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Damage detection based on MCSS and PSO using modal data
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Abstract. In this paper Magnetic Charged System Search (MCSS) and Particle Swarm Optimization (PSO)
are applied to the problem of damage detection using frequencies and mode shapes of the structures. The
objective is to identify the location and extent of multi-damage in structures. Both natural frequencies and
mode shapes are used to form the required objective function. To moderate the effect of noise on measured
data, a penalty approach is applied. A variety of numerical examples including two beams and two trusses
are considered. A comparison between the PSO and MCSS is conducted to show the efficiency of the MCSS
in finding the global optimum. The results show that the present methodology can reliably identify damage
scenarios using noisy measurements and incomplete data.
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1. Introduction

Normally In recent years, there has been a considerable demand for more precise techniques to
identify damages in structures. It is well-known that damages may considerably change the
behavior of the structures. While visual inspection fails to detect damages at the early stages,
vibration measurements are sensitive enough to identify the damages, even if it is located in
hidden or internal areas. Damage detection, as determined by changes in the dynamic properties or
the response of the structures, is a subject that has received considerable attention in the literature.
The basic idea is that modal parameters (notably natural frequencies and mode shapes) are
functions of the physical properties of the structure (mass, damping, and stiffness). Therefore,
changes in the physical properties will cause changes in modal characteristics of the structure. A
review of damage detection methodologies based on dynamic parameters can be found in the work
of (Doebling et al. 1998, Carden and Fanning 2004, Fan and Qiao 2011).

One group of the methods employs the optimization algorithms for detecting the multiple
structural damages. These methods use techniques of finite element model updating and error
minimization to obtain a correct set of physical parameters that reproduce the measured data.
Many successful applications of damage detection utilizing the metaheuristic algorithms have been
reported in the literature. Maity and Tripathy (2005) used a genetic algorithm for the detection of
structural damage using changes in natural frequencies. Liszkai and Raich (2005) employed some
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advanced genetic algorithm representations for the structural damage identification of beams and
frames. Sahoo and Maity (2007) proposed a hybrid neuro-genetic algorithm and considered both
natural frequencies and strains as input parameters to solve damage detection problem. Majumdar
et al. (2012) presented a method to identify structural damages in truss structures from changes in
natural frequencies by using ant colony optimization. Miguel et al. (2012) utilized a harmony
search algorithm for the detection of damage in structures, under ambient vibration. Villalba and
Laier (2012) used a multi-chromosome genetic algorithm to locate and quantify the damages in
trusses by using natural frequencies and mode shapes.

Natural frequencies and modal shapes are the most popular parameters utilized in damage
identification. Although, natural frequencies are fairly simple to measure, they have some
drawbacks. One of the problems about using only natural frequencies is that a significant damage
cause very small change in natural frequencies, particularly for larger structures, and these changes
may be undetected due to noise in measured data. Another problem is that variations in the mass of
the structures may introduce uncertainties in the measured frequency changes. To solve these
problems research efforts have focused on using changes in the mode shapes. The interesting
characteristic of mode shapes is that these are much more sensitive to local damages in comparison
to natural frequencies. However, the use of pure mode shapes also has some difficulties. Firstly,
damage is a local phenomenon and may have no influence on the lower mode shapes significantly.
Secondly, the number of sensors and their positions may have a significant effect on the damage
identification procedure (Kim et al. 2003).

To moderate the above mentioned drawbacks of using natural frequencies and mode shapes, a
combination of both are used in this paper. Here, particle swarm optimizer (PSO) and magnetic
charge system search (MCSS) are utilized to solve the optimization problem associated with the
detection of the damage in beam-type structures and trusses with different scenarios and
incompetent data.

2. Objective function

The present damage identification methodology consists of solving an optimization problem
through an objective function based on dynamic parameters. The damping matrix is neglected
even though it reduces the natural frequencies slightly. Small local changes in the mass can cause
significant changes in the dynamic properties. Hence, it is assumed that the mass of the structure
does not change after it has been damaged (Friswell and Mottershead 2001). Here, damage is
considered as a reduction in stiffness of the damaged elements, and the stiffness reduction is
modeled by a reduction in the elastic modulus. The objective function of the optimization problem
will consist of three terms, Eq. (1). The first part is related to the natural frequencies, the second
part is related to the mode shapes, and the third one is a penalty against too many damage sites.
Due to measurement noise, the tendency will always be to find damage at many elements (Friswell
et al. 1998), some of which are not necessarily damaged. Thus, a penalty is introduced to weight
against an increased number of damage sites. Kaveh et al. (2014) used PSO, ray optimization and
harmony search, and Kaveh and Zolghadr (2015) utilized the CSS for damage detection of truss
structures.

cost = E(1 +  * penalty) (N
E=Ey+E, 2)
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Where a)]m and w}l are the jth measured and analytical natural frequency of the damaged

structure, respectively. 4)]’-" and qu‘-‘ are the measured and analytical value of the jth mode

Ey = Yj= 3

shapes, respectively. r is the number of measured modes and f is a penalty factor which is related
to the type of structure and the closeness of the measured data and the exact data. Here, penalty is
the number of damaged elements in the analytical model.

3. Particle swarm optimization

The algorithm contains a number of particles, each particle being a possible solution for the
objective function. Particles are initialized randomly in the search space of an objective function.
In each iteration, the velocity of each particle is updated by means of their best encountered
position and the best position encountered by any particle using the following formula

vt = p*uf + er (PF = XF) + cora (B — XF) )

Where P} is the best previous position of the ith particle in the kth iteration, and ng is the
best global position among all the particles in the swarm in the kth iteration. r; and r, are
random values, uniformly distributed between zero and one. c¢; and c, are the cognitive and
social scaling parameters respectively, and p¥* is the inertia weight used to discount the previous
velocity of the particle. The position of each particle is updated in each iteration. This is done by
adding the velocity vector to the position vector as

Xk = xF + vkt (6)

Where Xl-k and v{‘“ represent the current position and velocity vectors of the ith particle,
respectively.

The inertia weight p¥ may be defined to vary linearly from a maximum value p,,g, to a
minimum value pp,q,. Velocity vector v; is limited to a lower bound v;,,, and an upper bound
Vypper- Different techniques have been used to set some of the PSO parameters, such as fuzzy
systems (Shi and Eberhart 2001), self-adaptation (Parsopoulos and Vrahatis 2007) and
deterministic adaptation based on ppes; and gpes (Arumugam et al. 2008). Ratnaweera et al. (2004)
proposed a time-varying acceleration coefficient (TVAC), which reduces the cognitive component
and increases the social component of acceleration coefficient with time. A large value of ¢; and
a small value of c, at the beginning, may improve the exploration ability, and a small value of
c;and a large value of ¢, allow the particles converge to the global optimum in the latter part of
the optimization. In this paper, a nonlinear function is used to calculate c;and ¢, according to the
following equations

(7

iter ]n

c1 =C — | (C — Cmi X
1 max [( max mln) itermax
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Where cpin and  cpqy are the lower and upper bound for both ¢; and c,. Here, iter is the
current iteration number and iter;,,, is the maximum number of allowable iterations. According
to the type of the problem, n and m can be calculated to get more efficient results. In this paper, n
and m are taken to 1 and 2 respectively, and ¢;,;, and ¢4, are chosen as 0.5 and 2.5,
respectively.

The velocities of all the particles are limited to the range specified by v, and  Vpgy

which is equal to + (M) The inertia weight presented by

p= (pmax)iter ©

Where ppnq, 1 the inertia weight in the first iteration, and it is taken as p,q,= 0.96.

iter ]m

1 =¢C [ c — Cmin) X
1 max T ( max mm) itermax

4. Magnetic charged system search

The MCSS algorithm is an improved version of the standard CSS (Kaveh et al. 2013). The
structures of both algorithms are nearly the same. The main difference between these two
algorithms is that CSS only considers the electric forces, but MCSS uses both magnetic and
electric forces (Kaveh 2014). Each solution for the objective function (X;), called charged particle
(CP), contains electric charge. These particles produce electric fields and apply electric forces on
each other. When a CP moves, it creates a magnetic field in the space, which imposes magnetic
forces on the other CPs. For computing magnetic fields, it has been assumed that CPs move in
virtual straight wires with radius of R. Thus, the path of movement of each particle consists of
straight wires. These straight wires change their directions by each movement of the CPs, but
during the movement, each wire remains straight, Fig. 1. When a CP starts a new movement, the
direction of its movement may differ from its previous one, so the direction of the wire which
includes the CP during its movement also changes. According to magnetic law, a conducting wire
carrying electric current can create magnetic fields in the space. Now virtual wires contain CPs
that move on them. By each movement of the CPs, their charges are altered, so during the
movement the magnitude of the charge is not constant. This movement of CPs can be
comprehended as an electric current in the virtual wire. The current of a wire is the rate at which
charge flows through one specified cross-section of the wire. If Aq is the amount of charge that
passes through this area in a time interval At, the average current I, will be equal to the charge
that passes through the cross-section per unit time

Aq

Iavg = A (10)

Since the time intervals of each movement are set to unity, the average current will be equal to
the variation of the charge. For computing the variation of the charges, we consider the start and
the end points of the movement of the CPs. Considering these assumptions, Eq. (10) can be written
as

(Iavg)ik = CILK - ql{c—l (11)
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Fig. 1 A schematic view of the virtual wire (Kaveh et al. 2013)

Where (I‘Wg)ik is the average current in the ith wire, where the ith CP performs its kth

movement (iteration) in it, and q¥~! and gqF are the charges of the ith CP at the start and end of

its kth movement, respectively. The charges of the CPs are defined by Eq. (12). This expression
for computing electric charges results in values between 0 to 1. This is due to normalization of the
objective function of each CP. Therefore, the charges of the worst CP and the best CP are always
zero and unity, respectively. A normalized value for computing the electric current is proposed as

fit(@)—fitworst
.= LT worst 12
t fitpest—fitworst ( )
k k-1
_aq;—q;
(Tavg) ,, = "7 pr (13)

Where gFand q¥'are the charge of the ith CP at the start of the kth and (k — 1)th iterations,
respectively, and € is a small positive value to prevent singularity.
The separation distance 1;; between two charged particles is defined as follows
_ Xi—X;j
Ny = (x;+x;)

J
2

Where X; and X; — X; are the positions of the ith and jth CPs, X, is the position of the
best current CP, and ¢ is a small positive number to avoid singularities.

In the expression for computing the magnetic force, we should consider the velocity of the
movement of CPs. In this case, due to the movements of both CPs (CP in the virtual wire and CP
in the space), the relative velocity, v,.,;, is considered as follows which is the modified version of
the one in MCSS for better performance of the algorithm

Vyper = Vi — V} (15)

(14)

—Xpestt€

In this algorithm, each CP is considered as a charged sphere with radius a, which has a uniform
volume charge density. Here, the magnitude of a is set to 0.8. By considering these assumptions,
the electric force (Fg, j) and the magnetic force (Fg j) exerted on the jth CP can be expressed as

Z1=1,Z2=0®Tij<a
z1=0z=1en;=2a

Fgj=qjXiizj (%rij "z + r%h) pij(X; _Xj)'{ (16)
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Zl=1,22=0<:rij<R
Z1:O,Z2:1<:>rij2R

Ii Ii
Fgi=q;Xiizj (prij "Zp + ;_j%)Pmij(Vi - V]){ (17)

Where q; is the charge of the ith CP, R is the radius of the virtual wires, |; is the average
electric current in each wire, and pm;; is the probability of the magnetic influence (attracting or
repelling) of the ith wire (CP) on the jth CP. This term can be computed by the following
expression

pmi,-={1 o fit() > fit@d) as)

0 & else.

Where fit(i) and fit(j) are the objective values of the ith and jth CP, respectively. This
probability determines that only a good CP can affect a bad CP by the magnetic force.

Both magnetic and electric forces should be computed and superposed. The Lorentz force (total
force) will be expressed as

P} = Pr,j X FE,j + FB,j (19)

Where F;j is the resultant Lorentz force (total force) acting on the jth CP. p,.; is the probability
that an electrical force is a repelling force, and it is defined as

1 & rand > k(1 —iter/itery,qy) (20)

Prj = -1 o else.

Where rand is a random number generated based on a uniform distribution, iter is the current
number of iterations, itermay is the maximum number of iterations and x is constant parameter
that influences in diversification of the searching process. In this paper, k is set to 0.1.

According to the determined forces, each CP moves to its new position and attains a velocity as

Xjnew = rand;; - kq :l—f] A2+ rand; - ky Vg At + X 1 1)

4

jmew=

(22)

Xj,new_Xj,old
At

Where randj; and rand;, are two random numbers that are uniformly distributed in the range
(0,1). kg is the acceleration coefficient, ky is the velocity coefficient, and m; is the mass of
particle which is considered to be equal to g . The velocity coefficient controls the influence of the
previous velocity of the particles. In other words, this coefficient is related to the exploration
ability of the algorithm. The acceleration coefficient affects the force acting on each CP, or it
influences the exploitation ability of the algorithm. An efficient optimization algorithm should
perform good exploration in early iterations and good exploitation in last iterations. K, and k, are

expressed as
iter

kg =co(1+—) (23)

itermax

k, = c, (1 - (2= )2) (24)

itermax
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MCSS Algorithm

Randomly initialize positions and velocities ofall CPs;

Set initial electric currents ofthe CPs equal to zero:
Generate CM fom first population of CPs;

While (i<Maximum number ofiterations)

For each CP

Calculate Electrical force exerted on jth CP: Using Eq. (16).
Calculate Magnetic forces exerted on jth CP: Using Eq. (17).
Calculate Net force exerted on jth CP: Using Eq. (19).

Move jth CP to its new position: Using Eq. (21).

Calculate new charge, velocity and electric current ofith CP: Using Egs. (12,13,22
Update Charge MemoryCM):

End For

IF(in the new generation of CPs the so far best CPs are lost)
Implement CM to current CPs;

End IF

i=i+1

End While

Post process results and visualization

Fig. 2 Pseudo-code of the MCSS

Where ¢, and ¢, are constant parameters. Considering the nonlinear equation for k, has
improved the performance of the original algorithm.

Using this methodology, the new positions of each CP and what it experienced in its last
movement can affect the moving process of the subsequent CPs. This method can save a lot of
useful information for optimization processes. Based on the explained steps and rules, MCSS
algorithm can be summarized as a pseudo-code shown in Fig. 2.

5. Numerical examples

Six numerical examples (two 2D-trusses, a 3D-truss, two beams, and a frame,) with different
multi-damage scenarios, consisting of different severity of damages on different elements, are
considered here to show the efficiency of the proposed damage identification method in a variety
of structures. Modal analysis is conducted by developing a program in MATLAB to get the FE
frequencies and mode shapes. Due to the stochastic nature of the metaheuristic algorithms, it is
essential to implement the algorithms a specific number of times to detect correct damages. In this
paper for each scenario the algorithm has been run ten times and the solution with the lowest cost
is selected as the damage scenario searched for. Each run is conducted with five different random
noises in order to show that the patterns of the noises do not have significant influence on the
solution.
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The mode shapes are measured with less accuracy than the natural frequencies. In order to
simulate the conditions of a real test, the measured parameters are numerically perturbed by 1%
noise for natural frequencies and 3% noise for mode shapes (Villalba and Laier 2012).

5.1 A 25-bar truss

The First example is a statically determinate truss bridge shown in Fig. 3 (Esfandiari et al.
2009). This truss has 12 nodes and 25 elements in the finite element model. Area of cross section
for all elements is 10cm®. The modulus of elasticity and the material density are 200 GPa and 7780
kg/m’, respectively. The first 5 natural frequencies of the structure are used to form the objective
function. Three damage scenarios are considered randomly in different elements for the simulated
truss. Figs. 4-6 represent the damage states found by the algorithms with the actual damage states
in different scenarios.
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Fig. 6 Damage detection results of the algorithms for the 25-bar truss (scenario III)

In the first two scenarios both algorithms find the correct scenarios with marginal error. Since
in the objective function a penalty function has been used, in the first and third scenarios there is
no miss-identifications, and in the second scenario all of the miss-identifications have damage
percentage less than 4%. As it can be seen from the third scenario, PSO has failed to identify one
of the damaged elements; however, MCSS accurately found the location and severity of all of the
damaged elements

5.2 A 27-bar truss

The second example is a statically determinate truss bridge as shown in Fig. 7 (Yang and Liu
2007). This truss has 15 nodes and 27 elements in the finite element model. Area of cross section
for all elements is 10 cm®. The modulus of elasticity and the material density are 200 GPa and
7780 kg/m’, respectively. The first 5 natural frequencies of the structure are used to form the
objective function. Three damage scenarios are considered randomly for the simulated truss. Figs.
8-10 represent the damage states found by the algorithm with the actual damage states in different
scenarios.

In all of the scenarios represented here, MCSS successfully found the exact location and
severity of the damages, with negligible error which is an inevitable consequence of noise in the
data. However, in most of the cases PSO has failed to find the correct scenario.

100 cm

7@100 cm

Fig. 7 A truss with 27 elements
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5.3 A 3D-truss

A three dimensional truss is considered as the third example. The geometry, element numbering
and material properties are shown in Fig. 11. The first 6 natural frequencies and mode shapes of
the structure are used to form the objective function. Three damage scenarios are considered

randomly for the simulated truss.

Figs. 12-14 represent the damage states found by both optimization algorithms with the actual
damage states in different scenarios. As it can be seen, in the first scenario both algorithms found
the correct damage scenarios with no miss-identification. This shows the effectiveness of the
proposed objective function. However, in the scenario with three damaged element, PSO has failed
to find the exact damage scenarios. In comparison with PSO, the MCSS performed significantly

better, and in all of the scenarios it found location and severity of the damages accurately.
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The convergences of the last scenario for both algorithms have shown in Fig. 15 for
comparison. As it can be seen, PSO has a fast convergence, but in this problem fast convergence
lead to wrong scenario. MCSS has a smooth convergence, and in the end the value of cost function
related to MCSS is less than PSO (0.0919 is the optimum value found by MSCC, and 0.1424 is the
optimum value found by PSO).

5.4 A four-span beam

The two-span beam is considered as the fourth example as depicted in Fig. 16. Area of cross
section and moment of inertia of the simulated beam are 123.2cm” and 22185 cm®, respectively.
The modulus of elasticity and the material density are 210 GPa and 7780 kg/m’, respectively. The
first 5 natural frequencies of the structure are used to form the objective function. Two damage
scenarios are considered for the simulated beam near critical elements (elements that are most
likely to be damaged due to the maximum bending moment or shear stress are occurring there).

Figs. 17 and 18 represent the damage states found by the algorithm with the actual damage
states in different scenarios. In the first scenario both algorithms were successful in detecting
damaged elements but in the second scenario PSO failed to detect damage in the first element.



Damage detection based on MCSS and PSO using modal data

5.5 A four-span beam

The four-span beam depicted in Fig. 19 is considered as the fifth example, in order to show the
robustness of the MCSS in large beams with more elements and with different supporting
conditions. Area of cross section and moment of inertia of the simulated beam are 123.2 cm” and

22185 cm®, respectively. The modulus of elasticity and the material density are 210 GPa and 7780

kg/m’
functi

, respectively. The first 8 natural frequencies of the structure are used to form the objective
on. Four damage scenarios are considered for the simulated beam near the critical elements
(elements that are most likely to be damaged due to the maximum bending moment or shear stress

are occurring there).
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Fig. 16 A two-Span beam modeled with 20 finite elements
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Fig. 19 A four-span beam modeled with 40 finite elements
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Fig. 20 Damage detection results of the algorithms for the four-span beam (Scenario I)
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Fig. 23 Damage detection results of the algorithms for the four-span beam (Scenario IV)
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Fig. 24 The convergence of the Scenario IV for the four-span beam

Figs. 20 - 23 represent the damage states found by the algorithms with the actual damage states
in different scenarios. Due to the complexity of this example and increase in the number of
variables, in most of the scenarios PSO failed to identify the correct damages, but MCSS with
insignificant error found the correct damage scenarios.

The convergences of the last scenario for both algorithms have shown in fig. 24 for comparison.
The final optimum value found by MCSS and PSO are 0.2151 and 0.2546 respectively.

5.6 A planar frame

The 3-spans and 3-story frame depicted in Fig. 25 is considered as the last example. The
sections used for the beams and columns are IPE240 and IPE300, respectively. The modulus of
elasticity and the material density are 200 GPa and 7780 kg/m’, respectively. The first 6 natural
frequencies and mode shapes of the structure are used to form the objective function.

Figs. 26 to 28 represent the damage states found by both optimization algorithms with the
actual damage states in different scenarios. Although in most of the cases both algorithms found
the correct damage scenarios, in one case (Scenario III) PSO was trapped in a local optimum, and
identified element number 9 - instead of element number 8 - as the damaged element. However,
MCSS found the correct number and location of damaged elements.
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Fig. 25 A three-span three-story frame
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6. Conclusions

The structural damage identification method based on natural frequencies and mode shapes are
studied in this paper. In order to mitigate the effect of noise on input data, a penalty function is
added to the objective function. MCSS and PSO algorithms are utilized to solve the optimization
problem associated with the damage detection. In order to verify the performance of the proposed
methodology, different numerical problems with different scenarios are tested. Although the
proposed cost function in both algorithms performed adequately, in some of the scenarios PSO
failed to find the correct scenario especially when the number of elements was increased, or the
structure was more complicated. There are many local optimums in the objective function, which
introduce difficulties in finding the global optimum; in this situation, it is necessary to use an
optimization algorithm which has more exploration ability; since MCSS can escape from a local
optimum in order to find the global optimum, in all of the examples it detects the correct scenario.
From the results, it can be concluded that the proposed MCSS is quite efficient and robust for
damage detection problems in a variety of structures.
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