namely there is no phase between them, and different Lamb wave modes arrive at the actuator 
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simultaneously. Thus, there exists a cumulative term     0 0

2 2
, ,Ai Ai

A i S i
i

a r a r   in Eq. (10), 

the focalization of all the amplitudes from different sensors, which should be significantly greater 
than others as shown in Fig. 2(b). It also can be learned that more sensors result in more significant 
focalization. Meanwhile, it should be noted that the onset of each captured signal must be uniform 
and synchronized to the input waveform.  

Wang et al. (2004) has experimentally validated this process with both broadband and 
narrowband input signals, and achieved apparent focalization and good compensation for the 
dispersion of Lamb waves. However, in the context of time reversal applications for Lamb waves, 
it is found that the time-reversed results are considerably complicated under the broadband input, 
as a result of abundant frequency components in the captured signals. In Eqs. (10) and (11), when 

the number of sensor is limited, the exact reconstruction of the original excitation Î  is achieved 

only if     AiAi KK *  and     ,, * rGrG AiAi  are independent of the angular frequency ω 

(Wang et al. 2004, Park et al. 2009, Yu et al. 2010). Consequently, the original input signal cannot 
be properly reconstructed if a broadband input signal is used (Wang et al. 2004). In fact, a 
reconstruction of simple waveforms (i.e., narrowband inputs) can instead be advantageous in the 
subsequent signal analysis and processing, especially for damage detection, because the process 
transforms complicated structural responses into simple ones. By choosing a narrowband input 
waveform at a specific frequency, the independence of the angular frequency ω is approximated, 
with limited Lamb wave modes excited in the structure. Thus, K becomes constant. The frequency 
response function G is simplified and only determined by the distance r. Eqs. (10) and (11) can be 
rewritten as 

       
A

* 2 *
P

1ˆ ˆ e
2

j t
Ai Ai i Ai i

i

V t I K G r G r d 


 


                (12) 

             
0 0 0 0

2 2* A S ij k k rAi Ai Ai Ai
Ai i Ai i A i S i A i S iG r G r a r a r a r a r e             (13) 

Solving Eq. (12) yields 

               0 0 0 0 0 0A

2
2 2

P̂
ˆ ˆ

2
Ai Ai Ai AiAi
A i S i A i S i i A i S

i

K
V t a r a r I t a r a r I t r c r c


         (14) 

It can be seen that  
AP̂V t  is composed of a main lobe at zero time and symmetrical sides at 

the time of  
00 SiAi crcr  , with the main lobe dominating the whole domain. Such 

dominance becomes more intensive if more Lamb modes are involved. As a result, the main lobe 

      
0 0

2
2 2 ˆ

2
Ai AiAi
A i S i

i

K
a r a r I t


   can be considered as the focusing of different modes and 

the exact reconstruction of the original excitation Î . Here, it should be noted that the time 
resolution of the signals may decrease when a narrow-band input signal is excited.  

For the sake of signal interpretation and processing, it is preferred to generate a single Lamb 
mode in practice. Xu and Giurgiutiu (2007) and Yu et al. (2010) discussed the single mode tuning 
effects on the propagation of Lamb waves generated by PZT sensors, and discovered that the 
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normalized amplitude of each mode under the excitation of PZT wafers followed the general 
pattern of a sine function, which hit zeros when the half length of the PZT sensor equaled an odd 
multiple of one of the wave numbers of the Lamb waves. Thus, using smoothed tone-burst 
excitation at the carrier frequency fc and frequency tuning, it is possible to confine the excitation to 
a particular Lamb wave mode. Eq. (14) can be further simplified as follows, if only A0 is generated 

   
 

   0

A

22

P
2

ˆ ˆ ˆ 1,2,3,
2

AiN
Ai A i

i
i i

K a r
V t I t I t K i



                 (15) 

The discussion above indicates that the time reversal process should be helpful for signal 
analysis and simplify the applications of Lamb waves. In the next section, an improved damage 
detection methodology will be further discussed based on the time reversal process of Lamb 
waves. 

 
 

3. Improved damage detection using Lamb waves 
 
3.1 Time reversal enhancement of damage scattered lamb waves 
 
In the context of Lamb wave-based active diagnosis, damage is deemed as a wave source to 

emit scattering signals to sensors. By collecting those signals and applying certain algorithms, the 
damage can be visually detected via imaging (Zhang et al. 2010, Wang et al. 2004). However, 
Lamb wave propagations and the frequency response function G are complicated due to wave 
reflections at boundaries and mode conversions in practice, with which damage-scattered signals 
are usually inundated. As a result, it becomes difficult to discriminate the damage scattered signals 
from other disturbances, impairing Lamb wave-based damage detection. 

With such awareness, there is an increasing attention to adopt the time reversal technique to 
enhance damage-scattered signals. The theory can be simply depicted in the following steps: (i) the 
damage is first considered as the wave source to generate scattering waves; (ii) the captured 
signals at each sensor is time-reversed; and (iii) the time-reversed signals are re-emitted from the 
sensors. Hence, all the waves scattered by the damage can be finally focalized at the damage and 
accordingly enhanced. On the other hand, signals from reflections and mode conversions cannot be 
focalized during the time reversal process and would finally counteract each other, since these 
waves do not have a uniform and common source to enable the focalization. Following the above 
discussion, the time reversal enhancing process can be expressed below. 

(1) For a given tone-burst at a certain center frequency, the difference between the acquired 
signals before and after the introduction of damage can be considered as the damage-scattered 
signal. As already addressed, the merits of using narrowband input waveforms are threefold: (1) 
the independence of the angular frequency ω, (2) the electro-mechanical efficiency constant of the 
PZT sensors remains unchanged (Wang et al. 2004, Park et al. 2009, Yu et al. 2010), and (3) a 
dominant wave mode, such as A0 mode, exists at the certain center frequency, making the 
frequency response function and the signal process straightforward. Considering a PZT patch Pi 
serving as the actuator, a tone-burst at a certain center frequency is generated, similar to Eqs. (4) 
and (14), the incidence (single Lamb mode) upon the damage is 
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      0

0P P D P ( 1, 2, 3...) A i

i i i

jk r

i i A iD I K G r I K a r e i


                (16) 

where Di is the amplitude of the wave mode arriving at the damage caused by the excitation of Pi, 

 P Di iG r  is the frequency response function, and ri is the distance between Pi and the damage. 

Therefore, the signals sensed by the PZT Pk can be written as 

      0

0DP P P ,   , 1,2,3...A k

k k k

jk r

ik i k i A kV D G r K D K a r e i k i k
       


      (17) 

where, similar to Eq. (16),  P Dk kG r  is the frequency response function, and rk is the distance 

between the sensor (PZT k) and the damage.  
(2) Time-reversed and re-emitted signal at each PZT sensor is focalized at the damage (Wang et 

al. 2004). By Eqs. (9), (15) and (17), the focused wave at the damage can be expressed as 

      
   

0 0 0

0 0 0

0

*
* *

P P P

2*
P

ˆ A k A k A k

k k k

k

jk r jk r jk r

i ik A k i A k A k
k k

i A k
k

D V a r e K D a r e K a r e K

D a r K

          

  

 


 (18) 

Comparing Eq. (18) with Eq. (16), an accumulated coefficient can be noticed in Eq. (18), i.e.,

 
0

2

PkA k
k

a r K , which is the focalization of the sensing signals at the damage. As a result of 

amplification, the amplitude or power of the focused wave iD  is greater than that of the wave Di, 

which is achieved without applying the time reversal focalization. It also can be seen that the 
focalized wave is not the original input signal I, but instead the wave Di. Thus, if multi-modes are 
excited, they all exist in the focalized wave. However, it is difficult to choose the characteristic 
mode related to the damage in the re-scattering waves, which is also one of the reasons why 
narrowband input signal for single mode excitation is adopted in this study as mentioned earlier. 

Note again that the damage-scattered signals recorded by the sensors are of greater amplitude 
than that of the signals collected without the time reversal procedure. Combining Eqs. (16) and 
(18), the amplified scattering signals collected by PZT Pl can be obtained as 

     

    
    

0

0 0

0 0

0 0

0 0

0 0

2*
P P

P P

P P      , , 1, 2, 3... 

A l

l k

A i A k

i k

A k A l

k l

jk rE
il A l i A k

k

jk r jk r

A i A k
k

jk r jk r

A k A l

V a r e K D a r K

I a r e K a r e K

a r e K a r e K i k l i l k



 

 

    

    

      







    (19) 

Such a process can be achieved conveniently in ultrasonic nondestructive testing (Fink and 
Lewiner 2000). However, aimed at Lamb wave-based damage detection for plate-like structures, 
the amplification of damage-scattered waves are difficult to be obtained by traditional techniques. 
Figure 3 shows the time reversal process of the damage-scattered waves in a plate by traditional 
equipment. In this situation, PZT sensors and actuators are bonded on the surface of the plate so 
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Table 1 PZT sensor coordinates 

PZT Coordinates (x, y) [mm] 
P1 (177, 177) 
P2 (-177, 177) 
P3 (-177, -177) 
P4 (177, -177) 
P5 (250, 0) 

 
 

Fig. 6 The excitation waveform (Wang et al. 2004, Park et al. 2009) 
 
 

As shown in Fig. 5(b), five PZTs are collocated in four quadrants. If one PZT serves as an 
actuator, the others as sensors, there are 16 actuator-sensor pairs in total, corresponding to 16 
captured signals. Fig. 7(a) shows the damage-scattered signals in the time domain captured by 
PZTs P2–P5 when P1 acted as the actuator, respectively named f12, f13, f14 and f15 in time domain, 

and 12V


, 13V


, 14V


 and 15V


 in the frequency domain as indicated in Eq. (17) - Eq. (20). Fig. 7(b) 

shows the corresponding envelopes of the captured signals in the time domain. Because of their 
short distance to the actuator and damage, the damage-scattered waves received by P2 and P5 were 
of strong energy and well observable, as can be seen in Fig. 7. However, those sensed by P3 and P4 
were of small amplitude due to their relative large distance from the damage and actuator. The 
maximum peaks appear at other times as shown in Fig. 7(b), and error may be introduced when 
these signals are used. Figure 8 presents the damage identification image based on the signals from 
Fig. 7. It can be seen that there is no visible focalization at the damage (as indicated by the red 
circle), but rather at scattered points, presenting improper identification results. 

With the time reversal process, the damage-scattered signals captured by each actuator-sensor 

pair can be enhanced. For example, the enhanced signal  in the frequency domain at P2 is 

                     (22) 

Fig. 9 shows the time reversal enforcing process of each signal from Fig. 7. Amplified signals 
in the time domain are named f ’12, f ’13, f ’14 and f ’15, and their counterparts in frequency domain are 

EV12


, EV13


, EV14


 and EV15


, respectively, as expressed in Eq. (20). The denotation s in Fig. 9 

refers to the enhanced signal f’1k, and s1, s2, s3 refer to the accumulation parts as expressed in Eqs. 
(20) and (22). Here, it should be noted that the scattering point around the damage may vary from 
one sensor to another. Meanwhile, the wavelengths of the excited waves are small, so that the 
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phase difference caused by this problem is not negligible in the time reversal process. Destructive 
superposition may happen when the damage-scattered signals are used directly. Thus, envelopes of 
the signals are time-reversed and superimposed to realize the focalization, because the length of 
the wave packet is as five times long as the wavelength, and the influence of the phase difference 
becomes limited and negligible. The superposition of signal envelopes are displayed in Fig. 9, with 
one main peak much higher than others in each focalized signal. 

 
 
 

 
(a) Damage scattering waves sensed by PZT P2, P3, P4 and P5 

(b) Envelopes of signals sensed by PZT P2, P3, P4 and P5 

Fig. 7 Damage scattering waves and their envelopes sensed by PZT P2, P3, P4 and P5 
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5. Conclusions 
 

In this paper, a damage detection and imaging method based on time-reversal enhanced Lamb 
waves was proposed for identifying damage in a composite plate. First, the propagation 
characteristics of Lamb waves in a plate as well as the corresponding time reversal process were 
discussed. A narrowband excitation was addressed to be advantageous to reduce the frequency 
dependence of the time reversal operator. Second, the approach of time reversal-based signal 
enhancement was presented and discussed. The ability of the source focusing based on the time 
reversal process was adopted to amplify the damage-scattered waves. With the assistance of the 
time reversal imaging, damage could be well identified. Finally, experiments were conducted to 
validate the method by ultrasonically examining a quasi-isotropic glass-reinforced epoxy plate. 
Composite delamination was detected successfully. Further research will investigate the damage 
evaluation, including damage size, degree and type. 
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