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Abstract.  The main purpose of this research is to utilize simple mathematical models to depict the 
vibration behavior and the resulted sound field of a piezoelectric disk for ultrasonic transducers. Instead of 
using 1-D vibration model, coupled effect between the thickness and the radial motions was considered to be 
close to the real vibration behavior. Moreover, Huygens-Fresnel principle was used in both incident and 
reflected waves to analyze the sound field under obstacles in finite distance. Results of the tested 
piezoelectric disk show that, discrepancies between the simulation and experiment are 2.5% for resonant 
frequency and 12% for resulted sound field. Therefore, the proposed method can be used to reduce the 
complexity in modeling vibration problems, and increase the reliability on analyzing piezoeletric transducers 
in the design stage. 
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1. Introduction 
 

Piezoelectric material has the property for converting the electrical-energy to 

mechanical-energy and vice versa; therefore, it has been utilized often for building transducers. In 

particular, ultrasonic transducers made of piezoelectric materials have been applied on various 

fields such as sound field analysis (Wang 1996, Ding et al. 2003, Dugnani 2009, Gutierrez et al. 

2012), structural damage detection/reduction (Lee et al. 2013, Zenz et al. 2013), position control 

(Kung 2002, Liu et al. 2012), and wave generation (Nowotny and Benes 1987, Lin et al. 2013, 

Martins et al. 2012). Since all applications listed above are related to the vibration behavior and 

the resulted sound field of piezoelectric transducers, a good understanding of their vibration 

behavior may help to improve their performance. Therefore, the main purpose of this research is to 

establish and verify mathematical models for properly depicting the vibration of piezoelectric 

transducers. 

Vibration models of piezoelectric transducers have been studied a lot by researchers in the past 

couple decades. For example, the resonant frequency of a transducer could be expressed in an 

analytic form that was related to material properties (Tiersten 1963). Moreover, the steady state 
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vibration models with simple shapes such as flat plates and flat disks were well developed 

(Tiersten 1963, IEEE Standard 1987). On the other hand, finite element approaches were also 

utilized to analyze the dynamic behavior of piezoelectric transducers (Kunkel et al. 1990, Kocbach 

2000, Guo et al. 1992). 

However, when the dimensions in thickness and radial directions of a piezoelectric disk are in 

similar order, simple 1-D model is not enough to describe the vibration behavior precisely. In 

contrast, comprehensive understanding of coupled vibration analyses in the thickness and radial 

directions help to figure out the dynamic behavior. Lin in 1998 (Lin 1998) proposed a mechanical 

coupling coefficient, i.e., a ratio of stress between the thickness direction (z-axis) and its 

perpendicular direction (r-axis, θ-axis) as shown in Fig. 1, to derive the 

equivalent-coupled-vibration in two perpendicular directions. Although, this equivalence-based 

approach seemingly decoupled and simplified the original coupled vibration problem, it created 

another variable (i.e., the mechanical coupling coefficient) which required further experimental 

verification. Differently, Chi-Hung Huang et al. in 2004 (Huang et al. 2004) analytically derived 

the disk displacement in the thickness direction (z-axis) as a function of r-axis and θ-axis only 

based on plane stress assumption and showed consistency to the result of finite element analysis. 

Rather than requiring a mechanical coupling coefficient or a plane stress assumption in the 

thickness direction, Iula et al. in 1998 (Iula et al. 1998) described cylinder-shaped piezoceramic 

elements with an approximated coupled vibration model. The key point in their model is that 

coupled vibrations between the thickness and the radial directions were computed by complying 

the continuity-equation of integrated-stresses with the external forces. Although it is an 

approximated model, the predicted vibration behavior showed good consistency to experimental 

results. 

Beside vibration behaviors of a piezoelectric disk, the induced sound field (which causes 

pressure then) in the thickness direction is also important in practical applications. Griffice and 

Seydel in 1981 (Griffice and Seydel 1981), with geometrical approximations, applied the concept 

of spherical-continuous-wave on a transducer to calculate the longitudinal and transverse 

ultrasonic fields. Cheeke in 2002 (Cheeke 2002) computed the steady-state sound field resulted 

from a uniformly-vibrating piston in an infinite space by Huygens-Fresnel principle. Cheeke stated 

that infinite sound point sources were envisioned to spread on the piston surface and each point 

source emitted spherical wave. Therefore, pressure at any position in the front can be viewed as 

the contributions from each sound point source. 

In order to depict the vibration behavior and the resulted sound field of a piezoelectric disk well, 

merits proposed in early researches were integrated in this work. First of all, the approximate 

coupled vibration model of cylinder-shaped piezoceramic elements from Ref. (Iula et al. 1998) 

was adopted and integrated with the energy dissipation concept proposed by Lee et al. in 2004 

(Lee et al., 2004). In this part, a new problem-solving procedure is proposed and demonstrated to 

predict the vibration behavior at steady state. Secondly, the mathematical expression of the sound 

point source in Ref. (Cheeke 2002) was used to perform the Huygens-Fresnel principle for 

describing the sound propagation. In particular, the behavior of reflected pressure wave between 

the piezoelectric disk and the pressure sensor at steady state was studied for applications where an 

obstacle was placed in finite distance. Results of the tested piezoelectric disk show that, 

discrepancies between the simulation and experiment are 2.5% for resonant frequency and 12% for 

resulted sound field. Therefore, the novelty of this research is to propose a method that can be used 

to reduce the complexity in modeling vibration problems, and increase the reliability on analyzing 

piezoeletric transducers in the design stage. 
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The rest of the article is organized as follows. The theoretical analyses including piezoelectric 

disk vibration and sound propagation under obstacle are formulated in Section 2. Experimental 

results are presented with discussions in Section 3 and our conclusions are in Section 4. 

 

 

2. Theoretical analyses 
 

2.1 Coupled vibration model 
 

For a piezoelectric transducer, vibration modes in different axes are coupled especially when its 

dimension in different axes are comparable. In particular, for a transversely isotropic piezoelectric 

disk, the coupled vibration between the thickness and radial axes are explored in this article based 

on Ref. (Iula et al. 1998). 

Fig. 1 showed a piezoelectric disk with radius a and thickness b in cylindrical coordinate. The 

piezoelectric disk was coated with electrodes on the flat surfaces where an AC voltage j tVe   was 

applied. In order to model the vibration behavior, three assumptions were made as follows. First, 

because of the electrode position, the induced electric field 
rE  and E  were assumed zero 

everywhere inside the piezoelectric disk. Second, due to geometric symmetry, all quantities are θ 

independent and the displacement u  is zero; therefore, the coordinate axes r and z are the 

directions where the pure-mode-vibration propagates, i.e., ur = ur(r) and uz = uz(z). Third, the 

electrical field is applied in the z −axis which results in the dominant deformation of the 

piezoelectric disk; therefore, energy dissipation is considered in z –axis only and described in 

terms of a viscosity coefficient η. 
With assumptions shown above, the constitutive equations are simplified from Ref. (Ikeda 

1990, Lee et al. 2004) and reduced to 

11 12 13 31 ,D D D

rr rr zz zT c S c S c S h D                        (1) 

12 11 13 31 ,D D D

rr zz zT c S c S c S h D                        (2) 

13 13 33 33 ,D D D

zz rr zz zz zT c S c S c S S h D                       (3) 

31 31 33 33 .S

z rr zz zE h S h S h S D                         (4) 

 

 

Fig. 1 Schematic diagram of a piezoelectric disk with an applied AC voltage. Where is the surface 

vibration velocity, Fi  is the surface force (i = 1, 2, 3) 
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Besides, the relations between the strain tensor and the displacement vector are 

, , .r r z
rr zz

u u u
S S S

r r z


 
  
 

  (5) 

By Newton’s 2
nd

 law, motions in the radial and the thickness direction can be represented as 

2

2
,rrrr r

pzt

T TT u

r r t

 
 

 
 

                        (6) 

2

2
.zz z

pzt

T u

z t


 


 
                            (7) 

 

Substituting Eqs. (1),(2),(3) and (5) into Eqs. (6) and (7), the governing equations are 

2 2

11 2 2 2

1
,D r r r r

pzt

u u u u
c

r r r r t


   
   

   
                    (8) 

2 2 2

33 2 2 2
.D z z z

pzt

u u u
c

z t z t
 

   
  

    
                    (9) 

To solve the entire vibration problem, a strategy to sequentially deal with the dissipative 

portion and reversible portion of the governing equations is used and elaborated as follows. At 

first, by utilizing the method of variables separation to set uz=H(z)G(t), Eq. (9) can be rewritten as 

2

33

( )( )
,

( ) ( ) ( )

pzt

D

G tH z
K

H z c G t G t






  


                   (10) 

where K is a positive constant. In particular, the time related part of Eq. (10) forms a damped 

vibration equation 

2( ) 2 ( ) ( ) 0,n nG t G t G t                         (11) 

where 
2

33

D

n

pzt

c K



 is the natural frequency and 

2

2 n

K



 is the damping ratio. 

 

Remark 1 In order to convert the piezoelectric disk to an equivalent mass-damper-spring 

system shown in Eq. (11), the constant K should be the reciprocal of the disk thickness, i.e., 

153.85(1/m) in this research. 

 

Now, when a harmonic voltage input j tVe  is applied on the piezoelectric disk (i.e., a force 

term will be added in Eq. (11), the steady state solution can be expressed as 

)()(   tjXMetG                        (12) 
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where X is a constant to be determined, 

    
1/2

2
22

1

1 / 2 /n n

M

   



  
 

is the magnification 

factor, and 









 

2

1

)/(1

/2
tan

n

n






 

is the phase delay. Up to this point, the dissipative portion 

has been included in Eq. (12); therefore, only the reversible portion should be considered hereafter 

and Eqs. (3) and (9) can be simplified to be the following two equations, i.e. 

13 13 33 33 ,D D D

zz rr zz zT c S c S c S h D                      (13) 

2 2

33 2 2
.D z z

pzt

u u
c

z t


 


 
                          (14) 

Second, the steady state solutions of Eqs. (8) and (14) can be expressed as 

)(
112

)(
111 )()()(    tjtj

r erkYCerkJCru                (15) 

  )(
3433 )cos()sin()(   tj

z ezkCzkCzu                 (16) 

where J1 and Y1 are the Bessel’s function of the first kind of order one and second kind of order 

one, respectively. 1

1

k
c


 , 11

1

D

pzt

c
c


 , 3

3

k
c


 , 33

3

D

pzt

c
c


 are in turn the wave number and the 

wave propagation velocity in the r and z directions. 

The constants C1, C2, C3 and C4 can be determined with boundary conditions. According to Fig. 

1, at the center of disk (r = 0), peripheral surface (r = a) and two flat surfaces (z = 0; z = b), one 

has 

 
 

Then Eqs. (15) and (16) become 

 

 (17) 

 

 (18) 

Since forces should satisfy the continuity equation on boundaries, the force on every external 

surface of the disk is balanced by the integral of stresses, i.e. 
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                    (19) 

where A1, A2, and A3 are the areas of peripheral surface (r = a) and flat surfaces (z = 0; z = b). 

Moreover, the electric displacement toward z-direction, Dz, is a function of time only and is a 

constant with respect to the z-coordinate (Tiersten 1963); therefore, the current i is 

t

D
AIeMi ztj




 

2
)(   

and 

  )(

2





 tj
z e

aj

IM
D

 
                         (20) 

 

where MI is the amplitude of the current. Then, combination of Eqs. (1),(2),(5),(17),(18),(19), and 

(20) leads to 

 

 (21) 

where 11 1

1 1

D

pzt

c k
c z


  , 33 3

3 3

D

pzt

c k
c z


  are the specific acoustic impedances in r- and 

z-direction, respectively. 

In order to relate the applied voltage j tVe  to the vibration behavior of the piezoelectric disk, 

the electric field Ez in the z-direction should be solved first. By substituting Eqs. (17), (18), and (5) 

into (4), one has 

1068



 

 

 

 

 

 

The study on piezoelectric transducers: theoretical analysis and experimental verification 

 

 

(22) 

It can be seen that the electric field Ez obtained above is a function of r and z; therefore, in 

order to get an equivalent voltage for equi-potential, the voltage is computed by integrating the 

electrical field along r- and z-axis, and then taking average with the flat surface area (πa
2
), i.e. 

 

(23) 

where 
2

0

33

S

a
C

b




 . 

In summary, the mechanical and electrical characteristics of a piezoelectric disk can be 

combined based on Eqs. (21) and (23). It can be seen that there are four equations and eight 

unknowns to be determined; therefore, four boundary conditions are 

needed to solve this vibration problem. 

Taking piezoelectric disk shown in Fig. 1 for instance, one flat surface is attached to an 

aluminum plate with epoxy at the fixed end (see experimental set-up in Section 3) and the rest 

surfaces are surrounded by air. Then, the boundary conditions for stress-balance on each surface 

are 

 

(24) 

where zair and zepo are the specific acoustic impedances of air and epoxy, respectively. Therefore, 

the overall equation set can be expressed in a matrix form as shown in Eq. (25). It is noted that, by 

setting an angular frequency ω in Eq. (25), the corresponding displacement amplitude at the free 

end (i.e., at z = b) can be obtained through time integral of . 
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(25) 

  

Remark 2 The expression shown in Eqs. (1)-(4) are so-called (S,D)-type expression. Since 

piezoelectric constants are usually provided in (T, E)-type (i.e., in terms of E

IJs , diJ , and T

ij ), the 

transformation are used as follows 

 

 

 

1

1

1
1

1

,

,

,

S T E

ij ij iJ jJ JJ

D E T

IJ IJ iI ij iJ

T D

iJ ij jI IJ

d d s

c s d d

h d c

 














         

  
  



     

where the symbol prime denotes the transpose of a matrix, and I, J = 1, 2, ..., 6; i, j = 1, 2, 3. 

 

2.2 Sound field resulted from the vibration of a riezoelectric disk 
 

The vibration of a piezoelectric disk is utilized in acoustic applications as it causes sound field 

into medium. Moreover, it can be envisioned that infinite sound point sources spread on the 

vibrating surface of a piezoelectric disk (Cheeke 2002), and emit spherical waves away. With 

Huygens-Fresnel principle, the amplitude and the phase could be seen as the interference from 

each sound point source (Dehn 1960) shown in Fig. 2 and summed according to the principle of 

superposition. 

In Fig. 3, each infinitesimal area dA on the emitter (i.e., the piezoelectric disk; which vibrates 

with  at the free end) produces a differential pressure dp at a point on the sensor 

surface in distance r′, and this pressure dp can be expressed as (Cheeke 2002, Imamura 1991) 

 

where, cair is the sound velocity in air, and air

air

k
c


 is the wave number. From elementary 

geometry, the distance r′ can be derived as 

2 2 2 sin cos .e e er          
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Then the incident pressure pin on a point located at σs from the center of the sensor is the 

integral of dp over the surface of the piezoelectric disk, i.e. 

 

 (26) 

It can be seen that the incident pressure derived in Eq. (26) is a complex number which 

indicates phase shift from the emitter. 

In practical pressure measurements, where the emitter and pressure sensor are usually set 

concentrically in a finite distance, reflected waves are continuously bounced back-and-forth, and 

the overall reflected waves make the measured pressure value higher than those measured in 

non-reflection cases. To depict the continuous bouncing effect, Huygens-Fresnel principle can be 

utilized during every wave reflection. In other words, for every reflection, the reflected wave will 

be considered as a new pressure source and it will generate pressure on the surface in front of it. 

In order to describe the intensity of reflected waves in terms of incident waves, the reflection 

coefficient Rre from Ref. (Auld 1973) is utilized in this research 

 

,re re in

re

in re in

p z z
R

p z z


 


                             (27) 

where zin is the specific acoustic impedance of medium that contains the incident and reflected 

waves, and zre is the specific acoustic impedance of medium that contains the refracted wave (see 

Fig. 4). 

 

 

 

Fig. 2 Schematic diagram to show the interference of each spherical wave from a piezoelectric disk 
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Fig. 3 Geometric relation between the emitter (piezoelectric disk) and the pressure sensor for sound field 

analysis 

 

 

Fig. 4 Sound reflection and refraction at the boundary. Where zin and zre are the specific acoustic 

impedances;  and   are the incident angle and the refraction angle, respectively 

 

 

Thus, Eq. (26) can be modified to describe the pressure on the emitter and the sensor for every 

reflection as 
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2
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)(
2

)(
              (28) 

where n = 1, 2, 3 ∙∙∙ , denotes the n
th
 reflection, Rre,e and Rre,s are the reflection coefficients of the 

emitter and the sensor, respectively. Moreover, the averaged amplitude of the overall pressure on 

the pressure sensor, ,s totp , can be predicted as, 

 , ,
0

1

1
,

sa

s tot s n s s

ns

p p d
a

 




                     (29) 

which will be compared with the experimental result then. 
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Remark 3 ps,0(σs) in Eqs. (28) and (29) is the first incident pressure on the sensor, i.e., the 

pressure expressed in Eq. (26). 

 
 

3. Experimental results and discussions 
 

3.1 The resonant frequency of the piezoelectric disk 
 

As shown in Fig. 5, one surface of the piezoelectric disk (PZT8, the properties are shown in 

Appendix) was fixed to an aluminum plate with epoxy and the rest surfaces were surrounded by 

air. In order to measure the displacement of the piezoelectric disk at the free end, a home-made 

position measuring device was utilized which consisted of a laser source, a photodiode, and an 

analog circuit. In particular, the laser source was placed in front of the piezoelectric disk with a 

large incident angle to magnify the displacement as shown in Fig. 6. 

During the experiment, an AC voltage (100 Vpp) from the power amplifier (Model A-303 from 

A.A. LAB SYSTEMS LTD) was applied to the piezoelectric disk. Then, the vibration of the 

piezoelectric disk made the reflected light move back-and-forth on the bi-cell photodiode, and this 

signal was transformed by an analog circuit to the displacement. By varying the frequency of AC 

input, displacements of the piezoelectric disk at the free end could be obtained and plotted in Fig. 

7. 

 

 

Fig. 5 Schematic diagram of the experimental set-up for measuring the displacement of the piezoelectric 

disk at the free end 

 

 

Fig. 6 Schematic diagram of optical magnification: position 1 and 2 indicate the deformation of piezoelectric 

disk in the thickness direction at different time instance 
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Fig. 7 Comparison of displacement of the piezoelectric disk at the free end for experimental result and 

theoretical analysis under different damping ratios . The resonant frequency is around 77.03 kHz in 

theoretical analysis and 79.00 kHz in experiment. (note: the acoustic viscosities  corresponding to 

=[0.1, 0.4, 0.7] are 44453(N∙s/m
2
), 177810(N∙s/m

2
), and 311170(N∙s/m

2
), respectively) 

 

 

After inspecting the experimental results and comparing them with our theoretical analysis, 

some issues are worthy to be explored and elaborated as follows. 

 
Proposed Vibration Model with Consideration of Gluing Material Can Predict the Resonant 

Frequency Precisely It can be seen in Fig. 7 that the predicted resonant frequency complies with 

the experimental result well and the discrepancy is less than 2.5%. In addition, the resonant 

frequency derived from different methods were compared in Table 1. It can be seen that the 

resonant frequency predicted in proposed vibration model was closest to that in experiment. 

Moreover, without considering the epoxy (which was used to glue the piezoeletric disk on the 

fixed end), the finite element method will give worse prediction. 

The Acoustic Viscosity Affects the Amplitude of Displacement and Can be Determined via 

Experiment The amplitude of displacement will vary depending on different damping ratio ζ (see 

Fig. 7) and the damping ratio is a function of the acoustic viscosity η (see Eq. (11)), therefore, the 

acoustic viscosity of a material can be determined when the predicted peak displacement matches 

the experimental one. 

 

Uncertainty of Material Properties Cause Significant Shift in the Predicted Displacement By 

utilizing sensitivity analysis, the effects of material properties on the predicted results are realized. 

In particular, three properties that affect the predicted results most are shown in Tables 2 and 3. It 

can be seen that ±20% uncertainty of 12

Es  will cause shift of the resonant frequency and peak 

displacement less than ±5%. In contrast, ±20% uncertainty of 13

Es  (or 23

Es ) will cause tinny shift 

on the resonant frequency but above ±30% shift of the peak displacement. Therefore, since it is 

inevitable to have more or less errors between the real material properties and the nominal values, 

the displacement is more difficult to be predicted as precise as the resonant frequency. 
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3.2 Measuring the pressure resulted from the vibration of a piezoelectric disk 
 
Fig. 8 shows the schematic diagram for pressure measurement. It can be seen that, cooperated 

with the position measuring device, a pressure sensor (Model ITC-9101 from International 

Transducer Corporation) was set in front of the piezoelectric disk on a movable stage such that the 

measuring position could be adjusted. It is noted that, the measured pressure is the result of 

infinite-times sound wave reflection between the piezoelectic disk and the pressure sensor. 

Therefore, it should be equal to Eq. (29). 

 
Table 1 Comparison of the resonant frequency derived from different methods 

Method Resonant frequency (kHz) 
Experiment 79.00 

Coupled vibration Model 77.03 

Finite element method with epoxy at the fixed end
†*

 82.40 

Finite element method without epoxy at the fixed end
*
 102.90 

† 1mm epoxy  *Simulated with ANSYS (ANSYS, Inc.) 

 

Table 2 The effect of compliance constant ( 12

Es ) uncertainty on the resonant freq. and displacement of our 

piezo-disk 

12

Es  

uncertainty (%) 

Shift of  

resonant freq. (%) 

Shift of peak displacement at  

resonant freq. (%) 

-20 -4.03 0.11 

-15 -3.00 0.57 

-10 -2.07 0.80 

-5 -1.03 0.65 

0 0 0 

5 1.14 -0.11 

10 2.27 -0.45 

15 3.41 -1.02 

20 4.65 -1.18 
† All simulation results are conducted by setting the acoustic viscosity =44453 (N∙s/m2) and the datum is the case that 

=0.1 shown in Fig. 7 whose resonant frequency and resonant peak are 77.03 (KHz) and 6.8710-7 (m), respectively 

 

 

Fig. 8 Schematic diagram for measuring the pressure resulted from the vibration of a piezoelectric disk 
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Table 3 The effect of compliance constant ( 13 23

E Es s ) uncertainty on the resonant freq. and displacement of 

our piezo-disk 

13 23

E Es or s  

uncertainty (%) 

Shift of  

resonant freq. (%) 

Shift of peak displacement at  

resonant freq. (%) 

-20 -0.31 33.71 

-15 -0.31 22.39 

-10 -0.21 16.01 

-5 -0.10 7.93 

0 0 0 

5 0.21 -6.90 

10 0.41 -13.62 

15 0.62 -20.06 

20 0.93 -25.89 
† All simulation results are conducted by setting the acoustic viscosity =44453 (N∙s/m2) and the datum is the case that 

=0.1 shown in Fig. 7 whose resonant frequency and resonant peak are 77.03 (KHz) and 6.8710-7 (m), respectively 

 

 

Remark 4 Experiments were conducted by setting the pressure sensor at wave crests where the 

signals were more significant. Since where the wave crest appears is a function of frequency, the 

distance from the piezoelectric disk to wave crests under different frequencies is listed in Table 4 

for reference). 

 

In order to verify the concept for predicting the sound field shown in Sec. 2.2, the procedures 

are elaborated as follows. First, the initial vibration velocity (the time-derivative of the measured 

displacement in the first period, i.e., no reflection happens) of the piezoelectric disk at the free end 

was plugged into Eq. (26) to derive the first incident pressure on the pressure sensor, ps,0(σs). 

Second, for deriving the reflected wave, the specific acoustic impedance is needed to calculate the 

reflection coefficient (see Eq. (27)). Since the medium between the pressure sensor and the 

piezoelectric disk is air, the reflection coefficients for pressure sensor and piezoelectric disk are 

,

,

,

,

s air

re s

s air

e air

re e

e air

z z
R

z z

z z
R

z z











 

where zair is the specific acoustic impedance of air, zs is the specific acoustic impedance of the 

pressure sensor, and ze is the specific acoustic impedance of the piezoelectric disk. Therefore, once all the 

acoustic impedances are known, pressures resulted from reflected waves each time can be calculated by 

Eq. (28). Based on the assumption of plane wave, zair was calculated by multiplying air density with wave 

speed in the air at 25
o
C, and ze was set to be z3 in Eq. (21) as 

33

3 3 .
D

pzt pzt

pzt

c
z c 


   

However, the specification of zs wasn’t provided by the manufacturer and this led to a parameter 

search for the reflection coefficient Rre,s. An example can be seen in Fig. 9(a) that, reflection 
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coefficient was searched at the second wave crest from the piezoelectric disk. Since there is an 

asymptotic pressure value that can match the measured pressure after infinite reflection times, the 

reflection coefficient Rre,s is interpolated from two asymptotic pressure values that bound the 

measured pressure. At last, the reflection coefficient Rre,s was used to predict the pressure at other 

position and compared to the experimental result as shown in Fig. 9(b) (a verification at the third 

wave crest). 

It is noted that, for different vibration frequencies, the reflection coefficients Rre,s are different 

and should be found separately with the approach shown above. Besides, in order to compare and 

quantify the discrepancy between the predicted pressure and the measured pressure (see Fig. 10 

and Table 5), the error Errp,i was defined as 

, 100%,
pre mea

p i

mea

p p
Err

p


                           (30) 

 
 
 
Table 4 Distance from the piezoelectric disk to wave crests where the pressure sensor was located 

Frequency 

(kHz) 
First wave crest 

position d1 (mm) 

Second wave crest 

position d2 (mm) 

Third wave crest 

position d3 (mm) 
78 2.51 4.76 7.02 

79 2.47 4.69 6.95 

80 2.44 4.61 6.85 

81 2.41 4.55 6.75 

82 2.36 4.48 6.65 

83 2.36 4.42 6.55 

84 2.34 4.38 6.48 

 
 
 

  
(a) (b) 

Fig. 9 An example of how to find the reflection coefficient of the pressure sensor when the piezoelectric disk 

vibrates at 80 KHz. (a) Reflection coefficient search at the second wave crest to the piezoelectric disk. 

(b) Pressure prediction at the third wave crest to the piezoelectric disk with interpolated reflection 

coefficient derived from (a) 
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Table 5 The interpolated reflection coefficient and the pressure error at the third wave crest 

Frequency (kHz) Rre,s Errp,3 (%) 
78 0.8996 84.67 

79 0.9644 26.97 

80 0.1474 11.74 

81 0.0440 15.08 

 
 

 

Fig. 10 Pressure at the third wave crest to the piezoelectric disk 

 
 
Table 6 The interpolated reflection coefficient and the pressure error at the first wave crest 

Frequency (kHz) Rre,s Errp,1 (%) 
78 0.8996 N/A

†
 

79 0.9644 N/A
†
 

80 0.1474 43.57 

81 0.0440 33.17 
†Simulation result diverged 

 
 
where ppre is the predicted pressure, pmea is the measured pressure, and i specifies the position of i

th
 

wave crest. It can be seen that the best prediction happened at 80 KHz with 11.74% error. 

However, at 78 KHz, the predicted pressure achieved 84.67% error. 

The Assumption of Plane Wave Has Limitation on Predicting the Pressure The discrepancy 

between the predicted pressure and the measured results was illustrated with the specific acoustic 

impedance of air. It is noted that, the specific acoustic impedance of air, zair, in spherical 

coordinate can be expressed from Ref. (Cheeke 2002) as 

2 2

2 2 2 2
,

1 1

air air

air air air air air

air air

k r k r
z c j c

k r k r
  

 
 (31) 

where ρair is the air density, cair is the wave velocity, kair is the wave number, and r is the coordinate 

variable (or the propagation distance). As long as kairr is large enough, zair will approach a real 

number like a plane wave; otherwise zair should be a complex number. Taking the 80 KHz case for 

example, when measuring pressure at the third wave crest, the ratio of imaginary part to real part 
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based on Eq. (31) is ≃ 

  1 0 1.0~
11

3dkrk a i ra i r

  

Since the real part is about one-order larger than the imaginary part, assuming zair to be a real 

number may deviate from the real situation, but won’t be too bad. However, error may increase 

when kairr becomes smaller by either shortening the measuring distance or decreasing the vibration 

frequency to make wave number kair smaller. Considering again the 80 kHz case, if the measuring 

position is moved to the first wave crest, the ratio of imaginary part to real part will increase to 

  2 8 2.0~
11

1dkrk a i ra i r

  

which implies that plane wave is not a good assumption. Errors when predicting pressure at the 

first wave crest were listed in Table 6 to support this argument. 

 

 

4. Conclusions 
 

In this article, a coupled vibration model including energy dissipation was utilized, and a new 

problem solving procedure was proposed to predict the vibration behavior of a piezoelectric disk 

in the thickness direction. On the other hand, with an obstacle in a finite distance, the sound field 

resulted from the vibration of a piezoelectric disk was evaluated by Huygens-Fresnel principle 

involving an idea of continuous reflection. Results of the tested piezoelectric disk show that, 

discrepancies between the simulation and experiment are 2.5% for resonant frequency and 12% for 

resulted sound field. Besides comparing our simulation with experimental results, systematic 

analysis on where the discrepancy come from including uncertainty of material properties and 

modeling assumption were elaborated. In the future, the measuring system will be improved and a 

series of piezo-disks will be investigated to verify the feasibility of the proposed model further. 

We firmly believe that will get more accurate prediction and contribute to systematic design for 

piezoelectric-disk-based transducers. 
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Appendix 

 

 

The piezoelectric constants used in this research in Voigt’s notation are as follows, 

 

2
12

12.1 3.7 4.8 0 0 0

3.7 12.1 4.8 0 0 0

4.8 4.8 13.5 0 0 0
10 ,

0 0 0 31.9 0 0

0 0 0 0 31.9 0

0 0 0 0 0 31.6

E m
s

N



  
 
 
 
    

    
  

 
 
  

 

 

12

0 0 0 0 330 0

0 0 0 330 0 0 10 ,

110 110 250 0 0 0

m
d

V



 
  

      
   

 

 

12

1290 0 0

0 1290 0 8.854 10 .

0 0 1030

T F

m
 

 
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List of Symbols 

 

 

a  radius [m] 

b  thickness [m] 

c  wave propagation velocity [m/s] 
D

ijc  elastic constant under constant electric displacement [N/m
2
] 

id  distance from the emitter to the i
th
 wave crest [m] 

iJd  piezoelectric constant in Voigt's notation [m/V] 

iJh  piezoelectric constant [N/C] 

k  wave number [rad/m] 

p  pressure [N/m
2
] 

E

IJs  compliance constant under constant electric field in Voigt's notation [m
2
/N] 

iu  displacement toward i-direction [m] 

 vibration velocity on surface-i [m/s] 

z  specific acoustic impedance [Kg/(m
2
∙s)] 

iD  electric displacement toward i-direction [C/m
2
] 

iE  electric field toward i-direction [V/m] 

iF  force on surface-i [N] 

I amplitude of induced alternating current [A] 

Rre reflection coefficient [-] 

Sij strain that points to j-direction resulted from the force applied on normal-plane-i [-] 

Tij stress that points to j-direction resulted from the force applied on normal-plane-i [N/m
2
] 

Ui displacement amplitude toward i-direction [m] 

V voltage [V] 
S

ij  dielectric impermeability at constant strain [m/F] 
T

ij  permittivity constant under constant stress [F/m] 

  acoustic viscosity [(N∙s)/m
2
] 

  density of a material [Kg/m
3
] 

  phase delay [rad] 

  angular frequency [rad/s] 

  

 

1082



 

 

 

 

 

 

The study on piezoelectric transducers: theoretical analysis and experimental verification 

 

 

Subscripts 

 
 

air air related 

e emitter related 

i, j index of tensor form (i, j=1~3) 

in incident component 

pzt pzt related 

re reflected component 

, , ,r z   in a given direction 

s sensor related 

tot total quantity 

I, J index of tensor form (I, J=1~6) 
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