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Abstract.    This paper focuses on the design of an intelligent control system. The used techniques are based 
on Neuro Fuzzy approaches applied to a magnetorheological damper in order to reduce the vibrations over 
footbridges; it has been applied to the Science Museum Footbridge of Valladolid, particularly. A model of 
the footbridge and of the damper has been built using different simulation tools, and a successful comparison 
with the real footbridge and the real damper has been carried out. This simulated model has allowed the 
reproduction of the behaviour of the footbridge and damper when a pedestrian walks across the footbridge. 
Once it is determined that the simulation results are similar to real data, the control system is introduced into 
the model. In this sense, different strategies based on Neuro Fuzzy systems have been studied. In fact, an 
ANFIS (Artificial Neuro Fuzzy Inference System) method has also been used, in addition to an alternative 
Neuro Fuzzy approach. Several trials have been carried out, using both techniques, obtaining satisfactory 
results after using these techniques. 
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1. Introduction 
 

Nowadays engineering structures tend to be lighter and more flexible. Because of this, 
structures such as towers, buildings or footbridge are more susceptible of suffering vibrations. 
Footbridges are particularly subjected to external disturbances every day. According to several 
studies (Zivanovic et al. 2005), the vibrations are generally produced by pedestrians who might 
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induce a footbridge response near to the resonance. Therefore, it is necessary to incorporate a 
device to these kinds of structures in order to protect them from damaging sources. In this work 
the external source that generates vibrations are pedestrians going across the footbridge. 

There are several techniques capable of reducing the vibrations produced over engineering 
structures (Jansen et al. 1999) (Miller et al. 1988). The most traditional one is to use a passive one, 
usually consisted of a spring and a damper. The advantage of these systems is that no computer or 
external power source is needed. However, once the passive device is installed, its properties 
cannot be adaptable. This fact is an important constraint since it does not allow any adaptation of 
its parameters to changes of vibration signals. On the other side, the active control techniques lack 
this disadvantage while they also are very well considered owing to their adaptability properties. 
Actually, it provides a high control performance in a wide frequency range. However, its high 
power requirement and expensive hardware make their commercial adoption difficult.  

In recent years, the semi active methods have been under use (Dong et al. 2010) (Yagit and 
Yuksek 2001) (Haibo and Jian 2009) since they offer a relatively low cost and reliable solutions. 
They are usually composed of a passive spring in parallel with a controlled damper. This allows 
the provision of further vibration reduction suffered by the structures since the damping properties 
can be adapted to each situation. 

In this work a Magnetorheological (MR) damper is used as isolation device in order to reduce 
the vibrations suffered by the footbridge. These devices use controllable fluids composed by 
micron sized, magnetically polarisable particles dispersed in a fluid. Their properties are changed 
when a magnetic field is applied, since particles are stood in chains form modifying the fluid´s 
behaviour. This particular technology shows a fast response to the magnetic field. Thus, it is very 
convenient in control tasks, given the fact that it allows for a broad bandwidth in addition to the 
compact size of the actuator device. In spite of these advantages, its inherent nonlinear hysteresis 
nature and its dynamic uncertainty makes it difficult to find an adequate control strategy.  

The current work is presented in several sections. In section 2 the MR damper and its 
mathematical model based on Bouc Wen model are shown. Section 3 shows the footbridge used in 
this study, along with the mechanical model of the footbridge and the MR damper implemented in 
Simmechanics (Simulink®). The control strategies are explained in section 4 and finally, the 
obtained results and conclusions are presented in section 5 and section 6, respectively. 

 
 

2. Magnetorheological damper modelling 
 
There are many mechanical models that can be used to predict the response of a MR damper 

(Spencer et al. 1996). Although there are more up to date models, in this paper the one used is 
composed of a Bouc Wen model in parallel with a damper (Yoshioka et al. 2002), as it is shown in 
Fig. 1. It was decided to employ this model since the available parameters make its behaviour 
accurate enough. 

The equations that represent this Magnetorheological damper model are presented below. 
The force in this system is provided by 

z)t(xCF 0                                (1) 

where the evolutionary variable z is governed by 
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In the second layer the fuzzy operator is applied, therefore the input signals are multiplied and 
the result represents the weight of each rule. 

2,1i);A()f()A()(w ffti,Di,Ci,Bki,Ai                (5) 

The Implication method is applied in the third layer and the output of each node corresponds to 
the standard weights, which is a number between 0 and 1. 

2,1i;
w

w
w

n

1i
i

i
i 




                       (6) 

The aggregation is presented in the fourth layer and it consists of the fuzzy sets that represent 
the outputs of each rule combined into a single fuzzy set.  

2,1i;zwO iii,4                         (7) 

Where zi corresponds to three fuzzy if then rules of Takagi Sugeno type which are 

1fft111k11DfftCBAk t+ A s+ fr +Aq +  p =z then  ?is A and  ?is f , ?is A , ?is  If
1111


 (8a) 

2fft222k22DfftCBAk t+ A s+ fr +Aq +  p =z then  ?is A and  ?is f , ?is A , ?is  If
2222


 (8b) 

Where pi, qi, ri, si, ti are the consequent parameters. 
Finally, the output system is obtained in the fifth layer. This value is a real number. In this case 

the voltage value in the (k+1) th instant. 








  N

1i
i

N

1i
ii

1k

w

zw
 	                          (9) 

Once the ANFIS technique has been chosen, the system is trained using 70% of reference table 
data. The remaining 30% is kept back in order to test if the system has achieved the adequate 
degree of generalization. The next step is to include the trained ANFIS in the simulation 
environment as a Simulink block. This block needs the frequency and amplitude of the structure 
movement, FFT amplitude and MR voltage in the measurement instant, as inputs. Therefore, a 
method in order to calculate them is required. Because of that, a FFT block is added before the 
ANFIS block and after the block that measures the footbridge vibration. This block is in charge of 
obtaining the spectral composition using the Fast Fourier Transform. In the same way, a block that 
calculates the amplitude is put between both blocks. This block obtains the footbridge movement 
amplitude from the accelerometer located on the structure and provides the maximum value for 
each 0.5 seconds. With this diagram, the ANFIS analyzes the inputs in order to provide the 
adequate voltage at intervals of 0.5 seconds. Finally, the obtained voltage value is introduced in the 
MR block explained in section 4. It is important to point out that a saturation block has been 
situated after ANFIS block in order to guarantee that the provided values are in the range admitted 
by the manufacture.  In Fig. 8 the model with the integrated ANFIS control strategy is shown. 
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organizing map (Eq. (13)) correspond to centres of membership functions and the estimated output 
value. 

  2j,NNjNj1j N,...,1jw,...,w,...,ww
311

                  (13) 

The self organizing map inputs are 

 
31 N1N1 YD,...,YD,U,...,UV                      (14) 

Where Uk are the Neuro Fuzzy inputs and YDm are the desired outputs. The Eq. (15) is the 
applied rule in order to determine the winner node (x) and to update the weight in each Kohonen 
algorithm cycle.  

2

2

jj

2

x N,...,1jVWminVW 
                  (15) 

The weights are updated by 

mc,...,1tN,...,1j))t(WV(
)xj(

exp
mc

tmc
lr)t(W)1t(W 2j2

2

0jj 






 







 




(16) 

Where σ is the variance, x is the winner node, lr0 is the index of initial learning and mc is the 
number of learning cycles. The three terms that multiply to lr0 are in charge of updating the weight. 
The first term [(mc-t)/mc] diminishes the learning rate while the training is progressing. The term 
exp(-(j-x)2/σ2) defines the neighbourhood of the winner node. Finally (V-Wj(t)) takes into account 
the difference between the input vector and the weight vector. 

This phase concludes after providing input output pairs for mc training cycles. Each weight 
vector is related to a neuron of the hidden layer since this vector contains the centres of 
membership functions and the estimated output. 

In the second phase the number of nodes at the hidden layer is optimized. Note that, these 
nodes represent the number of fuzzy rules.  

Although the first phase achieves that a neuron of the hidden layer and its related ones, show a 
strong response to a input pattern, it is possible that two nodes provide similar responses to a 
similar patterns. This means that nodes of similar rules could have been created. For this reason 
the aim of this phase is to reduce the node set. 

In the third phase, a first change of the width of membership functions is done.  
An iterative process is carried out where σ is changed for every membership function. The final 

σ is chosen comparing the training pattern and the test one to the network that has been trained 
with the non supervised algorithm. The chosen value is which one that minimizes the error of its 
response. 

Finally, in the last phase, the Neuro Fuzzy parameters (mij σij svjk) are definitely fixed by the 
supervised training algorithm. 

Particularly, the Least Mean Squares (LMS) (Widrow et al. 1971) algorithm is used and it is 
based on the Eq. (17). 





3N

1k

2
kk )ŷY(

2

1
E                         (17) 
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