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Abstract.      The present paper deals with the free vibration analysis of the functionally graded solid and 
annular circular plates with two functionally graded piezoelectric layers at top and bottom subjected to an 
electric field. Classical plate theory (CPT) is used for description of the all deformation components based 
on a symmetric distribution. All the mechanical and electrical properties except Poisson’s ratio can vary 
continuously along the thickness direction of the plate. The properties of plate core can vary from metal at 
bottom to ceramic at top. The effect of non homogeneous index of functionally graded and functionally 
graded piezoelectric sections can be considered on the results of the system. 1st and 2nd modes of natural 
frequencies of the system have been evaluated for both solid and annular circular plates, individually. 
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1. Introduction 
 

Intelligent or smart materials have been discovered in India. They have found that these 
materials can absorb tiny particles when heated (Gautschi 2002, Tichý et al. 2010). Due to this 
phenomenon, the new introduced materials have been named “Ceylon Magnet”. Quartz has been 
known as first applied intelligent materials. In 1880, Pierre and Jacques Curie have presented 
scientific definition of smart materials. Since that time, these materials have been named 
piezoelectric materials. Word “piezoelectric” have been extracted from Greece word “piezen” that 
means pressure. 

Although, these materials primarily have been known as a material with absorption property, 
since 1880, sensorial applications has been highlighted and increased as a main and fundamental 
application of these materials especially in industrial instruments. Investigation on the relation 
between applied loads and electric potential in a piezoelectric structure such as plate, shell and 
disk can be considered as an important subject in the context of piezoelectric structures. 
Furthermore, usage the material with variable properties (functionally graded piezoelectric 
materials) can improve and develop design condition in order to attaining the best optimization of 
structure. Using the material with variable properties can propose optional design for designers 
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and engineers. 
The properties of functionally graded materials can vary continuously along the axis of 

coordinate system. These materials have been created for the first time in laboratory by a Japanese 
group of the material scientists (Yamanouchi et al. 1990). For many advantageous properties, these 
materials can be used in the vigorous environments with abruptly gradient of the pressure and 
temperature.  

A comprehensive study of literature can carefully justify the necessity of the proposed subject 
and novelty of this study. 

Nonlinear analysis of functionally graded plates and shallow shells has been studied by Woo 
and Meguid (2001). They considered the effect of geometric nonlinearity on the results of the 
problem. Chen et al. (2004) studied the free vibration analysis of simply supported, fluid-filled 
cylindrically orthotropic functionally graded cylindrical shells with arbitrary thickness. Predefined 
functions with unknown amplitudes have been employed in order to substitute in governing 
differential equations. An exponential function of natural frequency and time dependency has been 
considered in predefined functions.  

Prakash and Ganapathi (2006) analyzed flexural vibration and thermo elastic stability of the 
functionally graded circular plates using the finite element approach. Varying along the thickness 
direction and uniform distribution has been considered for temperature distribution. Fundamental 
governing equations have been derived by using the Lagrange’s equation of the motion. 

Huang and Shen (2006) considered the vibration analysis and dynamic responses of 
functionally graded square plates bonded with piezoelectric layers under thermal loads. The 
nonlinear formulations were based on the higher-order shear deformation and general von Karman 
plate theories. Thermal buckling and free vibration analyses of a functionally graded cylindrical 
shell with temperature-dependent material properties were presented by Kadoli and Ganesan 
(2006). Clamped-clamped boundary conditions were imposed on the boundaries.  Bhangale et al. 
(2006) performed the linear thermoelastic buckling and free vibration analyses for a functionally 
graded truncated conical shells.  

The linear and nonlinear vibration analyses of a three-layer coating-FGM-substrate cylindrical 
panel with general boundary conditions were performed by Liew et al. (2006). They assumed that 
cylindrical panel subjected to a temperature gradient along the thickness direction. The natural 
frequencies have been calculated in terms of various parameters such as non homogeneous index, 
temperature rising and mode of vibration. GhannadPour and Alinia (2006) investigated the large 
deflection analysis of a rectangular FG plate based on the Von Karman theory for simulation of the 
large deflection. The solution was obtained using minimization of the total potential energy with 
respect to unknown parameters. The solution has directed authors to investigate the effect of non 
homogeneity on the stresses and deformations. 

Nonlinear thermal bending analysis of FGM plates under combination of thermal and electrical 
loads has been studied by Hui-Shen Shen (2007).  

Efraim and Eisenberger (2007) analyzed the free vibration analysis of the annular FGM plates. 
They considered three displacement components along the radial, circumferential and transverse 
directions and two rotational components around the radial and circumferential directions. 
Allahverdizadeh et al. (2008 a, b) investigated the nonlinear free and forced vibration of thin 
circular FG plates. For the assumed structure, they performed a study for studying the vibration 
amplitude and thermal effect. The analysis was assumed to be axisymmetric and solution was 
derived based on a semi-analytical approach. Non-linear shooting and Adomian decomposition 
methods have been proposed to determine the large deflection of a cantilever beam under arbitrary 
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loading conditions by Banerjee et al. (2008). 
Ebrahimi and Rastgo (2008) investigated on the free vibration analysis of the circular plates 

made of functionally graded materials. The power function is employed for simulation of the 
material properties distribution along the thickness direction. Plate was composed of a FG layer 
and two FGP layers at top and bottom of that. The obtained results were verified by those obtained 
results from three dimensional finite element analyses. They showed that natural frequencies of the 
structure tend to an asymptotic value for non homogeneous indexes greater than 10.  

Li et al. (2008) studied the three dimensional vibration analysis the functionally graded plates. 
They used various theories of plate analysis such as Classical Plate Theory (CPT), First order 
Shear Deformation Theory (FSDT), Third order Shear Deformation Theory (TSDT), and 
compared the previous results with the mentioned plate theories. The Hamilton’s principle has 
been used for derivation of the final relations and results. A set of complete and orthogonal 
Chebyshev polynomial functions have been employed. Selection of these functions has some 
advantages such as high convergence rate and stability.  

Alinia and GhannadPour (2009) investigated the large deflection analysis of a rectangular FG 
plate with logarithmic distribution of material properties. Khoshgoftar et al. (2009) investigated 
thermo elastic analysis of a FGP cylinder under pressure. It was assumed that all mechanical and 
electrical properties except Poisson ratio vary continuously along the thickness direction based on 
a power function. Malekzadeh and Vosoughi (2009) investigated the large amplitude vibration of 
composite beams on the nonlinear elastic foundation. The foundation was supposed that has cubic 
nonlinearity with shearing layer.  

Sarfaraz Khabbaz et al. (2009) investigated the nonlinear analysis of FG plates under pressure 
based on the higher-order shear deformation theory. The first and higher order shear deformation 
theories were employed to investigate the large deflection of FG plate. The effect of the thickness 
and non homogeneous index were investigated on the distribution of the displacements and 
stresses. Some application and analysis of functionally graded and functionally graded 
piezoelectric materials can be considered in the recent publications (Soufyane 2009, Olfatnia et al. 
2010, Zyłkaa and Janus 2010, Rahimi et al. 2011, Arefi and Rahimi 2011, 2012a, b, c, d, Arefi et 
al. 2011, 2012). Hosseinzadeh and Ahmadian (2010) developed static and dynamic instability of a 
functionally graded microbeam bonded with piezoelectric layers due to the electric actuation. The 
results of this research can be used in micro electro mechanical systems, especially in micro 
switches   

Due to usage of piezoelectric structures with constant or variable properties in serious 
conditions, studying the free vibration characteristics of the functionally graded plates integrated 
with piezoelectric layers is important for technical applications. The effect of non homogeneous 
index can be considered as the most important results of this study. Studying the effect of various 
values of piezoelectric thickness and different boundary conditions is another important result of 
this paper. 

 
 

2. Formulation 
 
This section presents the basic equations for free vibration analysis of the functionally graded 

solid and annular circular plates with two functionally graded piezoelectric layers. The classic 
plate theory (CPT) is employed for description of the time-dependent displacements. In the 
classical plate theory, the displacement of every layer is expressed by two terms including the 
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displacement of mid-plane and rotation about the mid-plane (Ugural 1981, Ebrahimi and Rastgo 
2008, Arefi and Rahimi 2012b, Allahverdizadeh et al. 2008). Therefore, three time-dependent 
displacement components can be defined as 

0
0

0

( , )
( , , ) ( , )

( , , ) ( , )

w r t
u r z t u r t z

r
w r z t w r t

  


 

                                                    (1) 

where, 0 0,u w  are displacement components of the plate mid-plane ( 0z  ) and ( ,0, )u u w


is 
symmetric displacement vector. The components of strains can be obtained using (Lai 1999) 

 1
2

T   u u
 

                                                        (2) 

where, ( ,0, )u u w


 is the vector of displacement as defined in Eq. (1). Due to symmetric 
distribution of loading, material properties and boundary conditions, the problem must be regarded 
as a symmetric problem and then r  and consequently r  must be zero. The components of 

strains can be obtained using Eqs. (1) and (2) as follows (Allahverdizadeh et al. 2008) 
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rr
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



 
 

 


 
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                            (3) 

As shown in Fig 1, the plate is containing the piezoelectric layers. Therefore, the constitutive 
equations for this structure are (Khoshgoftar et al. 2009, Arefi and Rahimi 2011, Qian et al. 2008) 

ij ijkl kl ijk kC e E                              (4) 

 
 

Fig 1 The schematic figure of a functionally graded circular plate bonded with functionally graded 
piezoelectric layers 
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in which, ij and kl are the stress and strain components, kE is electric field, ijklC and ijke are 

the stiffness and piezoelectric coefficients. Electric field kE  is obtained by a potential function
( , , )r z t  as follows (Khoshgoftar et al. 2009, Arefi and Rahimi 2011, Ebrahimi and Rastgo 2008) 

( , , )

( , , ) 0

( , , )

r

z

r z t
E

r
r z t E

r z t
E

z





 


   
  

   


                          (5) 

Due to symmetric distribution of the electric potential, the circumferential component of 
electric field E  is zero. The electric displacement iD  in the electromechanical system is 
defined using the linear composition of the strain and electric field as (Qian et al. 2008, 
Khoshgoftar et al. 2009, Arefi and Rahimi 2012)   

i ijk jk ik kD e E                              (6) 

where, ik are the dielectric coefficients. Due to small ratio of the plate thickness with respect to 

the radius of the plate, the normal stress zz and shear stresses ,rz z  are negligible. The 
constitutive equations based on the plane stress condition for elastic sections of the plate (FG) 

e eh z h    are expressed as 

e e
rr rrrr rr rr
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rr rr
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                        (7) 

The constitute equations for piezoelectric sections of the plate (FGP) e e ph z h h   are 

p p
rr rrrr rr rr rrr r rrz z

p p
rr rr r r z z
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                (8) 

The electric displacement equations for piezoelectric sections of the plate (FGP) 

e e ph z h h   are 

r rrr rr r rr r rz z

z zrr rr z zr r zz z
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                   (9) 

Using Eqs. (3), (5), (7), (8) and (9), the potential energy per unit volume of the plate pu  can 
be evaluated analytically as follows (Arefi and rahimi 2011) 

1 { }2
1 { }2

T T
p

p rr rr r r z z

u

u D E D E    

  

   

E D 
                (10) 

After derivation of potential energy of the system, we can use the Hamilton principle to 
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compose total energy of the system. Total energy of the system is including potential energy, 
kinetic energy and energy due to external works. By introducing potential energy by pu , kinetic 

energy by ku and energy due to external works by wu , Hamilton principle can be written for 
evaluation of total energy of the system, U  that is including the strain energy, kinetic energy and 
energy due to external works as follows 

( )

( )

( )
e p

e p

k p

h h

A h h A

u u

U dzdA p r wdA


 

  

     
                      (11) 

In which ku and pu are kinetic and potential energy, respectively and can be introduced as 
follows 

2 2. .
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           (12) 

where, ( )z  is variable density of used material.  
The energy equation must be divided for two different sections of the plate as follows 
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(13) 

The functionally graded annular circular plate is assumed to be under fixed supports at outer 
and inner radii. Therefore the displacements and the slope of that at outer and inner edges are zero. 
Furthermore it is assumed that electric potential is zero at outer and inner edges. The procedure of 
solution can be continued with assumption of three fields for displacements and electric potential. 
The appropriate power function can be employed for description of deformation and electric 
potential in an annular circular palte as follows (Ugural 1981) 
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where, ,p pU W and p describes the amplitudes of the displacement components and electric 

potential, n  defines the number of the required terms for definition of the three assumed fields. 
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Harmonic vibration is considered by employing the time-dependent exponential function i te  .   
denotes the frequency of excited harmonic vibration. ( )f z guarantees this assumption that the 
electric potential at top and bottom of two piezoelectric layers must be zero. Therefore this 
function is (Ebrahimi and Rastgo 2008) 

22 2
( ) ( ) 0 ( ) (1 { } )e p

e e p
p

z h h
z h z h h f z

h
 

 
                  (15) 

By substitution of strain-displacement and electric field-electric potential equations in the 
behavioral equations, we will have 
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Substitution of stress, strain, electric displacement and electric field equations in Eq. (12) 
presents final form of energy equation as follows 
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Energy per unit volume of the structure that derived using Eq. (17) can be integrated for FGM 
and FGPM sections individually using Eq. (13). The total energy is evaluated in terms of the 
displacements amplitude ,p pU W  and electric potential p and natural frequency   by 

substitution of displacement and electric potential fields from Eq. (14) into Eqs. (17) as follows 

( , , )p p pU U U W                             (18) 

The solution of the system can be obtained by minimizing the energy equation (Eq. (18)) with 
respect to three amplitudes , ,p p pU W  . Rearranging the minimized energy equation yields 

2([K]- [ ]) 0M U 


                           (19) 
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In which {     }T
p p pU U W 


 is symbolic vector of displacements and electric potential.  

Assumption of zero solution for U


tends to a trivial solution. In order to avoid this trivial 

solution and for evaluation of the nontrivial solution, we must consider coefficient of U


. This 
consideration yields the natural frequencies of the system as follows 

2[K]- [ ] 0M                               (20) 

This minimizing tends to a system of algebraic equations (Eq. (20)). The algebraic equation can 
be solved and then final solutions of the system may be obtained analytically. The algebraic 
equations can be solved by using the various analytical or numerical methods based on a computer 
program or package. Within these methods, solution by using the mathematical software is 
preferred.  

 
 

3. Material properties 
 
Before solution of the problem, it is appropriate to define the material properties for the FG and 

FGP layers. For FG layer, it is assumed that the bottom of the plate is steel and top of that is 
ceramic. Therefore the distribution of the material properties for FG layer is (Ebrahimi and Rastgo 
2008) 
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where, ( )e mE z h E   , ( )e cE z h E  , 2 eh  is thickness of elastic solid section of the plate and 

1n is the non-homogeneous index of ceramic-metal section of the plate. The distribution of the 

mechanical and electrical properties for the two FGP layers can be supposed as a power function 
along the thickness direction as follows (Khoshgoftar et al. 2009) 
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where, iE  represents the value of the all mechanical and electrical components at ez h  and eh

is thickness of the piezoelectric section. 2n denotes the index of variable properties along the 

thickness direction in piezoelectric section of the plate. By these assumptions (Eqs. (21) and (22)), 
the energy equation can be obtained using Eq. (13). By minimization of the energy equation using 
Eq. (18), a set of equations can be derived. The solution of the equations can be evaluated using 
the Maple software. 

The variable material properties of the FGP plate are selected as follows 
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The necessary numerical values for the circular plate can be considered as follows 
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4. Numerical results 
 

In this section, the effect of different values of non homogeneous index can be considered on 
the behavior of the system. The obtained results can be classified to two classes. The first class of 
results considers the effect of different functionalities of FGM core while the second class 
considers the effect of different functionalities of FGPM integrated layers. All obtained results can 
be presented for two costume geometries i.e., solid circle and annular circular plates. 

 
4.1 Solid circle 
 
It is assumed that outer surface of the plate is constrained. For this model, we can employ 

following harmonic distribution for displacement and electric potential fields 
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The effect of non homogeneity can be considered on the natural frequencies of the system. 
These considerations present useful and applicable results about application of different non 
homogeneous indexes in a structure made of functionally graded materials bonded with 
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piezoelectric materials. Shown in Figs 2, 3 are the 1st and 2nd natural frequencies of the solid 
circular plate in terms of different values of non homogeneous index of FGM core ( 1n ) 

The vibration behavior of functionally graded piezoelectric solid circle can be validated by 
considering the appropriate reference (Ebrahimi and Rastgoo 2008). By comparing the Figs. 2 and 
3 in this paper with same figures in the reference, you can conclude that by increasing the non 
homogeneous index of FGM core, natural frequencies of the system tend to an asymptotic value.    

 
 

Fig. 2 1st natural frequency in terms of different values of non homogeneous index of FGM core 
 

Fig. 3 2nd natural frequency in terms of different values of non homogeneous index of FGM core 
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Shown in Figs 4, 5 are the 1st and 2nd natural frequencies of the solid circular plate in terms of 
different values of non homogeneous index of FGPM layers ( 2n ). 

 
 

 

Fig. 4 1st natural frequency in terms of different values of non homogeneous index of FGPM layers 
 
 

 

Fig. 5 2nd natural frequency in terms of different values of non homogeneous index of FGPM layers 
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4.2 Annular circle 
 
For an annular circular plate model, we can employ Eq. (14) for harmonic distribution of 

displacements and electric potential. The effect of non homogeneous indexes (FGM and FGPM) 
can be studied on the natural frequencies of the plate. For this purpose, the 1st and 2nd modes of 
natural frequencies of the FGM circular plates are evaluated. Figs. 6 and 7 show the 1st and 2nd 
natural frequencies of annular circular plate in terms of variable non homogeneous index of FGM 
core. This distribution indicates that the value of natural frequencies tend to asymptotic value for 
large values of non homogeneous index (Ebrahimi and Rastgo 2008). 
 

Fig. 6 1st natural frequency in terms of different values of non homogeneous index of FGM core 
 

Fig. 7 2nd natural frequency in terms of different values of non homogeneous index of FGM core 
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Figs. 8 and 9 show the 1st and 2nd natural frequencies of annular circular plate in terms of 
variable non homogeneous index of FGPM layers. 

 
 

 

Fig. 8 1st natural frequency in terms of different values of non homogeneous index of FGPM core 
 
 

 

Fig. 9 2nd natural frequency in terms of different values of non homogeneous index of FGPM core 
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4.2.1 Amplitude of electric potential and radial displacement 
The free vibration analysis can be completed by evaluating the amplitude of electric potential 

and radial displacement in terms of varying the non homogeneous index of FGM core. Figs. 10 
and 11 show the amplitude of electric potential and radial displacement in terms of varying non 
homogeneous index. These results indicate that with increasing the non homogeneous index, both 
amplitudes tend to an asymptotic value. 
 

Fig. 10 The amplitude of electric potential in terms of different values of non homogeneous index of FGM 
core ( 1n ) 

 

 
Fig. 11 The amplitude of displacement in terms of different values of non homogeneous index of FGM 

core ( 1n ) 
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5. Conclusions 
 

The free vibration analysis of the functionally graded circular plates integrated with 
piezoelectric layers performed in the present study. Two custom types of circular plates have been 
considered for this analysis. Two natural frequencies of the plate in terms of various values of non 
homogeneous index have been evaluated for solid and annular circular plate, individually. The 
main results of this study can be presented as follows: 
1. Investigation of the effect of varying the non homogeneous index of employed 
functionally graded material indicates that the natural frequencies of the system decreases 
monotonically with increasing the value of non homogeneous index. This decreasing is valid for 
both types of assumed boundary conditions and models. The values of natural frequencies tend to 
an asymptotic value for high values of non homogeneous index of FGM section. This result is in 
accordance with literature (Ebrahimi and Rastgo 2008). 
2. The effect of variable non homogeneous index of FGPM section considered as another 
important result of this study. From the obtained results, it can be concluded that the natural 
frequencies of the both used models of the plates (solid and annular circular plates) decreases with 
increasing the non homogeneous index of piezoelectric layer, monotonically.  
3. The effect of constrains can be studied on the vibration characteristics of the plate. The 
obtained results indicate that adding constraints to the plate increases natural frequency of 1st mode 
of vibration. Unlike, natural frequency of 2nd mode of vibration decreases while constraints add to 
structure.   
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Nomenclature 

 

ijklC  stiffness coefficient  ,r z  components of coordinate system 

e
ijklC  stiffness coefficient for FG layer 

,u w  displacement components at a general 

point 

p
ijklC  stiffness coefficient for FGP layer 

0 0,u w  displacement components at mid-plane 

iD  electric displacement ij  strain components 

ijke  piezoelectric coefficient ij  stress components 

kE  electric field components u  energy per unit volume 

2 eh  thickness of FG layer U  total energy of system 

ph  thickness of FGP layer ik  dielectric coefficient 

,a b outer and inner radii , ,n n nU W  amplitude of assumed function 

p  applied pressure   electric potential 

( )E z distribution of material properties p the number of terms for displacement and 

electric field 

1n  non-homogeneous index of FGM section 2n  non-homogeneous index of FGPM section 
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