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Abstract.      In this study, the effect of temperature variation on the wireless impedance monitoring is 
analyzed for the tendon-anchorage connection of the prestressed concrete girder. Firstly, three impedance 
features, which are peak frequency, root mean square deviation (RMSD) index, and correlation coefficient 
(CC) index, are selected to estimate the effects of temperature variation and prestress-loss on impedance 
signatures. Secondly, wireless impedance tests are performed on the tendon-anchorage connection for which 
a series of temperature variation and prestress-loss events are simulated. Thirdly, the effect of temperature 
variation on impedance signatures measured from the tendon-anchorage connection is estimated by the three 
impedance features. Finally, the effect of prestress-loss on impedance signatures is also estimated by the 
three impedance features. The relative effects of temperature variation and prestress-loss are comparatively 
examined. 
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1. Introduction 
 

Steel tendon is an important component of prestressed concrete (PSC) girder. With prestressing 
techniques, PSC girders can be larger and even slimmer to be implemented for long-span bridges. 
However, risks can be worse due to the dependency of the techniques. Among several damage 
types in the PSC girders, the loss of prestress forces occurs in the tendon anchorage system due to 
the relaxation of cable stress, the failure of connection components, etc. The loss of prestress 
forces could lead to the failure of cables and also result in the significant reduction of load carrying 
capacity and even the collapse of structure. Therefore, damage monitoring in the tendon anchorage 
system is an important issue.  

Up to date, many studies have been focused on damage monitoring in structural connections by 
using local impedance properties. As the local dynamic characteristics, the method utilizes 
electro-mechanical (EM) impedance of a coupled PZT (Lead ZirconateTitanate) -structure system 
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to detect the incipient change in structural characteristics at local critical region. The 
impedance-based method was first proposed by Liang et al. (1994). Since then, many researchers 
have improved the method and have applied the method as a promising way to various damage 
detection problems (Sun et al. 1995, Park et al. 2001, Zagrai and Giurgiutiu 2001, Fasel et al. 2005, 
Mascarenas 2006, and Kim et al.2006, Providakis et al. 2014, Li et al. 2014). 

Recently, Kim et al. (2010) has applied the impedance-based method for monitoring 
prestress-loss in PSC bridges by detecting the change in impedance responses at the 
tendon-anchorage connection. Nguyen and Kim (2012) presented a wireless impedance sensor and 
a PZT interface technique for impedance monitoring in the tendon-anchorage connection. Also, 
Huynh and Kim (2014) proposed an analytical model for impedance-based presstress-loss 
monitoring in tendon anchorage systems. By adopting the wireless sensor and the PZT interface, 
the automated and cost-efficient operation can be implemented by embedded software for real 
applications (Lynch et al. 2006, Rice et al. 2010, Kimet al. 2014); however, this fact also leads a 
very important issue to be solved before real ambient applications. That is temperature-induced 
change in impedance signature.  

Researchers have worked on examining the effect of temperature variation on structural 
dynamic properties that are utilized for structural health monitoring (Kim et al. 2003, Ko and Ni 
2005, Kim et al. 2007, Xia et al. 2006, Sohn 2007, Balmes et al. 2009, Xu et al. 2010). 
Temperature-driven variability of local dynamic responses should also be quantified in the 
determination of impedance features that are used for damage monitoring (Koo et al. 2009, Hong 
et al. 2011). Boundary conditions and material constants of both sensor materials and structures 
are temperature-dependent. The effect of temperature variation should be analyzed in measurement 
of impedance signatures, extraction of impedance features (e.g., peak frequency), and 
determination of damage locations and severities. Therefore, it is very important to discriminate 
the temperature-driven effect on the impedance features extracted from damaged states. 

In this study, the effect of temperature variation on the wireless impedance monitoring is 
analyzed for the tendon-anchorage connection of the prestressed concrete girder. Firstly, three 
impedance features, which are peak frequency, root mean square deviation (RMSD) index, and 
correlation coefficient (CC) index, are selected to estimate the effects of temperature variation and 
prestress-loss on impedance signatures. Secondly, wireless impedance tests are performed on the 
tendon-anchorage connection for which a series of temperature variation and prestress-loss events 
are simulated. Thirdly, the effect of temperature variation on impedance signatures measured from 
the tendon-anchorage connection is estimated by the three impedance features. Finally, the effect 
of prestress-loss on impedance signatures is also estimated by the three impedance features. The 
relative effects of temperature variation and prestress-loss are comparatively examined. 

 
 
2. Impedance features for estimation of temperature effect 
 

2.1 Electro-mechanical impedance 
 
As shown in Fig. 1, an input harmonic voltage )(V  induces a deformation of a piezoelectric 

material (e.g., PZT) due toinverse piezoelectric effect. The PZT patch is surface-bonded to the 
structure and a force )(F against the deformation is induced into the structure. For 1-dof system, 
the structural mechanical (SM) impedance of the host structure is obtained by the ratio of force 
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)(F to velocity )(u  as follows (Liang et al. 1994) 
 

Fig. 1 Coupling interaction between PZT and structure (Huynh and Kim 2014) 
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where c and m are the damping coefficient and the mass of the structure, respectively; n  is the 

angular natural frequency of the structure; and   is the angular frequency of the excitation 
voltage. As shown in Eq. (1), SM impedance is a function of mass, damping, and stiffness (i.e., 

stiffness is introduced from natural frequency, 2
nmk  ). Thus, the change in structural 

parameters caused by environmental conditions and damage such as temperature and prestress-loss 
can be represented by the change in SM impedance. 

The EM impedance, )(Z , is a combining function of the mechanical impedance of the host 

structure, )(sZ , and that of the piezoelectric patch, )(aZ . Therefore, the change in structural 
parameters (i.e., k, m, and c) can be represented by the change in EM impedance. In practice, the 
electric current )(I  is measured and then it is utilized to calculate EM impedance as follows 
(Liang et al. 1994) 
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where E
xx

E
xx YiY )1(ˆ  is the complex Young’s modulus of the PZT patch at zero electric field; 

T
xx

T
xx i  )1(ˆ  is the complex dielectric constant at zero stress; xd3  is the piezoelectric coupling 

constant in x-direction at zero stress; and aw , al  and at  are the width, length, and thickness of 

the piezoelectric transducer, respectively. The parameters  and  are structural damping loss 
factor and dielectric loss factor of piezoelectric material, respectively. If excitation frequency is 
identical to resonant frequency of structure (i.e.,   ), the term )()(  sa ZZ is activated in Eq. 

(1). Then SM impedance takes only the term of damping coefficient (i.e., cZs )( ). 
Consequently, the SM impedance for that frequency is comparable with mechanical impedance of 
the PZT, and EM impedance is expressed as (Nguyen et al. 2012) 
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In Eq. (3), the contribution of SM impedance to EM impedance is the damping coefficient c, 
which representsnot only modal damping but also natural frequency of the structure. Therefore, 
structural change could be identified sensitively by the change in EM impedance at the resonant 
frequency.  

 
2.2 Impedance features 
 
For damage characterization, damage indices such as peak frequency, RMSD and CC have 

been widely used for quantifying the variation of EM impedance signatures. In general, the RMSD 
index and the CC index exhibit in different natures. The CC index is more sensitive to the 
horizontal shift (i.e., frequency shift) and less sensitive to the vertical shift (i.e., amplitude shift) of 
the impedance signatures; meanwhile, the RMSD index is sensitive to both. Previous experimental 
studies report that the temperature change causes not only the frequency shift but also the 
amplitude shift of the impedance response (Park et al. 1999, Koo et al. 2009, and Fabricio et al. 
2014). To estimate the effect of temperature variation in the tendon anchorage of the PSC girder, 
therefore, three types of impedance features are selected as follows: change in peak frequency, 
RMSD, and CC of impedance response. The impedance features are extracted from the impedance 
response measured from the structure. For each impedance feature, the effect of temperature is 
estimated by regression analysis. 

Firstly, the change in peak frequencies,  , gives the estimation of the change in EM 
impedance as follows 

d  0                 (4) 

in which 0  is the baseline peak frequency of the reference state and d  is the corresponding 

peak frequency of the deviated state (e.g., damaged state).  
Secondly, RMSD index is utilized to quantify the change in impedance. The RMSD index is 

calculated as (Sun et al. 1995) 
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in which )( iZ  is the impedance signature measured for the ith frequency at the reference state and 

)(*
iZ  is the corresponding impedance signature measured at the special event; and N denotes the 

number of frequency points in the sweep.  Note that the asterisk (*) denotes the special event. 
Ideally, the RMSD is equal to 0 if the two events are identical and there is no structural change.  
Otherwise, the RMSD is larger than 0.  

Thirdly, CC index can also be used to quantify the change of the whole impedance signatures 
(Zagrai and Giurgiutiu 2001). The CC index is calculated as follows 
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where E[.] is the expectation operation; )Re( iZ and )Re( *
iZ  represent, respectively, the real parts 

of the EM impedances measured for the ith frequency before and after the special event; )Re(Z and 

)Re( *Z signify, respectively, the mean values of impedance signatures (real part) before and after 

the special event; and Z and *
Z signify, respectively, the standard deviation values of impedance 

signatures before and after the special event.  
Regression analysis gives the information on the relationship between a response variable and 

one or more independent variables. The relationship obtained from regression analysis can be used 
to predict values of the response variable and identify variables that most affect the response. The 
value of each predictor variable can be accessed through statistical tests on the estimated 
coefficients of the predictor variables. In this study, the polynomial regression model (Devore 
1987) is selected from preliminary tests. The nth degree polynomial regression fits the nonlinear 
relationship between the independent variable and the dependent variable. The polynomial 
regression model between valuables x and Y can be written as 

  k
k xxxY 2

210                      (7) 

in which   is a random error variable; and k ,,,, 210   are regression coefficients which 
are unknown impedance properties.  

 
 

3. Experiments on tendon-anchorage of PSC girder 
 

3.1 Description of wireless impedance test set-up 
 
As illustrated in Fig. 2(a), impedance tests were performed on a lab-scaled PSC girder. The 

PSC girder was simply supported and installed on a rigid testing frame. Two simple supports were 
modeled by steel rods between the girder and the rigid frame. A cable in length of 6.4 m was 
anchored by two bearing plates at two ends. Tension force was introduced into the cable by a 
stressing jack. A load cell was installed at one cable anchorage to measure the actual cable 
force.As detailed in existing publications (Kim et al. 2009, Ho et al. 2012), the PSC girder model 
has the T-section reinforced in both longitudinal and transverse direction with 10 mm diameter 
reinforcing bars. As the prestressing tendon, a seven-wire mono-strand with 15.2 mm diameter was 
embedded in a 25 mm diameter duct. The baseline prestress force was set to 98.0 kN during the 
tests. 

As shown in Fig. 2(b), an aluminum PZT-interface with a PZT-5A patch (Lead Zirconate 
Titanate) was installed to the tendon-anchorage connection of the PSC girder. Note that the PZT 
interface was detailed in Nguyen et al. (2012). Impedance signatures of the PZT-interface were 
measured by an impedance sensor node Imote2/SSeL-I16 (Kim et al. 2011, Nguyen et al. 2012) 
placed near the anchorage system. The PZT sensor was excited by a harmonic excitation voltage 
with 1V-amplitude. The wireless impedance sensor was powered by three D-Cell batteries which 
ensure the power supply for the sensor node during the test. A base station which include an 
Imote2 associated with an interfacial computer was placed at 5 m distance from the 
tendon-anchorage connection. Note also that the wireless impedance sensor system was detailed in 
Nguyen and Kim (2012). 
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3.2.2 Damage simulation 
While room temperatures were handled to almost constant as 20.5oC, a set of prestress cases 

were simulated to the PSC girder from which impedance responses were measured from the 
tendon-anchorage connection. Axial prestress forces were introduced into the tendon by a stressing 
jack as the tendon was anchored at one end and pulled out at the other. A load cell was installed at 
the left end to measure the applied prestress force. Each test was conducted after the desired 
prestress force has been applied and the cable has been anchored. The prestress forces were 
applied to the test structure up to six different prestress levels (i.e., PS1 – PS6) as listed in Table 1. 
There were five prestress-loss cases among the six prestress levels. 

 
 

4. Temperature effects on impedance features 
 

For the temperature variation shown in Fig. 3, impedance signatures were monitored from the 
tendon-anchorage connection by using the wireless impedance sensor system. Fig. 4(a) shows an 
impedance signature measured for temperature 20.5oC from the wireless impedance sensor system.  
A resonant frequency band of 18-20 kHz was taken into account for 501 interval points. Fig. 4(b) 
shows a series of impedance signatures measured for temperatures 5.4oC ~22.5oC. During the tests, 
the prestress force was fixed as 98.0 kN (i.e., the prestress-level PS1). 

From the figures, the three selected impedance features (i.e., change in peak frequency, RMSD 
index, and CC index) were used to estimate the effect of temperature variation on the impedance 
signatures measured from the tendon-anchorage connection of the PSC girder. The overall steps 
are as follows: firstly, impedance features are extracted for the temperature variation; secondly, 
time histories of temperatures and impedance features are analyzed; finally, regression analyses are 
performed by fitting Eq. (7) to estimate polynomial relationships between temperature variation 
and the extracted impedance features.  

 
4.1 Change in peak frequency versus temperature variation 
 
As the first impedance feature, the change in peak frequency was used to estimate temperature 

effects on the impedance signatures measured from the tendon-anchorage connection of the PSC 
girder. As the first and second steps, peak frequencies were extracted from the impedance 
signatures and changes in peak frequencies were computed by Eq. (4). Fig. 5 show time histories 
of measured temperatures and extracted peak frequencies for the eight test days. It is observed that 
the peak frequencies change corresponding to the temperature variation. As the final step, the 
cubic regression model between the temperature variation and the change in peak frequencies were 
analyzed as shown in Fig. 6. The empirical equation of the peak frequency (Freq) as a function of 
temperature (T) is as follows  

574.19100.4100.1100.3)( 42335   TTTkHzFreq         (8) 

From Eq. (8), it is observed that the peak frequency value changes from 19.56 kHz to 19.45 
kHz as temperature (T) changes from 5oC to 15oC. This corresponds to 0.55% change in peak 
frequencies as the temperature shifts to 10oC. It is also noted that the change in peak frequencies 
with respect to the temperature range above 15oC shows quite nonlinear relationship as it less 
depends on the temperature change. 
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estimated by the three impedance features. 
By using the three impedance features, temperature effects on impedance signatures measured 

from the tendon-anchorage connection of the PSC girder were analyzed as follows:  
 All selected impedance features were sensitive to the temperature change; 
 The relationships between the temperature variation and the impedance features were 

nonlinear like a set of cubic regression models; and  
 The RMSD and CC indices varied much higher than the change in peak frequency under the 

temperature variation. 
By employing the same features, prestress-loss effects on impedance signatures at the 

tendon-anchorage connection were analyzed as follows:  
 All three impedance features varied sensitively with the prestress-loss events;  
 The variations of RMSD and CC indices were much more significant than the change in 

peak frequency under the prestress-loss effects; and  
 The change in peak frequency produced the most favorable damage monitoring under the 

temperature change. 
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