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Abstract.      This study investigates the problem of crack detection in post-buckled beam-type structures. 
The beam under the axial compressive force has a crack, assumed to be open and through the width. The 
crack, which is modeled by a massless rotational spring, divides the beam into two segments. The crack 
detection is considered as an optimization problem, and the weighted sum of the squared errors between the 
measured and computed natural frequencies is minimized by the bees algorithm. To find the natural 
frequencies, the governing nonlinear equations of motion for the post-buckled state are first derived. The 
solution of the nonlinear differential equations of the two segments consists of static and dynamic parts. The 
differential quadrature method along with an arc length strategy is used to solve the static part, while the 
same method is utilized for the solution of the linearized dynamic part and the extraction of the natural 
frequencies of the cracked beam. The investigation includes several numerical as well as experimental case 
studies on the post-buckled simply supported and clamped-clamped beams having open cracks. The results 
show that several parameters such as the amount of applied compressive force and boundary conditions 
influences the outcome of the crack detection scheme. The identification results also show that the crack 
position and depth can be predicted well by the presented method. 
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1. Introduction 
 

Cracks in a structure reduce its dynamic stiffness, and consequently affects other behaviors 
such as vibrations, buckling and postbuckling. On the other hand, the same conclusion can be 
drawn when the structure undergoes compressive loads. Therefore, when it experiences both, the 
consequences are much more complicated. In fact, when a vibrating structure undergoes a state if 
postbuckling, due to the high bending load condition, it becomes more susceptible to crack 
initiation. Such events may happen in engineering structures such as columns, drill strings or 
railway tracks due to working and environmental factors.  

The problem of vibrations of post-bucked beams has been studied by many researchers using a 
variety of analytical and numerical methods. Nayfeh et al. (1995) analyzed the vibrational mode 
shape of buckled beams using analytical and experimental methods. They used the static buckling 
mode shape and found an exact solution for natural frequency as well as vibrational mode shape of 
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the beam. Addessi et al. (2005a) investigated the vibration of a beam, having a concentrated mass 
at its mid span, around its post-buckled state. Postbuckling analysis carried out using extensible 
model, while the free vibration analysis was performed with inextensible model. They solved the 
problem using Galerkin discretization and finite element methods. Emam (2009) studied the static 
and dynamic response of post-buckled geometrically imperfect composite beams analytically. 
Santillan et al. (2006) solved the problem of small amplitude free vibration of heavy 
clamped-clamped beams around their post-buckled state using the shooting method, and verified 
their approach with experimental data. Neukirch et al. (2012) studied analytically and numerically 
the small amplitude in-plane vibrations of an elastic clamped-clamped rod around its post-buckled 
state using extensible and inextensible models. In addition, several authors have reported the static 
analysis of cracked beams under the compressive axial loads. Yazdchi and GowhariAnaraki (2008) 
used the massless rotational spring model to analyze the load carrying capacity of cracked columns 
for different boundary conditions. Ke et al. (2009) studied the postbuckling behavior of edge 
cracked Timoshenko beams made of FGM.  

On the other hand, the crack detection in beam-type structures has been widely addressed in the 
literature. Sinha et al. (2002) used the finite element method and penalty function minimization to 
find the crack in beam structures. Razi et al. (2011) introduced several fatigue cracks in a free-free 
aluminum beam by cyclic load under a three-point bending configuration and used the empirical 
mode decomposition method to identify the crack position. Evaluating the first instantaneous 
frequency using Hilbert-Huang transform, Roveri and Carcaterra (2012) detected the damage in a 
bridge structure under a traveling load. Using the vibratory power estimated from the measured 
accelerations on a damaged beam, Huh et al.(2012) proposed a damage index to identify the crack. 
Zhong and Oyadiji (2007), Wu and Wang (2011) and Umesha et al. (2009) applied the wavelet 
transform to detect the crack in beams. Khorram et al. (2012) compared the performance of two 
wavelet based damage techniques to find the location and size of the crack in a beam subjected to 
moving loads. Moradi et al. (2011) used bees algorithm to detect the crack location and depth in a 
cantilever beam. They verified their approach numerically and experimentally. Buezas et al. (2011) 
applied the genetic algorithm to identify a transverse breathing crack in a beam-like structure. 
Taking into account the contact between the interfaces of the crack, Rosales et al. (2009) combined 
a power series technique and artificial neural networks to find the crack parameters in beam-like 
structures. VakilBaghmisheh et al. (2012) applied a hybrid particle swarm-Nelder-Mead 
optimization technique for crack identification in cantilever beams. 

To the best of authors’ knowledge, the problem of crack detection in beams under the state of 
postbuckling has not been addressed in the literature. Therefore, this paper aims to identify the 
crack parameters in such cases. The approach followed in this paper is to consider the crack 
detection practice as an optimization problem, and identify the crack parameters using an 
evolutionary algorithm. The cracked beam is modeled as two segments connected by a massless 
rotational spring, whose stiffness could be determined by the size of the crack. The crack is 
assumed to be open to avoid the nonlinear effects associated with the breathing crack model. The 
solution of the governing nonlinear equations of motion for the post-buckled state of segments 
consists of static and dynamic parts, both of which result in nonlinear differential equations. The 
differential quadrature (DQ) method has been used to solve the equilibrium and dynamic parts. 
Application of DQ to the static differential equations and their corresponding boundary and 
continuity conditions results in a nonlinear algebraic system of equations, which will be solved 
utilizing an arc length strategy. The method is then applied to the linearized dynamic differential 
equations of motion to obtain an eigenvalue problem whose solution gives the natural frequencies 
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and mode shapes of the beam. For the inverse problem of crack detection an objective function is 
defined and minimized by an evolutionary algorithm. The weighted sum of the squared errors 
between the measured and computed natural frequencies is used as the objective function. The 
optimization problem is then solved by a swarm-based evolutionary optimization technique, 
namely the bees algorithm. To ensure the integrity of the presented method, some numerical as 
well as experimental case studies are carried out on the simply supported and clamped-clamped 
cracked beams made of polyvinylchloride (PVC). 

 
 

2. Modeling  
 
2.1 Governing equations 
 
Fig. 1 shows an elastic beam of length l, height h and width b, having an open-edge full-width 

crack, perpendicular to the beam’s longitudinal axis. The crack with the depth of a is located at lc 
from one end. The beam is subjected to an axial compressive force p at x=l.  

With the assumption that the effect of the crack is only apparent in the immediate neighborhood, 
the cracked beam can be modeled as two separate uniform segments connected with a massless 
rotational spring at the crack location. Fig. 2(a) shows an element of the beam in its initial and 
deformed configuration. In the figure, s is the arc length of the deflection curve, u and w are the 
displacements of the beam element along the x and y axes, respectively. In addition, θ is the 
rotation with respect to the x axis, and u0, w0 and θ0 are the initial displacements and rotation, 
respectively. 

The free body diagram of a differential beam element under end loads is depicted in Fig. 2(b), 
where n, q and m are the axial and shear forces, and bending moment, respectively. Neglecting the 
damping effects, shear deformation and rotary inertia, the differential equations of motion for the 
beams’ post-buckled state can be described by the following relations (Riessner 1972, Hua et al. 
2008) 
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Fig. 1 Cracked beam under axial compressive load
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(a) (b) 

Fig. 2 (a) Deformation of an element and (b) Free body diagram of a differential beam element 
 
 

where uj and wj are the displacements of jth beam along the x and y axes, respectively, θj is the 
rotation with respect to the x axis and dot means the derivative with respect to time. The first two 
equations represent the strain components of the element, the third equation corresponds to the 
constitutive equation, and the last three represent the governing differential equations of the 
motion. The cross section, A, and second moment of inertia, I, as well as Young’s modulus, E, and 
Poisson’s ratio, υ, are assumed to be similar for both sections. The analysis is carried out using the 
following dimensionless parameters 
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where ω, ρ and t are the vibration frequency, mass per unit length and time, respectively. 
Consequently, the governing equations can be written as 

       

0 0

0

1 sin sin ,                 1 cos cos ,

0,                                0,       1,2

sin cos ,      cos sin

j j j j
j j j j

jj j
j j

j j j j j j j j j

W N U N

S K S K

M
M Q j

S S S

N Q W N Q
S S S S

   



   

    
            
 

     
  
   

  
   

 jU 

    (3)

 

 

c
0( )w s

0( )u s  
ds  

0  

  

c   
0( ) ( )u s u s  

(1 )e ds  

0 0( )u u u u ds    

y

x

0 0( )w w w w ds    

0 ( ) ( )w s w s  

 

ds
s

 



n
n ds

s





q
q ds

s





 

m
m ds

s





ds

m

q
n

u



y

x  

w
w ds

s





 

w

u
u ds

s





1236



 
 
 
 
 
 

Crack identification in post-buckled beam-type structures 

Considering the small amplitude vibrations around the post-buckled equilibrium configuration, 
the solution can be written as the sum of the equilibrium and harmonic parts in the following form 
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where indices e and d represent the equilibrium and dynamic states, respectively. In order to solve 
the vibration of the post-buckled beams, first the system of Eq. (3) is solved statically to determine 
the equilibrium shape. Eliminating the time related terms in Eq. (3), one can determine the 
following equilibrium equations 
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Next, the small vibrations around the post-buckled equilibrium are considered. Substituting Eqs. 
(4) into (3), and removing the nonlinear terms, the linear dynamic equations of motion can be 
obtained as 
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2.2 Crack model 
 
As mentioned in the preceding section, the cracked beam can be modeled as two separate 

segments connected with a rotational spring at the crack location (Fig. 3). In order to avoid the 
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nonlinear effects, the crack is also assumed to be open. This assumption is more acceptable when 
the beam is in post-buckled state. The bending moment has a direction so that its influence opens 
the crack. Therefore, the edges can be further separated for the cracks located on the outer surface 
of the beam. 

 The existence of the crack produces some local flexibility, which is a function of the 
dimensions and elastic properties of cracked region. Such flexibility results in geometric 
discontinuities around the crack sides. The flexibility coefficient, c, is calculated by making use of 
the relationship 

2

2
bW

c
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

                                  (7)

 

where Wb is energy of the elastic deformation caused by the crack and can be described by 
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KI is the stress intensity factor under mode one bending load and is equal to 
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where Mb is the bending moment at the crack section,  varies through the depth of the crack and 
/ h  . The flexibility function ( )F  is defined by the following relation (Saavedra and Cuitino 

2001, Karaagac et al. 2009) 
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Combining Eqs. (7)-(10), the flexibility coefficient is obtained as 

  

 
Fig. 3 Cracked beam modeled by a massless rotational spring 
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where ā=a/h.  
 

2.3 Continuity and boundary conditions 
 
The displacement, force and moment continuity conditions at the interface of the beam 

segments in equilibrium state are 
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The same continuity conditions in the dynamic state are 
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The change in the slope of the elastic curve at the crack position in equilibrium and dynamic 
states are given by 
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The displacement, slope and force boundary conditions at the simply supported ends in static 
and dynamic states are 
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and 

1 1 1
0 0 0

2 2 2
1 1 1

0,       0,  0,

0,       0, 0

d S d S d S

d S d S d S

U W M

U W M

  

  

  

  
                  (19)

 

The same boundary conditions for a beam with clamped ends can be represented by 

1 1 1
0 0 0

2 2 2
1 1 1

0,        0, 0,

,       0, 0

e S e S e S

e S e S e S

U W

N P W





  

  

  

  
                  (20)

 

1 1 1
0 0 0

2 2 2
1 1 1

0, 0, 0,

0, 0, 0.

d S d S d S

d S d S d S

U W M

U W M

  

  

  

  
                   (21)

 

 
2.4 Differential quadrature implementation 
 
The differential quadrature (DQ) method is utilized to solve both the nonlinear post-buckled 

equilibrium equations and linear dynamic equations of motion. The method states that the 
derivative of a function with respect to a space variable can be approximated by a weighted linear 
combination of function values at some intermediate points in the domain of that variable. 
Therefore, the first derivative of the function f=f(x) at an intermediate point xi can be represented 
as 
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where np is the number of grid spacing and Cij are the weighting coefficients for the first order 
derivatives given by (Shu and Richards 1992) 
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The following Gauss-Lobatto-Chebyshev grid points have been used to discretize each domain 
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where for the first segment X0=0 and X1=Lc, while for the second segment X0=Lc and X1=1-Lc. 
Application of the DQ method to the static post-buckled equations of (5) results in the following 
sets of nonlinear algebraic equations 
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Discretizing the static post-buckled equations and their corresponding continuity and boundary 
conditions leads to a system of nonlinear algebraic equations. In this study, an arc-length algorithm, 
based on the work of Forde and Stiemer (1987), and Al-rasby (1991) is used to solve the nonlinear 
system of equations resulting from the application of DQ method.  

Next, the small vibration of the cracked beam around the post-buckled equilibrium state is 
considered. Discretizing the system of Eq. (6) by the DQ method results in the following system of 
equations 
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The DQ method is also used to discretize the continuity and boundary conditions in the 
dynamic state, which, along with the above equations, results in a system of linear eigenvalue 
equations. The solution of this eigenvalue problem by a standard eigensolver provides the natural 
frequencies and corresponding modal shapes of the cracked post-buckled beam. 

 
2.5 Crack detection 
 
As described above, the natural frequencies of a cracked post-buckled beam are functions of 

the location and depth of the crack. Therefore, one could consider the crack detection procedure as 
an inverse problem and use experimental modal data to identify the cracks. An optimization 
algorithm can be applied to predict the crack parameters by searching for the optimum value of an 
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objective function. The location and depth of the crack can be regarded as the design variables, 
and the weighted sum of the squared errors between the measured and computed natural 
frequencies may be used as the objective or fitness function. 

Optimization algorithms that are based on the random search are more effective in finding the 
global optimum than the classical gradient-based methods. There are some random search 
techniques such as evolutionary algorithms (EAs) (Ashlock 2006), which use global search 
methods inspired from natural evolution. Among these methods, biology inspired and 
swarm-based optimization algorithms are the most popular. These methods search from a 
population of solutions instead of relying on a single point. In this study, the bees algorithm 
(Moradi et al. 2011) has been used to minimize the fitness function. It is based on the food 
foraging behavior of swarms of honey bees. The method performs a neighborhood search 
combined with a random search and can be used for engineering optimization. It searches for the 
particular crack parameters (i.e., location and depth) which results in corresponding changes in 
natural frequencies amongst different possible solutions. The objective function, f, to be minimized 
is defined as 

 
2

1

, log
mn
i i

c c i m
i i

f L a w


  
   


                     (28)
 

where ac is the crack depth to beam thickness ratio (i.e., a/h), i
m is the ith measured 

dimensionless natural frequency of the cracked beam, i refers to the ith numerical dimensionless 
natural frequency calculated by DQ, and wiis the ith weighting factor. The first three natural 
frequencies of the beam (i.e., n=3) are used to construct the objective function. Additionally, in 
considering the random nature of the algorithm, the best results of 10 runs have been reported as 
the final result. 

 
 

3. Results 
 

To validate the algorithm presented in the last section, several numerical as well as 
experimental case studies were performed on simply supported and clamped-clamped cracked 
beams made of polyvinylchloride (PVC). Modulus of elasticity, Poisson’s ratio, and density of the 
PVC beam are 3.7 Gpa, 0.4 and 1400 kg/m3, respectively. Three kinds of beams with the 
dimensions specified in Table 1 are used throughout the study. The accuracy of the results is 
assessed by defining the following errors, which indicate the difference between the exact and the 
predicted crack parameters 

100,           100l ce cp h ce cpL L a a      
                (29)

 

 
Table 1 Dimensions of the beams 

No. l (mm) b (mm) h (mm) 

1 895 25 10 

2 1000 25 10 

3 775 20 10 
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where Lce and Lcp are the exact and the predicted dimensionless crack positions, and ace and acp are 
the exact and the predicted crack depth ratios, respectively. 

 
3.1 Numerically-simulated damage studies 
 
In order to verify the robustness of the method, numerically-simulated cases with different 

damage parameters and end conditions were tested. First, a beam, whose material properties and 
dimensions are similar to beam No. 1 of Table 1, simply supported at both ends and undergoing 
150 mm end shortening, was selected. The cracks were placed at different locations and depths, 
and the corresponding natural frequencies were calculated numerically. Fig. 4 shows the variation 
of the first eight natural frequencies of the beam having a crack with relative depth of 0.2 in terms 
of the compressive load. The figure shows that as the applied load increases from zero to the 
buckling load, all the frequencies are reduced smoothly. The same conclusion can be made after 
buckling, except for the first mode. The fundamental frequency changes rapidly with the increase 
in applied load; where for a compressive load of 1.1Pcr, it exceeds the 8th frequency. The first 
mode shape of the beam is the first symmetric stretching-bending mode, whereas the next seven 
modes are the bending mode shapes. Since the dynamic stretching-induced stiffness dominates the 
elastic bending stiffness, for the first mode the natural frequencies increase with the increase in 
applied load. 

Therefore, at the state of postbuckling, the fundamental frequency has exceeded the amount of 
several higher frequencies. Since in this study the first three lowest frequencies have been 
measured and used in optimization algorithm, they are in fact corresponding to the second, third 
and fourth frequencies. 

Then bees algorithm was employed to predict the crack parameters. Table 2 shows the outcome 
of the crack detection scheme. 

 
 

 
Fig. 4 The first 8 natural frequencies of simply supported cracked beam (a/h=0.2 and Lc=0.5) 
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Table 2 Prediction results of the numerical study for simply supported beam with 150 mm end shortening 

P/Pcr 

Exact crack Predicted crack Error % 

Lc ac Lc ac l a 

1.087 

0.3 

0.1 0.29992 0.09997 0.008 0.003 

1.083 0.2 0.29976 0.20025 0.024 0.025 

1.076 0.3 0.30008 0.30002 0.008 0.002 

1.086 

0.4 

0.1 0.39997 0.09996 0.003 0.004 

1.081 0.2 0.40005 0.20002 0.005 0.002 

1.071 0.3 0.40007 0.29999 0.007 0.001 

1.086 

0.5 

0.1 0.50132 0.09998 0.132 0.002 

1.078 0.2 0.49943 0.20002 0.057 0.002 

1.069 0.3 0.50000 0.30001 0.000 0.001 

 
 
It is observed from the table that the proposed method predicts the crack parameters very well. 

The maximum errors occur for the cases with small depth cracks. Moreover, it can be understood 
from the table that with fixed end shortening, the postbuckling load decreases conspicuously as the 
crack depth increases. 

The effect of end shortening on crack identification is investigated in Table 3 for a simply 
supported beam made of beam No. 2, having a crack at its mid span and at different depths. The 
table shows that the postbuckling load is increased as the end shortening increases. The errors 
associated with crack identification are quite acceptable even for cracks with small depth ratios. 

 
 

Table 3 Prediction results of the numerical study for simply supported beam with a crack at its mid span 

End 

shortening 
P/Pcr 

Exact crack Predicted crack  Error % 

Lc ac Lc ac  l a 

200 mm 

1.107 

0.5 

0.1 0.49930 0.10004  0.070 0.004 

1.101 0.2 0.49728 0.19999  0.272 0.001 

1.091 0.3 0.50409 0.29894  0.409 0.106 

300 mm 

1.175 0.1 0.49996 0.10000  0.004 0.000 

1.169 0.2 0.50083 0.20002  0.083 0.002 

1.157 0.3 0.50315 0.30137  0.315 0.137 

400 mm 

1.253 0.1 0.49574 0.10009  0.426 0.009 

1.246 0.2 0.50354 0.19996  0.354 0.004 

1.234 0.3 0.49844 0.30002  0.156 0.002 
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Next, the effect of changing the end conditions is examined. The variation of the first four 
natural frequencies of a clamped-clamped beam, having a crack with the relative depth of 0.2, in 
terms of the applied load is computed numerically and demonstrated in Fig. 5. 

For clamped-clamped beams, the odd frequencies increase rapidly just after the buckling while 
the even modes experience some decrement after the buckling (Neukirch et al. 2012). Moreover, 
when the beam undergoes large deflection after the buckling, the second, third and fourth natural 
frequencies decrease as the applied compressive load increases due to overall stiffness drop caused 
by the negative geometric stiffness. The fundamental frequency experiences a sharp growth 
immediately after the buckling load, and smoothly continues increasing with the increase in 
applied load. This is because the dynamic stretching-induced stiffness dominates the elastic 
bending stiffness, while for the other modes the bending stiffness is dominant (Addessi et al. 
2005b). Therefore, the first natural frequency increases with the increase in applied load. The 
figure shows that at the state of postbuckling the amount of third frequency has been exceeded 
those of the first, second and forth frequencies. Again, as the first three lowest frequencies have 
been used in this study, they are in fact corresponding to the second, first and forth frequencies. 
 

Fig. 5 The first four natural frequencies of clamped-clamped cracked beam 
 
 

Table 4 Prediction results of the numerical study for clamped-clamped beam with 130 mm end shortening 

P/Pcr 

Exact crack Predicted crack Error % 

Lc ac Lc ac l a 

1.0857 

0.5 

0.1 0.49794 0.10002 0.206 0.002 

1.0783 0.2 0.50095 0.20000 0.095 0.000 

1.0655 0.3 0.49866 0.30001 0.134 0.001 
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(a) (b) 

(c) 

Fig. 6 Variation of the first three natural frequencies of the beam with the crack position for P/Pcr=1.2
 
 
The crack prediction study for beams with clamped ends is presented in Table 4. The end 

shortening is fixed at 130 mm for beam No. 3 of Table 1, having a crack at its mid span and at 
different depths. Again, the accuracy of the identification of crack parameters is excellent. The 
maximum error associated with the crack positions is less than 0.21%, while the maximum crack’s 
depth prediction error is limited to 0.002%. 

The effect of the crack location on the natural frequencies of the beam under the compressive 
load of 1.2Pcr is considered next. Fig. 6 shows the variation of the first three natural frequencies of 
a clamped-clamped beam, made of beam No. 3, as a function of the crack position for different 
crack depths. As illustrated in the figure, increasing the crack depth results in reduction in beam’s 
stiffness and leads to the natural frequency decrement. Owing to the variation of bending moment 
throughout the beam, the change in frequency varies for different crack positions. Since the axial 
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compressive force exerted on the beam is fixed, any crack growth decreases the beam stiffness, 
increasing its end shortening and resulting in beam to be further bent. Therefore, it is expected that 
when the crack is positioned at certain points, the natural frequencies increase. 

The variation of the first three natural frequencies of the beam under the compressive load of 
1.2Pcr is plotted against the crack depth ratio for different crack positions in Fig. 7. 

 
3.2 Experimental verification 
 
To further verify the effectiveness of the presented approach, an experimental study was carried 

out on simply supported and clamped-clamped cracked beams. Mechanical properties and the 
dimensions of the test specimens were selected the same as those described in numerical 
simulation study. Different fixtures were used to represent the simply supported and clamped 
boundary conditions. Then, the load was applied to the beam to produce the state of postbuckling 
with certain amounts of end shortening. The data acquisition system consisted of a hammer 
(Global Test type AU02), a miniature accelerometer (B&K Type 4516), and a signal analyzer 
(B&K type 3032A) (see Fig. 8). These hardwares were utilized to measure the lowest three natural 
frequencies of the intact beams. Next, the open edge cracks were introduced by making fine saw 
cuts at different positions of the beam, perpendicular to the longitudinal axis and throughout the 
width. 

 
 

(a) (b) 

(c) 

Fig. 7 Natural frequencies of the beam as a function of the crack depth for P/Pcr=1.2 
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As seen from the Fig. 8, the crack always remains open during the small amplitude vibration 
test. For simply supported ends, the generated cracks were in three relative locations (i.e., Lc=0.3, 
0.4, 0.5) and three relative depths (i.e., ac=0.1, 0.2, 0.3) of the beams. Fig. 9(a) shows a simply 
supported beam with a crack at its mid span in the postbuckling state.  

At each step, the beam impacted with the hammer, and the three lowest natural frequencies of 
the cracked beams were measured. The corresponding natural frequencies of the cracked beams 
are presented in Table 5, referred as the cases 1-15, for different end shortenings. 

Beam No. 1 has been used for the case numbers 1-6. For these cases, in which the cracks are 
not placed at the beam’s mid span in the postbuckling state, the table shows that as the crack 
progresses through the depth of the beam, there is a reduction in beam’s stiffness, leading to the 
natural frequency decrement. In addition, as the end shortening is fixed, stiffness reduction results 
in a decrease in applied compressive load and consequently a small increase in natural frequencies. 

 
 

 
Fig. 8 Experimental setup

 
 
 

(a) (b) 

Fig. 9 (a) Simply supported beam and (b) Clamped-clamped beam 
 
 
 

1248



 
 
 
 
 
 

Crack identification in post-buckled beam-type structures 

Table 5 Experimental natural frequencies of cracked beams 

Case 

no. 

End shortening Crack parameter Frequency (Hz) 

Lc ac ω1 ω2 ω3 

1 

150 mm 0.3 

0.1 26.470 73.250 136.450 

2 0.2 26.240 73.140 136.120 

3 0.3 25.750 73.020 135.760 

4 

150 mm 0.4 

0.1 26.520 73.370 136.800 

5 0.2 26.330 73.190 136.200 

6 0.3 25.890 72.660 134.000 

7 

200 mm 0.5 

0.1 20.120 56.860 108.730 

8 0.2 20.340 56.710 109.430 

9 0.3 20.570 56.430 110.250 

10 

300 mm 0.5 

0.1 18.025 56.063 106.501 

11 0.2 18.203 55.874 106.672 

12 0.3 18.457 55.560 107.012 

13 

400 mm 0.5 

0.1 15.790 52.875 104.672 

14 0.2 15.890 52.625 105.129 

15 0.3 16.120 52.361 105.475 

16   0.1 55.375 93.442 175.113 

17 130 mm 0.5 0.2 55.752 92.985 174.651 

18   0.3 56.428 92.677 174.752 

 
 
Application of the proposed algorithm to the measured frequencies results in the prediction of 

the crack parameters, which are tabulated in the first six rows of Table 6. The table confirms the 
integrity of the proposed method. As shown in this table, the maximum crack position error is 
5.1%. Also, the error associated with the prediction of the crack’s depth is limited to 4.3%. 

The next case study examines the effect of end shortening on the crack identification for beam 
No. 2, simply supported at both ends and having a crack at its mid span. The three lowest natural 
frequencies of the cracked beam are represented in Table 5, referred as the cases 7-15, for different 
end shortenings and crack depth ratios. It can be understood from the table that increasing the end 
shortening leads to a decrement in natural frequencies for a certain amount of crack depth ratio. 
However, for the first and third natural frequencies, which are correspond to the first and second 
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antisymmetric mode shapes, the crack coincides with a node at the mid spam of the beam, causing 
the beam to experience only the increase in natural frequencies due to the reduction of 
post-buckled axial load. Therefore, the crack propagation through the thickness results in 
increasing the first and third frequencies and decreasing the second frequencies. 

The case number7 to15 of Table 6 summarize the crack prediction outcome. The maximum 
errors occurred in predicting the crack positions and depths are 3.9% and 3.7%, respectively. 
Again, the methodology used here successfully predicted the crack parameters even for high 
amounts of end shortening.  

 
 
Table 6 Prediction results of the experimental study  

Case no. 
Exact crack Predicted crack Error % 

Lc ac Lc ac l a 

1 

0.3 

0.1 0.257 0.136 4.3 3.6 

2 0.2 0.336 0.229 3.6 2.9 

3 0.3 0.265 0.330 3.5 3.0 

4 

0.4 

0.1 0.358 0.134 4.2 3.4 

5 0.2 0.429 0.177 2.9 2.3 

6 0.3 0.451 0.343 5.1 4.3 

7 

0.5 

0.1 0.461 0.132 3.9 3.2 

8 0.2 0.527 0.186 2.7 1.4 

9 0.3 0.535 0.329 3.5 2.9 

10 

0.5 

0.1 0.531 0.129 3.1 2.9 

11 0.2 0.473 0.218 2.7 1.8 

12 0.3 0.468 0.333 3.2 3.3 

13 

0.5 

0.1 0.536 0.136 3.6 3.6 

14 0.2 0.477 0.223 2.3 2.3 

15 0.3 0.539 0.337 3.9 3.7 

16  0.1 0.458 0.129 4.2 2.9 

17 0.5 0.2 0.537 0.230 3.7 3.0 

18  0.3 0.443 0.342 5.7 4.2 
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The effect of changing the end conditions on crack prediction results is investigated next. For 
this test, a sample with the specification of beam No. 3 of Table 1 was considered; a beam with a 
crack at its mid span, clamped at both ends and compressed axially to produce a state of 
postbuckling with 130 mm end shortening (Fig. 9(b)). The corresponding natural frequencies of 
the cracked beam are presented in the last three rows of Table 5.  

Also, the crack prediction results are given in the last three rows of Table 6. The highest errors 
occurred when detecting the crack with the relative depth of 0.3 (i.e., 5.7% and 4.2% for 
estimating the crack location and its depth, respectively). This means that the predicted crack 
location and its depth differ as much as 44.2 mm, and 0.42 mm from the exact ones, respectively.  

 
 

4. Conclusions 
 
In this study, the crack identification problem was investigated for beam-type structures under 

postbuckling state. The open crack, modeled by a rotational spring, divided the beam into two 
segments. For the forward problem, the solution consisted of the summation of the static and 
dynamic parts. The differential quadrature method along with an arc length strategy was used to 
solve the static part, while the same method and an eigensolver were utilized to solve the 
linearized dynamic part. For the inverse problem, a swarm-based evolutionary optimization 
technique, namely the bees algorithm, was used to minimize the weighted sum of the squared 
errors between the measured and computed natural frequencies, and to find the crack location and 
depth. Several numerical as well as experimental case studies on the post-buckled simply 
supported and clamped-clamped beams having an open crack were performed. The effect of 
several factors such as end shortening, boundary conditions, and position and depth of the cracks 
on the predicted crack parameters were investigated. The identification results show that the crack 
position and depth can be predicted well by the presented method. The investigation also showed 
that the boundary conditions as well as the amount of the applied compressive load highly affect 
the dynamic response of the structure and consequently the results of the crack detection scheme. 
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