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Abstract.    In this paper Magnetic Charged System Search (MCSS) and Particle Swarm Optimization (PSO) 
are applied to the problem of damage detection using frequencies and mode shapes of the structures. The 
objective is to identify the location and extent of multi-damage in structures. Both natural frequencies and 
mode shapes are used to form the required objective function. To moderate the effect of noise on measured 
data, a penalty approach is applied. A variety of numerical examples including two beams and two trusses 
are considered. A comparison between the PSO and MCSS is conducted to show the efficiency of the MCSS 
in finding the global optimum. The results show that the present methodology can reliably identify damage 
scenarios using noisy measurements and incomplete data. 
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1. Introduction 
 

Normally In recent years, there has been a considerable demand for more precise techniques to 
identify damages in structures. It is well-known that damages may considerably change the 
behavior of the structures. While visual inspection fails to detect damages at the early stages, 
vibration measurements are sensitive enough to identify the damages, even if it is located in 
hidden or internal areas. Damage detection, as determined by changes in the dynamic properties or 
the response of the structures, is a subject that has received considerable attention in the literature. 
The basic idea is that modal parameters (notably natural frequencies and mode shapes) are 
functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, 
changes in the physical properties will cause changes in modal characteristics of the structure. A 
review of damage detection methodologies based on dynamic parameters can be found in the work 
of (Doebling et al. 1998, Carden and Fanning 2004, Fan and Qiao 2011). 

One group of the methods employs the optimization algorithms for detecting the multiple 
structural damages. These methods use techniques of finite element model updating and error 
minimization to obtain a correct set of physical parameters that reproduce the measured data. 
Many successful applications of damage detection utilizing the metaheuristic algorithms have been 
reported in the literature. Maity and Tripathy (2005) used a genetic algorithm for the detection of 
structural damage using changes in natural frequencies. Liszkai and Raich (2005) employed some 
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advanced genetic algorithm representations for the structural damage identification of beams and 
frames. Sahoo and Maity (2007) proposed a hybrid neuro-genetic algorithm and considered both 
natural frequencies and strains as input parameters to solve damage detection problem. Majumdar 
et al. (2012) presented a method to identify structural damages in truss structures from changes in 
natural frequencies by using ant colony optimization. Miguel et al. (2012) utilized a harmony 
search algorithm for the detection of damage in structures, under ambient vibration. Villalba and 
Laier (2012) used a multi-chromosome genetic algorithm to locate and quantify the damages in 
trusses by using natural frequencies and mode shapes. 

Natural frequencies and modal shapes are the most popular parameters utilized in damage 
identification. Although, natural frequencies are fairly simple to measure, they have some 
drawbacks. One of the problems about using only natural frequencies is that a significant damage 
cause very small change in natural frequencies, particularly for larger structures, and these changes 
may be undetected due to noise in measured data. Another problem is that variations in the mass of 
the structures may introduce uncertainties in the measured frequency changes. To solve these 
problems research efforts have focused on using changes in the mode shapes. The interesting 
characteristic of mode shapes is that these are much more sensitive to local damages in comparison 
to natural frequencies. However, the use of pure mode shapes also has some difficulties. Firstly, 
damage is a local phenomenon and may have no influence on the lower mode shapes significantly. 
Secondly, the number of sensors and their positions may have a significant effect on the damage 
identification procedure (Kim et al. 2003).  

To moderate the above mentioned drawbacks of using natural frequencies and mode shapes, a 
combination of both are used in this paper. Here, particle swarm optimizer (PSO) and magnetic 
charge system search (MCSS) are utilized to solve the optimization problem associated with the 
detection of the damage in beam-type structures and trusses with different scenarios and 
incompetent data. 

 
 

2. Objective function 
 
The present damage identification methodology consists of solving an optimization problem 

through an objective function based on dynamic parameters. The damping matrix is neglected 
even though it reduces the natural frequencies slightly. Small local changes in the mass can cause 
significant changes in the dynamic properties. Hence, it is assumed that the mass of the structure 
does not change after it has been damaged (Friswell and Mottershead 2001). Here, damage is 
considered as a reduction in stiffness of the damaged elements, and the stiffness reduction is 
modeled by a reduction in the elastic modulus. The objective function of the optimization problem 
will consist of three terms, Eq. (1). The first part is related to the natural frequencies, the second 
part is related to the mode shapes, and the third one is a penalty against too many damage sites. 
Due to measurement noise, the tendency will always be to find damage at many elements (Friswell 
et al. 1998), some of which are not necessarily damaged. Thus, a penalty is introduced to weight 
against an increased number of damage sites. Kaveh et al. (2014) used PSO, ray optimization and 
harmony search, and Kaveh and Zolghadr (2015) utilized the CSS for damage detection of truss 
structures. 

1 ∗                         (1) 

                                 (2) 

1254



 
 
 
 
 
 

Damage detection based on MCSS and PSO using modal data 

∑                             (3) 

∑                            (4) 

Where  and  are the jth measured and analytical natural frequency of the damaged 
structure, respectively.    and   are the measured and analytical value of the jth mode 
shapes, respectively. r is the number of measured modes and  is a penalty factor which is related 
to the type of structure and the closeness of the measured data and the exact data. Here, penalty is 
the number of damaged elements in the analytical model. 

 
 

3. Particle swarm optimization 
 

The algorithm contains a number of particles, each particle being a possible solution for the 
objective function. Particles are initialized randomly in the search space of an objective function. 
In each iteration, the velocity of each particle is updated by means of their best encountered 
position and the best position encountered by any particle using the following formula 

                   (5) 

Where  is the best previous position of the ith particle in the kth iteration, and  is the 
best global position among all the particles in the swarm in the kth iteration.  and   are 
random values, uniformly distributed between zero and one.  and  are the cognitive and 
social scaling parameters respectively, and  is the inertia weight used to discount the previous 
velocity of the particle. The position of each particle is updated in each iteration. This is done by 
adding the velocity vector to the position vector as 

                              (6) 

Where  and  represent the current position and velocity vectors of the ith particle, 
respectively. 

The inertia weight  may be defined to vary linearly from a maximum value  to a 
minimum value . Velocity vector  is limited to a lower bound  and an upper bound 

. Different techniques have been used to set some of the PSO parameters, such as fuzzy 
systems (Shi and Eberhart 2001), self-adaptation (Parsopoulos and Vrahatis 2007) and 
deterministic adaptation based on pbest and gbest (Arumugam et al. 2008). Ratnaweera et al. (2004) 
proposed a time-varying acceleration coefficient (TVAC), which reduces the cognitive component 
and increases the social component of acceleration coefficient with time. A large value of  and 
a small value of  at the beginning, may improve the exploration ability, and a small value of  

and a large value of  allow the particles converge to the global optimum in the latter part of 
the optimization. In this paper, a nonlinear function is used to calculate and  according to the 
following equations 

                    (7) 
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                     (8) 

Where  and   are the lower and upper bound for both  and . Here, iter is the 
current iteration number and  is the maximum number of allowable iterations. According 
to the type of the problem, n and m can be calculated to get more efficient results. In this paper, n 
and m are taken to 1 and 2 respectively, and  and  are chosen as 0.5 and 2.5, 
respectively. 

The velocities of all the particles are limited to the range specified by   and   

which is equal to . The inertia weight presented by 

                              (9) 

Where  is the inertia weight in the first iteration, and it is taken as = 0.96. 
 
 

4. Magnetic charged system search 
 

The MCSS algorithm is an improved version of the standard CSS (Kaveh et al. 2013). The 
structures of both algorithms are nearly the same. The main difference between these two 
algorithms is that CSS only considers the electric forces, but MCSS uses both magnetic and 
electric forces (Kaveh 2014). Each solution for the objective function (Xi), called charged particle 
(CP), contains electric charge. These particles produce electric fields and apply electric forces on 
each other. When a CP moves, it creates a magnetic field in the space, which imposes magnetic 
forces on the other CPs. For computing magnetic fields, it has been assumed that CPs move in 
virtual straight wires with radius of R. Thus, the path of movement of each particle consists of 
straight wires. These straight wires change their directions by each movement of the CPs, but 
during the movement, each wire remains straight, Fig. 1. When a CP starts a new movement, the 
direction of its movement may differ from its previous one, so the direction of the wire which 
includes the CP during its movement also changes. According to magnetic law, a conducting wire 
carrying electric current can create magnetic fields in the space. Now virtual wires contain CPs 
that move on them. By each movement of the CPs, their charges are altered, so during the 
movement the magnitude of the charge is not constant. This movement of CPs can be 
comprehended as an electric current in the virtual wire. The current of a wire is the rate at which 
charge flows through one specified cross-section of the wire. If ∆  is the amount of charge that 
passes through this area in a time interval ∆ , the average current  will be equal to the charge 
that passes through the cross-section per unit time 

∆

∆
                                 (10) 

Since the time intervals of each movement are set to unity, the average current will be equal to 
the variation of the charge. For computing the variation of the charges, we consider the start and 
the end points of the movement of the CPs. Considering these assumptions, Eq. (10) can be written 
as 

                         (11) 
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, ∑ ∙ , 1, 0 ⇔
0, 1⇔, 										(17) 

Where  is the charge of the ith CP, R is the radius of the virtual wires, Ii is the average 
electric current in each wire, and  is the probability of the magnetic influence (attracting or 
repelling) of the ith wire (CP) on the jth CP. This term can be computed by the following 
expression 

1 ⇔
0 ⇔ .

                         (18) 

Where  and  are the objective values of the ith and jth CP, respectively. This 
probability determines that only a good CP can affect a bad CP by the magnetic force.  

Both magnetic and electric forces should be computed and superposed. The Lorentz force (total 
force) will be expressed as 

, , ,                          (19) 

Where Fj is the resultant Lorentz force (total force) acting on the jth CP. ,  is the probability 
that an electrical force is a repelling force, and it is defined as 

,
1 ⇔ 1 /
1 ⇔ .

                 (20) 

Where rand is a random number generated based on a uniform distribution, iter is the current 
number of iterations, itermax is the maximum number of iterations and 	  is constant parameter 
that influences in diversification of the searching process. In this paper,  is set to 0.1. 

According to the determined forces, each CP moves to its new position and attains a velocity as 

, ∙ ∙ ∙ ∆ ∙ ∙ , ∙ ∆ ,            (21) 

, , ,
∆

                            (22) 

Where randj1 and randj2 are two random numbers that are uniformly distributed in the range 
(0,1).  is the acceleration coefficient, kv is the velocity coefficient, and  is the mass of 
particle which is considered to be equal to qj . The velocity coefficient controls the influence of the 
previous velocity of the particles. In other words, this coefficient is related to the exploration 
ability of the algorithm. The acceleration coefficient affects the force acting on each CP, or it 
influences the exploitation ability of the algorithm. An efficient optimization algorithm should 
perform good exploration in early iterations and good exploitation in last iterations. ka and kv are 
expressed as 

1                           (23) 

1                          (24) 
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The mode shapes are measured with less accuracy than the natural frequencies. In order to 
simulate the conditions of a real test, the measured parameters are numerically perturbed by 1% 
noise for natural frequencies and 3% noise for mode shapes (Villalba and Laier 2012). 
 

5.1 A 25-bar truss 
 
The First example is a statically determinate truss bridge shown in Fig. 3 (Esfandiari et al. 

2009). This truss has 12 nodes and 25 elements in the finite element model. Area of cross section 
for all elements is 10cm2. The modulus of elasticity and the material density are 200 GPa and 7780 
kg/m3, respectively. The first 5 natural frequencies of the structure are used to form the objective 
function. Three damage scenarios are considered randomly in different elements for the simulated 
truss. Figs. 4-6 represent the damage states found by the algorithms with the actual damage states 
in different scenarios.   

 
 

 

Fig. 3 A truss with 25 elements 
 

Fig. 4 Damage detection results of the algorithms for the 25-bar truss (scenario I) 
 

Fig. 5 Damage detection results of the algorithms for the 25-bar truss (scenario II). 
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Fig. 6 Damage detection results of the algorithms for the 25-bar truss (scenario III) 
 

 
In the first two scenarios both algorithms find the correct scenarios with marginal error. Since 

in the objective function a penalty function has been used, in the first and third scenarios there is 
no miss-identifications, and in the second scenario all of the miss-identifications have damage 
percentage less than 4%. As it can be seen from the third scenario, PSO has failed to identify one 
of the damaged elements; however, MCSS accurately found the location and severity of all of the 
damaged elements   

 
5.2 A 27-bar truss 
 
The second example is a statically determinate truss bridge as shown in Fig. 7 (Yang and Liu 

2007). This truss has 15 nodes and 27 elements in the finite element model. Area of cross section 
for all elements is 10 cm2. The modulus of elasticity and the material density are 200 GPa and 
7780 kg/m3, respectively. The first 5 natural frequencies of the structure are used to form the 
objective function. Three damage scenarios are considered randomly for the simulated truss. Figs. 
8-10 represent the damage states found by the algorithm with the actual damage states in different 
scenarios.  

In all of the scenarios represented here, MCSS successfully found the exact location and 
severity of the damages, with negligible error which is an inevitable consequence of noise in the 
data. However, in most of the cases PSO has failed to find the correct scenario. 

 
 

Fig. 7 A truss with 27 elements 
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Fig. 8 Damage detection results of the algorithms for the 27-bar truss (Scenario I) 
 

Fig. 9 Damage detection results of the algorithms for the 27-bar truss (Scenario II) 
 

 

Fig. 10 Damage detection results of the algorithms for the 27-bar truss (Scenario III) 
 
 
5.3 A 3D-truss 
 
A three dimensional truss is considered as the third example. The geometry, element numbering 

and material properties are shown in Fig. 11. The first 6 natural frequencies and mode shapes of 
the structure are used to form the objective function. Three damage scenarios are considered 
randomly for the simulated truss. 

Figs. 12-14 represent the damage states found by both optimization algorithms with the actual 
damage states in different scenarios. As it can be seen, in the first scenario both algorithms found 
the correct damage scenarios with no miss-identification. This shows the effectiveness of the 
proposed objective function. However, in the scenario with three damaged element, PSO has failed 
to find the exact damage scenarios. In comparison with PSO, the MCSS performed significantly 
better, and in all of the scenarios it found location and severity of the damages accurately.  
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Fig. 14 Damage detection results of the algorithms for the 3D-truss (Scenario III) 
 
 

Fig. 15 The convergence of the Scenario III for the 3D-Truss 
 
 
The convergences of the last scenario for both algorithms have shown in Fig. 15 for 

comparison. As it can be seen, PSO has a fast convergence, but in this problem fast convergence 
lead to wrong scenario. MCSS has a smooth convergence, and in the end the value of cost function 
related to MCSS is less than PSO (0.0919 is the optimum value found by MSCC, and 0.1424 is the 
optimum value found by PSO).  

 
5.4 A four-span beam 
 
The two-span beam is considered as the fourth example as depicted in Fig. 16. Area of cross 

section and moment of inertia of the simulated beam are 123.2cm2 and 22185 cm4, respectively. 
The modulus of elasticity and the material density are 210 GPa and 7780 kg/m3, respectively. The 
first 5 natural frequencies of the structure are used to form the objective function. Two damage 
scenarios are considered for the simulated beam near critical elements (elements that are most 
likely to be damaged due to the maximum bending moment or shear stress are occurring there).  

Figs. 17 and 18 represent the damage states found by the algorithm with the actual damage 
states in different scenarios. In the first scenario both algorithms were successful in detecting 
damaged elements but in the second scenario PSO failed to detect damage in the first element. 
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5.5 A four-span beam 
 
The four-span beam depicted in Fig. 19 is considered as the fifth example, in order to show the 

robustness of the MCSS in large beams with more elements and with different supporting 
conditions. Area of cross section and moment of inertia of the simulated beam are 123.2 cm2 and 
22185 cm4, respectively. The modulus of elasticity and the material density are 210 GPa and 7780 
kg/m3, respectively. The first 8 natural frequencies of the structure are used to form the objective 
function. Four damage scenarios are considered for the simulated beam near the critical elements 
(elements that are most likely to be damaged due to the maximum bending moment or shear stress 
are occurring there). 

 
 

Fig. 16 A two-Span beam modeled with 20 finite elements 
 
 

Fig. 17 Damage detection results of the algorithms for two-span beam (scenario I) 
 
 

Fig. 18 Damage detection results of the algorithms for two-span beam (scenario II) 
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Fig. 19 A four-span beam modeled with 40 finite elements 
 

Fig. 20 Damage detection results of the algorithms for the four-span beam (Scenario I) 
 
 

Fig. 21 Damage detection results of the algorithms for the four-span beam (Scenario II) 
 
 

 

Fig. 22 Damage detection results of the algorithms for the four-span beam (Scenario III). 
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Fig. 23 Damage detection results of the algorithms for the four-span beam (Scenario IV) 
 
 

Fig. 24 The convergence of the Scenario IV for the four-span beam 
 
 
Figs. 20 - 23 represent the damage states found by the algorithms with the actual damage states 

in different scenarios. Due to the complexity of this example and increase in the number of 
variables, in most of the scenarios PSO failed to identify the correct damages, but MCSS with 
insignificant error found the correct damage scenarios.  

The convergences of the last scenario for both algorithms have shown in fig. 24 for comparison. 
The final optimum value found by MCSS and PSO are 0.2151 and 0.2546 respectively.  

 
5.6 A planar frame 
 
The 3-spans and 3-story frame depicted in Fig. 25 is considered as the last example. The 

sections used for the beams and columns are IPE240 and IPE300, respectively. The modulus of 
elasticity and the material density are 200 GPa and 7780 kg/m3, respectively. The first 6 natural 
frequencies and mode shapes of the structure are used to form the objective function. 

Figs. 26 to 28 represent the damage states found by both optimization algorithms with the 
actual damage states in different scenarios. Although in most of the cases both algorithms found 
the correct damage scenarios, in one case (Scenario III) PSO was trapped in a local optimum, and 
identified element number 9 - instead of element number 8 - as the damaged element. However, 
MCSS found the correct number and location of damaged elements. 
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Fig. 25 A three-span three-story frame 
 

Fig. 26 Damage detection results of the algorithms for the frame (Scenario I) 
 

Fig. 27 Damage detection results of the algorithms for the frame (Scenario II) 
 

Fig. 28 Damage detection results of the algorithms for the frame (Scenario III) 
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6. Conclusions 
 

The structural damage identification method based on natural frequencies and mode shapes are 
studied in this paper. In order to mitigate the effect of noise on input data, a penalty function is 
added to the objective function. MCSS and PSO algorithms are utilized to solve the optimization 
problem associated with the damage detection. In order to verify the performance of the proposed 
methodology, different numerical problems with different scenarios are tested. Although the 
proposed cost function in both algorithms performed adequately, in some of the scenarios PSO 
failed to find the correct scenario especially when the number of elements was increased, or the 
structure was more complicated. There are many local optimums in the objective function, which 
introduce difficulties in finding the global optimum; in this situation, it is necessary to use an 
optimization algorithm which has more exploration ability; since MCSS can escape from a local 
optimum in order to find the global optimum, in all of the examples it detects the correct scenario. 
From the results, it can be concluded that the proposed MCSS is quite efficient and robust for 
damage detection problems in a variety of structures. 
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