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Abstract.  This study presents a novel approach based on advancements in Evolutionary Computation for 
data-driven modeling of complex multi-dimensional memory-dependent systems. The investigated example 
is a benchmark coupled three-dimensional system that incorporates 6 Bouc-Wen elements, and is subjected 
to external excitations at three points. The proposed technique of this research adapts Genetic Programming 
for discovering the optimum structure of the differential equation of an auxiliary variable associated with 
every specific degree-of-freedom of this system that integrates the imposed effect of vibrations at all other 
degrees-of-freedom. After the termination of the first phase of the optimization process, a system of 
differential equations is formed that represent the multi-dimensional hysteretic system. Then, the parameters 
of this system of differential equations are optimized in the second phase using Genetic Algorithms to yield 
accurate response estimates globally, because the separately obtained differential equations are coupled 
essentially, and their true performance can be assessed only when the entire system of coupled differential 
equations is solved. The resultant model after the second phase of optimization is a low-order 
low-complexity surrogate computational model that represents the investigated three-dimensional 
memory-dependent system. Hence, this research presents a promising data-driven modeling technique for 
obtaining optimized representative models for multi-dimensional hysteretic systems that yield reasonably 
accurate results, and can be generalized to many problems, in various fields, ranging from engineering to 
economics as well as biology. 
 

Keywords:  computational intelligence; genetic algorithms; differential equations; hysteretic behavior; 
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1. Introduction 

 
Modeling and analysis of complex multi-dimensional nonlinear memory-dependent systems is 

a broad research area with applications in many fields such as mechanics, economy, aeronautics, 

amongst others. Over the past several decades, nonlinear systems incorporating 

memory-dependent dissipative phenomena have been investigated in many studies, mainly 

through parametric or nonparametric modeling (Kerschen et al. 2006). Parametric modeling is a 

class of techniques used to characterize hysteretic systems by attributing a suitable model to the 
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system, and identifying the model parameters or detecting their changes (Bouc 1967, Wen 1976 

Smyth et al. 1999, Chatzi et al. 2010). However, the success of parametric modeling highly relies 

on the user providing an accurate representative model based on a clear understanding of the 

physical phenomena. Non-parametric modeling, on the other hand, carries out the identification 

automatically, without setting any major hypothesis about the system upfront. In this category, 

Neural Networks are powerful tools of modeling complex systems involving memory-dependent 

characteristics (Bani-Hani and Ghaboussi 1998, Pei and Smyth 2006a, b, Zhao and Tan 2008). 

Their data driven analysis is suitable when no additional information about the underlying systems 

is available. However, Neural Networks process data in a completely blind manner, that is not 

suitable for revealing the physics behind complex systems. Therefore, they leave no room for 

further investigation of the resultant models, and to provide physical insight into the systems under 

investigation. Polynomial-based approaches are another class of nonparametric techniques that are 

extensively employed for the modeling of nonlinear phenomena in dynamic environments (Masri 

and Caughey 1979, Masri et al. 2004, 2006a, b, Tasbihgoo et al. 2007). However, specifying the 

order of polynomials and the composition of basis functions requires insight into the dynamics of 

the problem. Moreover, polynomial approximations of systems exhibiting sharp corners in their 

response results in undesired Gibbs phenomena. 

Consequently, there is currently a lack of intelligent data-driven computational techniques that 

provide robust physics-based computational models, that represent multi-dimensional dynamical 

systems with hysteresis effect. Evolutionary computational methodologies are inspired by natural 

phenomena to provide elegant solutions to complex real-world problems in various fields. In this 

class of problem-solving techniques, Genetic Programming (GP), is built on evolutionary 

algorithms, and offers a great potential for the identification of complex dynamical systems 

exhibiting non-conservative dissipative behavior. GP has proven to be successfully applicable to 

various classes of problems in different fields (Tackett 1993, Gruau 1994, Howard and Roberts 

2002, Becker et al. 2007, Schmidt and Lipson 2009, Alavi et al. 2010, Silva et al. 2011, Gandomi 

and Alavi 2011). To our knowledge, GP has never been adapted to be employed for the modeling 

of multi-dimensional systems with hysteretic behavior. Therefore, this investigation explores the 

potential of evolutionary approaches to discover the system of differential equations that govern 

the behavior of complex nonlinear multi-dimensional hysteretic systems. 

A general procedure concerning the modeling of complex one-dimensional systems associated 

with challenging type of nonlinearities was presented in Bolourchi (2014) and Bolourchi et al. 

(2015). That procedure is extended in this paper and is implemented for the modeling and analysis 

of non-linear multi-dimensional systems with memory-dependent dissipative characteristics. The 

eventual aim is to utilize GP as the main problem-solving engine for discovering the suitable 

―structure‖ of the differential equations that govern the behavior of multi-dimensional hysteretic 

systems. GP is also coupled with stochastic parameter optimization techniques, employing Genetic 

Algorithms, to optimize the ―parameters‖ embedded in the differential equations based on the 

global performance of the integrated GP-found structures in the system of differential equations 

for estimating the response of the underlying multi-dimensional hysteretic system. 

It is shown that the suggested identification methodology provides reduced-complexity systems 

of differential equations that govern the dynamics of complex nonlinear multi-dimensional 

systems with non-conservative dissipative traits. Several test cases are provided to assess the 

applicability, reliability, and validity of the methodology.  

This paper is organized as follows: the formulation of the investigated system, the 

corresponding assumptions, and the details of the excitations and responses are provided in 
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Section 2; an introduction to GP within the scope of the investigation in this paper is presented in 

Section 3; the proposed evolutionary-based approach for the modeling of multi-dimensional 

hysteretic systems is presented in Section 4; the results of the introduced modeling procedure is 

presented in Section 5; in-depth interpretation of the findings are discussed in Section 6; 

advantages and challenges of the approach are described in Section 7; and the conclusion is 

provided in Section 8. 

 

 

2. Multi-dimensional hysteretic systems 
 

2.1 Investigated models 
 
The identification method under discussion is implemented on a benchmark 

multi-degree-of-freedom (MDOF) system exhibiting non-conservative nonlinear behavior. This 

structure has been employed for testing the robustness of other identification schemes in the past 

(Masri et al. 1987, Smyth et al. 2002, Masri et al. 2005). This three degree-of-freedom system in 

Fig. 1 is composed of three unequal lumped masses that are linked by six arbitrary components to 

all other masses and to a fixed support. 

In Fig. (1), 
ix  is the displacement, )(tfi is external excitation, and 

im  is the mass at DOF 𝑖. 

The semi-physical Bouc-Wen model is well studied in the literature to represent non-conservative 

dissipative systems (Smyth et al. 2002). The interconnecting elements in the structure above, 

denoted as 
ig , are governed by the Bouc-Wen model, and consequently, account for the hysteretic 

behavior of the MDOF system. The Bouc-Wen model for a single degree-of-freedom system is 

formulated as follows 

),()( xxrxmtf                             (1) 
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Fig. 1 The benchmark 3 degree-of-freedom system with hysteretic interconnecting links
ig s 
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where )(tf  is the external excitation, 𝑚 is the lumped mass, x  is the acceleration, ),( xxr   is 

the restoring force, 𝑥 is the displacement, and x  is the velocity. The shape of the hysteretic 

loops is ruled by the parameters of the model:  ,,A,, and n  (Smyth et al. 2002). 

Therefore, the MDOF system of Fig. 1 under discussion is formulated as follows 
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where 
iu  and 

iu  are the relative displacement and the relative velocity of the two ends of the 

interconnecting link 
ig . 

iu is the derivative of 
iu which is determined according to the topology 

of the system:  11 xu  , 
122 xxu  ,   133 xxu  ,  234 xxu  ,  55 xu  ,  66 xu  . 

For convenience, the parameters of the Bouc-Wen elements in all interconnecting components 

are identical, and presented in Table 1. Note that this system is more complex than regular MDOF 

systems, typically encountered in civil structures, in which characteristic matrices, such as stiffness 

and damping, are simplified because every mass is only connected to its adjacent masses. Thus, 

the non-parametric identification of this complex system to yield surrogate representative models 

is a challenging problem, and an ideal example to evaluate the capabilities of new modeling 

techniques. Lumped masses of the MDOF system under investigation are stimulated by dissimilar 

zero-mean stationary Gaussian white noise excitations. The applied training excitations at each 

degree-of-freedom (DOF) i have identical statistical properties, which are presented in Table 1, 

and are produced using different random numbers. The external excitations stimulate the system 

sufficiently strong to disclose the yielding region of the vibrating interconnecting components of 

the studied system. It is assumed that the external excitations, the lumped masses and their 

accelerations are known from measurements. Hence, the displacements and velocities can be 

obtained by careful integration of accelerations. As a result, all states ix , ix  and ix , 321 ,, i = , 

are assumed to be available from measurements. 

The proposed non-parametric approach of this research aims to discover an equivalent system 

of differential equations that describes the three DOF system defined by Eq. (3). This approach 

benefits from an auxiliary variable that incorporates the effect of all restoring forces from other 

degrees-of-freedom on a certain mass im . Herein, this variable is named the compound restoring 

force, denoted as ir  at DOF i . Bolourchi (2014) and Bolourchi et al. (2015) showed that the 

presence of the derivative of the restoring force ir  in the system of differential equations of 

SDOF hysteretic systems plays a vital role in providing high-fidelity models for bilinear hysteretic 

systems. Thus, using the approach of this research, the differential equation associated with each 
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compound restoring force 
ir  is discovered and optimized. Thus, the target equivalent system of 

differential equation that is aimed to be discovered is as follows 
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where 
ix , 

ix  and 
ix  are the displacement, velocity, and acceleration, respectively, )(tfi  is 

external excitation, 
im  is the mass, and 

ir  and 
ir  are the compound restoring force and its 

derivative at DOF i . While Eqs. (4(a)), (4(c)) and (4(e)) are known a priori, the discovered 

differential equations of the compound restoring forces 
ir  will be placed in Eqs. (4(b)), (4(d)) and 

(4(e)) to form the surrogate computational model that represent the system under discussion. 

 

 

 

3. Introduction to genetic programming 
 

3.1 Overview 
 

Evolutionary Algorithms (EAs) are heuristic optimization methods that mimic the necessary 

processes for evolution in nature — selection, mutation and crossover — to evolve a population of 

candidate solutions. Genetic Programming, introduced and popularized by Koza (1992), is a 

branch of EAs that is capable of evolving any type of structures in the form of expression-trees 

with quantifiable performance in the domain. (Bolourchi 2014) 

 

 

 

Table 1 Properties of the Bouc-Wen model and the applied excitations )(tfi for training and validation 

Parameters of Excitations )(tfi  Values  Bouc-Wen Links 
ig   Values 

 

Mean   0  n  1.00 

Training Standard Deviation 
t  1.00  A  1.00 

Validation Standard Deviation 
v  1.00    1.00 

Sampling Frequency Tt  0.05    1.00 

Duration 80 Seconds    1.00 

321 ,,:Masses mmm  0.80, 2.00, 1.20    -0.50 
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3.2 Population 
 

In this study, the population of evolving candidate solutions are the differential equations of the 

compound restoring force at each DOF, that will eventually take part in the system of the 

differential equations of Eq. (4). In order to obtain distinct differential equations, a new population 

is formed for analyzing each degree-of-freedom. No additional information is assumed to be 

known about the topology of the system. Thus, the training data set is composed of all 

displacement and velocity states, 
321321 ,,,,, xxxxxx   as well as the compound restoring forces 

321 ,, rrr  at all degrees-of-freedom. Hence, they form a 9-dimensional function-space domain to 

estimate the derivative of the restoring force 
ir  at a specific DOF i  in Eqs. (4(b)), (4(d)) and 

(4(e)). Therefore, the MDOF system under investigation has 3 degrees of freedom, but 9 

introduced variables constitute 9 dimensions. Note that, due to the complexity of the system, all 

the available signals are considered as a variable, in the beginning, and consequently, add one 

dimension to the search domain. However, GP will intelligently remove unrelated variable that do 

not contribute to the target signal. As a result, dimensionality reduction is conducted automatically 

throughout the evolution. 

In addition to the state variables, algebraic operations ( /,,,  ), as well as the abs  and 

Heaviside step functions are included in the library of essential building blocks, to construct the 

body of the evolving population. However, only appropriate elements will survive during the 

course of the evolution to form the most suitable structures, and subsequently, the most accurate 

differential equations. Then, evolutionary operators (mutation and crossover) are used to advance 

the evolution. The eventual goal is to discover optimized distinct differential equations for the 

compound restoring forces of the system to form a complete system of coupled differential 

equations that fully characterize the system under discussion.  

 
3.3 Fitness criterion 
 

Establishing a suitable fitness criterion is critical for guiding the evolution toward an 

admissible solution in a timely manner. The fitness error e in GP is calculated using the mean 

absolute error of the deviation of the model estimate from the target signal. 𝑒 =  𝑥 – �̂� , 

normalized by the mean absolute value of the reference signal 𝑥 
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A different fitness criterion is implemented for advancing the parameter optimization by means 

of Genetic Algorithms. This criterion will be presented later in this paper. 

 

 

4. Modeling multi-dimensional hysteretic systems: general procedure 
 

The identification procedure consists of two major phases: training and validation.  
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Table 2 The parameters of Eureqa for obtaining the optimum structures using Genetic Programming 

Note that due to the incorporation of non-differentiable basis functions, gradient-based methods are not 

suitable for the optimization process 

 
 
4.1 Training 
 

Step 1: Excitation 

For training, first the synthetic training data set should be generated. Three different, but 

statistically similar, excitations stimulate the lumped masses at each degree-of-freedom. The 

properties of the excitations are in accordance with Table 1. They are stationary Gaussian white 

with zero mean and known standard deviation. The standard deviation controls the intensity of the 

external excitations. The produced excitations stimulate the lumped masses at all 

degrees-of-freedom. 

 

Step 2: Response calculation 

The reference response of the structure under investigation is calculated by solving the actual 

system of nonlinear differential equations, described by Eq. (3), using standard time-marching 

numerical techniques. Then, the compound restoring force at each degree-of-freedom is calculated 

using the general equation of motion 
iiii xmtfr  )( . The estimate of the derivative of the 

restoring force is also calculated using two-point finite-difference approximations as follows 

t

rr
r

j

i

j

ij

i





1

                              (6) 

where 
j

ir  is the  th datum in the array of the estimate of the derivative of the restoring force 
ir , 

and 
1j

ir  and 
j

ir are the 1j th and j th data in the array of the restoring force
ir , and t  is 

the time step. 

 

Step 3: Training data preparation 

The derivative of the restoring force 
ir at DOF 𝑖, the restoring force at all degrees-of-freedom 

ir , along with displacement and velocity of all degrees-of-freedom form the training data set.  

                    Eureqa 

Parameters Values 

Error Metric (Fitness) Minimize the Absolute Error 

Algebraic Operations   

Basis Functions ,step abs  

Terminals Constants, Variables 

Stop Criterion 48 hours 

Number of Variables 9 

Processing Unit 
RAM: 16.0 GB; CPU: Intel quad core i7-3370 with hyper threading; CPU clock: 

3.40 GHz 
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Table 3 Properties of GA for parameter optimization 

GA Parameters Values 

Method gaoptimset 

PopulationSize 200 

Initial Population From GP: 𝒄 

PopInitRange ]2.5c:c4.0[  

Bounds (lb, ub) )c,2.5c4.0(  

TolFun 0.01 

StallGenLimit 50 

 

 

Step 4: Genetic programming computation 

Eureqa (Schmidt and Lipson 2009), which is a Genetic Programming toolbox that uses the 

principles of Genetic Programming to perform this task, was used for the analysis. The fitness is 

calculated using the absolute error defined earlier by Eq. (5). Algebraic operations and basis 

functions are the non-terminal building blocks that connect terminal building blocks of trees 

(ending leafs). Parameters of GP can be found in Table 2. 

 

Step 5: Un-optimized model formation 

At the end of three rounds of evolution, three distinct differential equations are obtained for the 

compound restoring forces at all degrees-of-freedom. Then, they are combined to form the system 

of differential equations of Eq. (4). However, while the fitness of the obtained models from GP is 

based on how every single discovered equation can estimate the derivative of the restoring force, 

the actual performance of the constructed system of coupled differential equations is measured 

based on their global performance. Therefore, since GP is not able to effectively optimize the 

parameters of the model based on the solution of the differential equation, Genetic Algorithms are 

employed next to optimize this system of differential equations to improve its global response 

estimates.   

 

Step 6: Model’s parameter optimization 

Due to the dependency of the system response on all coupled differential equations combined 

together, the parameters are optimized using GAs, all together, to enhance the accuracy of the 

response estimates. Hence, the cost function is defined as the summation of equally-weighted 

errors between the displacement, velocity and acceleration of the model response and the reference 

response, at every degree-of-freedom, as follows 
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where 
ix  is the displacement, 

ix is the velocity, and 
ix is the acceleration at DOF 𝑖 and 

ix̂ , 

904



 

 

 

 

 

 

Evolutionary computational approaches for data-driven modeling of multi-dimensional… 

ix̂  and ix̂  are their estimates, respectively. GA in Matlab is employed to optimize the 

parameters, and the assigned options are listed in Table 3. The gaoptimset method is used to 

conduct the evolution of parameters in Matlab. The size of the population is 200.  

 

Step 7: Final optimized model completion 

In the end, after the parameter optimization phase is completed, a system of differential 

equations is obtained whose parameters are also optimized, to accurately represent the MDOF 

system under investigation, and to yield the best estimates. 

 

4.2 Validation and verification 
 
The last phase of the modeling scheme involves validation and verification by predicting the 

accuracy of the discovered model when subjected to new excitations whose intensities are 

substantially different from the training excitations. This phase gages the generalizability of the 

discovered model, and its applicability in new dynamical environments. 

 

 

5. Modeling multi-dimensional hysteretic systems: results 
 

This section applies the introduced identification technique that incorporates GP and GA for 

the identification of a multi-dimensional non-linear hysteretic system with the Bouc-Wen 

formulation. The model shown in Fig. 1 is excited at all degrees-of-freedom by broad-band 

uncorrelated forces, described in Table 1, to undergo horizontal motion. The duration of the 

excitations is 80 seconds, and the time-history of the applied excitation to DOF 2 , as an example, 

is shown in the lower part of the time-history panels of Fig. 2. The response of the system is 

obtained by solving the system of coupled differential equations of Eq. (3). The inter-connecting 

links 
ig  undergo significant hysteretic deformation. Samples of this behavior for three 

inter-connecting elements 
ig , i=1,2,3 are plotted against the relative displacement of their two 

ends in Fig. 3. 

 

5.1 Discovering the optimized structure of differential equations by GP 
 

The response of the stimulated 3-DOF system generates 3 batches of training data sets, and are 

fed to GP to obtain three differential equations associated with the compound restoring force at 

every degree-of-freedom. It is important to note that none of the information concerning the 

individual restoring forces
ig s, i.e., neither the formulation of 

ig , nor the measurements from a 

single 
ig , is used in the modeling process. 

The candidate GP-found differential equations that were obtained after the termination of the 

optimization for 3 different training datasets are combined to form the entire coupled system of 

differential equations in Eq. (8). Note that, according to Eq. (3), although 6 Bouc-Wen models are 

included in the MDOF system of Eq. (3), the estimate of the governing system of differential 

equations in Eq. (8) involves only three equations for the compound restoring forces. Thus, a fairly 

simple model is able to represent the investigated complex multi-dimensional system exhibiting 

nonlinear dissipative memory-dependent behavior.  
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Fig. 2 Comparison of the reference and estimated response of the 3-DOF hysteretic system at DOF 2. The 

system is stimulated by 3 distinct external training excitations at all degrees-of-freedom. The graphs 

of the reference and identified response are plotted using solid and dotted lines, respectively 

 

 

   

Fig. 3 Phase plots of the force at interconnecting elements of 1g  to 3g
 

vs. the relative displacement of the 

corresponding ends, when the 3-DOF hysteretic system is subjected to distinct training excitations 

with 0.1t  at all degrees-of-freedom 
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5.2 Optimizing the parameters of the system of differential equations by GA 
 

Though the obtained expressions provide the best fit for the defined auxiliary variables 
ir s, 

which symbolize the compound restoring forces, the parameters of this system are not optimized 

by GP to yield accurate response estimates globally. Thus, the weight vector a  is introduced to 

adjust the contribution of every single term in the system of differential equations in such a way 

that the least difference between the estimate and reference response is achieved. According to Eq. 

(9), the weight vector has 12 elements, and is optimized by Genetic Algorithms using the error 

measure defined by Eq. (7). Note that the fact that the weighting parameters are linearly dependent 

on 
ir  doesn't eliminate the need for a stochastic evolutionary-based optimizer because the cost 

function of Eq. (7) depends on the response of the entire system of a coupled differential equation, 

rather than the goodness of fit in Eqs. (4(b)), (4(d)) and (4(f)) separately.  
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 Fig. 4 Comparison of the reference and identified response of the 3-DOF hysteretic system at DOF 2. The 

system is stimulated by 3 distinct external validation excitations with 0.1v  at all 

degrees-of-freedom which have the same intensity as the training excitation with 0.1t . The 

graphs of the reference and estimated response are plotted using solid and dotted lines, respectively 
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The cost function associated with the original system of Eq. (9) before optimizing the weights, 

when ]111111111111[ia , decreases from 266% to 175%, when the optimized weight vector is 

achieved: ][ 0.90 1.26, 0.94, 1.07, 0.81, 0.99,  ,1.12, ,1.01 ,0.97 ,0.901.14 0.90,fa . Note that the 

cost function is defined by Eq. (7).  

 

5.3 Validation of the model 
 

At the end of the training phase, which consisted of both GP for optimizing structures and GA 

for optimizing parameters, the obtained system of differential equations is validated. The 

validation is conducted by applying a different random excitation which has the same standard 

deviation as that of the training, to the MDOF system. Solving the optimized coupled differential 

equation of Eq. (9) with fa  under the new validation excitation by means of standard numerical 

techniques provides the response estimate. The time histories of the estimated response and the 

reference response due to the training excitation are shown in the time history panels of Fig. 4 for 

DOF 2. Similar results are achieved for other degrees-of-freedom. The reasonable error associated 

with the estimates confirm that the proposed modeling technique yields reduced-order, 

reduced-complexity, optimized differential operators that effectively characterize the dynamics of 

the complex nonlinear MDOF system with hysteretic traits. It is also shown that the model 

performs well under new dynamical stimulations. 

A more comprehensive validation process can be implemented by considering a variety of 

excitation levels, and conducting a statistical analysis on the outcomes. 

 

 

6. Discussion 
 

Based on Evolutionary Computational approaches presented herein for the identification of 

multi-dimensional hysteretic systems, it was shown that the obtained equivalent system of 

differential equations is fairly simple, and at the same time provides reliable estimates with 

reasonable error. Though the optimization starts off with 9 variables, the discovered equations at 

the end of the structure optimization by means of GP have only 4 variables, because only the 

variables will survive during the course of evolution that provide the best fit. It is seen that for the 

equation of the derivative of the compound restoring force 
ir at DOF i only the compound 

restoring force at the same DOF i  and the velocity measurements at all DOFs take part in that 

specific differential equation to attain the best fit for 
ir . The acceptability of the resultant model, 

despite its simplicity comparing to the complexity of the original system of differential equations, 

and the physical nature of the studied system, shows the effectiveness of the approach for 

discovering equivalent computational models for complex multi-dimensional phenomena.  

Since only the vibration of lumped masses are measured, without measuring the forces at all 

interconnecting links associated with the Bouc-Wen elements, the measurements are not complete. 

Thus the exact original model of Eq. (3) cannot be reconstructed using these measurements by 

model-free approaches. However, the presented technique of this study is capable of discovering 

an accurate differential equation for an auxiliary variable that incorporates the vibrations from all 

other hysteretic links and masses. These differential equations are coupled and together construct 

the eventual representative model.  
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7. Advantages and challenges of the proposed technique 
 

7.1 Advantages 
 

In this study, no model was postulated up-front, and the modeling is merely carried out through 

processing of the provided input and output data. In real world problems, these data are obtained 

from sensor measurements. Therefore, this method doesn't require extensive prior information 

about the original underlying system, and as a result the discovered surrogate reduced-order 

reduced-complexity model can be significantly different from the original system of differential 

equations while resulting in accurate estimates. Achieving acceptable models through model-free 

approaches is a great advantage of this technique when dealing with memory-dependent systems. 

Because these systems do not only depend on the instantaneous values of the variables, their 

previous states should also be incorporated. Therefore, many conventional non-parametric 

modeling techniques, such as polynomial approximation, are not able to provide acceptable 

models for such systems.  

Unlike many data-driven approaches, such as neural networks, that yield black-box models, 

without any insight into the physics of problem, the approach of this paper reveals the 

computational model of the studied system. On the other hand, if in addition to data, no 

information about the complex phenomena is available, the discovered model can provide insight 

into the constitutive properties behind the system associated with the data.  

 

7.2 Challenges 
 

The resultant models highly depend on the provided building blocks in GP, and the embedded 

basis functions, and not having appropriate basis functions in the pool of building blocks may 

cause poor results, including too many functions increases the computational cost. Moreover, 

adding more variables, and consequently more dimensions intensifies the computational cost. The 

nature of the external excitations also plays a vital role in the modeling process. While, slight 

perturbations cannot disclose the nature of the hysteretic phenomena to the extent that it is 

necessary for the modeling, very strong excitation may obscure the hysteretic properties and cause 

poor generalization capabilities when the system is subjected to less intense excitations. 

 

 

8. Conclusions 
 

The proposed technique of this paper benefits from advances in the field of Evolutionary 

Computation to provide high fidelity parsimonious computational models in the form of systems 

of differential equations that represent multi-dimensional memory-dependent systems, only based 

on input and output data. This approach employs Genetic Programming to optimize the structures 

of differential equations, and combines it with Genetic Algorithms to optimize the parameters of 

formerly discovered structures in a system of coupled differential equations, to result in accurate 

estimates globally. Thus, basis function and variable selection, dimensionality reduction, and 

parameter optimization are all preformed in the training phase. A benchmark example is used to 

assess the effectiveness of the proposed technique. After obtaining the equivalent model for this 

system based on training excitation, validation is carried out to verify the generalizability of the 
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achieved model in unseen dynamical environments. The validation results show that reasonably 

accurate responses are achieved though the discovered model is fairly simple compared to the 

exact formulation of the system, and verify the effectiveness of the presented approach for 

data-driven modeling of complex multi-dimensional hysteretic system.  
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